BACKWARD EULER TYPE METHODS FOR PARABOLIC
INTEGRO-DIFFERENTIAL EQUATIONS IN BANACH SPACE

N. Yu. BAKAEV, S. LARSSON, AND V. THOMEE

ABSTRACT. Time discretization by backward Euler type methods for a parabolic
equation with memory is studied. Stability and error estimates are proved under
conditions that permit quadrature rules for approximation of the memory term that
have reduced storage requirements. The analysis takes place in a Banach space
framework, and the results are used to derive error estimates in the Lo and maximum
norms for piecewise linear finite element discretization in two space dimensions.

RESUME. On étudie la discrétisation en temps d’une équation parabolique avec
mémoire par des méthodes de type Euler rétrograde. On montre la stabilité et on
donne des estimations d’erreur sous des hypothéses qui permettent d’utiliser des
formules de quadrature peu exigeantes en stockage pour l'approximation du terme
de mémoire. L’analyse est effectuée dans le cadre des espaces de Banach. Appliqués
en dimension deux, ces résultats permettent d’obtenir des estimations d’erreur L2 et
uniforme pour une discrétisation utilisant des éléments finis linéaires par morceaux.

1. Introduction. We consider the initial value problem
t
(1.1) us + Au = / B(t,s)u(s)ds+ f(t), forte[0,T], with u(0)=wv,
0

in a Banach space X, where A is a closed linear operator with dense domain D(A),
and B(t,s) is a smooth linear operator with D(B(t,s)) D D(A) and such that
Q(t,s) = A71B(t, s) and Qy(t,s) are uniformly bounded for 0 < s <t < T.

We assume that —A generates a bounded analytic semigroup E(t) = e~ t4, so
that
(1.2) IE@®)| + t|AE®)| < M, fort > 0.

It then follows, by Gronwall’s lemma (see Theorem 2.1 below), that for the solution
of (1.1),

t
(1.3) u(®ll < Dol + [ 17lds). fort<T.
0
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We shall consider the time discretization of (1.1). Let k be a time step, set ¢, =
nk,n=0,1,2,..., and denote by U™ the approximation of u(t,). We shall replace
the time derivative by the backward difference quotient OU™ = (U™ — U™~ ') /k and
approximate the memory term by a quadrature formula

n—1 tn .
(1.4) o(9) = 3 wnj? & / o(t)dt, where @ = (1),
7=0 0

The backward Euler discretization of (1.1) is then

n—1
OU™ + AU™ =Y " wnjB(tn, t;)U7 + f(tn)
§=0
=o"(B,U) + f*, forn>1, withU®=n.

(1.5)

Our aim is to extend stability properties such as (1.3) to this discrete problem,
and to use these to derive error estimates. In doing so we need to make the following
more specific assumptions about the choice of the quadrature formula in (1.4),
namely, for some positive integer p,

(16) 1@ <0k [ Y IOt where () = 0"(e) — [ p(®)d,
0 =1 0

and, for some positive number g,

j—1
(1.7) D |wjs — wns| < CKY, for 0<t; <t, <T.
s=0

Under these hypotheses we shall show (Theorem 2.3), that, for small k,

(1.8) jom < Ce”OMu (ol + kD11, for ta < T.
j=1

One example of a quadrature formula satisfying (1.6) (with p = 1) and (1.7)
(trivially) is the left-side rectangle rule, corresponding to wy,; = k for j < n. Since
this rule requires the storage of all previous U’, sparse quadrature rules have been
proposed, e.g., in [4], [6]. A short discussion of such rules is given in Section 5
below, where it is shown that our present assumptions on ¢" are different from
those made in the earlier work and do not require so called “dominated weights”.

Assume that we want to apply the above result to the case when X = Cy(Q)
equipped with the maximum norm, where € is a smooth domain in R2, and where A
is a discrete analogue of the Laplacian —A based on piecewise linear finite element
spaces S, defined by a family of quasi-uniform triangulations and where B(t, s) is
appropriate. In this case it is known, cf. [3], that (1.2) holds with M = C'log(1/h).
This means that (1.3) and (1.8) contain the stability factor € 108(1/%) = B=C which
is unbounded as h tends to 0, and these stability estimates are therefore of little
value.
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In order to find a remedy for this we shall assume that, in addition to (1.2), we
also have

(1.9) |E®)|| +t]|AE(t)|| < Mst=°, fort > 0, for any § € (0,1).

This is the case in the above finite element application with M independent of A,
see Lemma 4.1.

Under these assumptions we shall show that, for the solution of (1.1) (Theo-
rem 2.2),

t
(1.10) ||u(t)||gC(T,Mg,é)M(HvH—i—/O Iflds), fort<T,

and, for the solution of (1.5) (Theorem 2.4), if 6 and k are sufficiently small,

(111 (o< O My, )M (Jloll + B D NIF]), for ta < T
j=1

In the above finite element application the bound now contains a single factor
log(1/h).

We note that, in the case of one space dimension, (1.2) holds in maximum norm
for finite elements of any order with a constant independent of h, cf. [1], so that
(1.8) shows a uniform bound for T bounded.

The above stability estimates are proved in Section 2 below, and in Section 3 we
give corresponding error estimates. In Section 4 we discuss the application to the
finite element case in more detail, and Section 5 is concerned with sparse quadrature
rules.

2. Stability estimates. We begin with the basic stability result (1.3) for the
continuous equation.

Theorem 2.1. Assume that (1.2) holds. Then, for the solution of (1.1),

t
u(®ll < O (ol + [ 17lds), fore <.
0
Proof. Using Duhamel’s principle, we have

u(t) = E@yo+ | E(t—s)f(s)ds + / E(t—y) / " By, s)u(s) ds dy
(2.1) N 0 0
=F(t)+ /0 G(t, s)u(s) ds,

where F(t) = E(t)v + fot E(t — s)f(s)ds, and, since AE(t) = —E'(t),

G(t,s) = / AE(t — 9)Q(y, ) dy

— (I Bt 9)Q(ts) + / AE(t — 9)(Q(y, 5) — Q(t, )) dy,
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where Q(t,s) = A7'B(t,s). Since by our assumption

(2.2) 1QE, )|+ 1Q:(t,s)[| <C, 0<s<t<T,
we may use (1.2) to conclude that

(23) NGE )N <CL+EE- )+ C/ (t =yl AE(t —y)| dy < C(T)M,

and we hence obtain from (2.1)

HWWSMMWﬁAWMQ+aDMAme%,ﬁmgﬂ

from which the desired result follows by Gronwall’s lemma. [

We now turn to the modified stability estimate (1.10) for the continuous equa-
tion.

Theorem 2.2. Assume that (1.2) and (1.9) hold. Then for the solution of (1.1)
we have, for any § € (0,1),

ool < o(x, My 0 (1ol + [ 5lds). fore <
Proof. This time we use (1.9) in the first inequality of (2.3) to obtain
IG(t,s)|| < C + CMs(t — s)~° + CMj /t(t —y) % dy < C(T, Ms)(t — s)~°.
Hence, by (2.1),

@4 <M (joll+ [ 11ds)+ O M5) [ = ulo)l ds.

and our result follows by a variant of Gronwall’s lemma (cf. [2, Lemma 5.6.7]; it
also follows easily from the time-continuous version of Lemma 2.2 below). O

We note that under assumption (1.9) one may also show for the solution of (1.1)

@5 luoll < CTMe. ) (ol + [ (€= ds). fort<T

In fact, instead of (2.4) one has, with C' = C(Mjy),

t t
@l < (ol + [ (=57 Nrlds) +C [ (0= 9 sl ds
from which (2.5) follows by a variant of Gronwall’s lemma.

In order to prove the discrete analogues (1.8) and (1.11) we introduce the back-
ward Euler one step evolution operator Ej, = (I+kA)~! and first show the following
discrete analogues of (1.2) and (1.9) (with the former contained as a special case
with Mo = M).
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Lemma 2.1. Assume that, for some § € [0,1),
IE@®)| +tIAE®)|| < Mst=°,  fort > 0.

Then
|EZ|| + to||AER| < CMst;%,  for t, > 0.

n

Proof. We have, cf., e.g., [2, p. 21],

n __ -n __ 1 * n—1_—t
Hence, by our assumption on E(t), and since I'(n — 6)/T'(n) < Cn~?,
-0 o I'(n—90)
ERl| S Ms—— | "' Petdt = Msk™®————> < CMst,,°.
B3 < My [ e sk E = < oM,

The estimation of AE} is similar for n > 2; for n =1 we use kAEy =1 — E. O

Our proofs in the discrete case will depend on the following version of Gronwall’s
lemma. We remark that, in the earlier work [4], [6], instead of (1.7) the analysis was
based on the assumption that the weights w,s; are “dominated” in the sense that
there are weights ws, independent of n and such that w,s < w, for 0 <t;, <t, <T
with ZZ;OI ws < C, which makes it possible to apply a more standard Gronwall
lemma.

Lemma 2.2. Let u,, n=0,1,..., be nonnegative numbers such that
n—1

(2.6) u, < K + Z Unsts, fort, =nk > 0.
s=0

Assume that the coefficients pns = pns(k) are nonnegative and that there exist
positive numbers v, T and kg, independent of k, such that

-1
(2.7) D pns <y<L, fortiy —tm <7, 0 <ty <ty <tn, k< ko
s=m

Then, with C =log ((1 —v)~1),

(2.8) Up < KeCE/m0  fort, >0, k < k.

Proof. Let I; = [(j — 1)7, j7]. Then, by (2.6) and (2.7),

j
<K
et K72 maon,
from which we easily conclude that max;,er; up < K (1 —+)77, which implies (2.8)
since j <t,/T+1fort, €I;. O

In the following we let T" be fixed (but arbitrary) and we let C' denote various
constants that may depend on T

We now show the following stability result for (1.5). For the purpose of our
error estimates below it is phrased in a more general way than (1.8), which latter
is contained for ¢7 = 0.
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Theorem 2.3. Assume (1.2) and let {g’} C X be arbitrary. Then we have, for
the solution of (1.5), fort, <T, k < ko(M),

jomil < ce?™ M (floll + B DD U57 = g7l + A7 g [+ D 1147 0g7])).

=1 =2

Proof. The proof is modeled on the proof of Theorem 2.1. We have by Duhamel’s
principle and a change of the order of summation in the double sum, cf. (2.1),

n n 7j—1 n—1
(2.9) U" = Epo+k Yy E 7" A4k BRIy T wi B U = F™'+)  GnsU”,
j=1 7=1 s=0 s=0

where, since kAE} = EZ_I — E}, we may write

n n
Fr=FEpv+kY Ey 7T (fl—gl)+ A™'g" —EpA~'g" — kY Ep 7t AT 097,
i=1 i=2
and, with Q;, = A7!Bj,, we have Gn, = kY7 ., AEL 7 "w;,Q;,. Here, by
(1.2) and Lemma 2.1, for small k£ and ¢, < T,

n|| < i_ g ~1,j ~15,i
177 < oM (ol + kD157 - g7l + ma 477 + kY 4723

(2.10) = o
<CM(|lo]+kE 3157 = gl + A7 g ]+ kD 147 997 )
i=1 =2

In view of Lemma 2.2, the result therefore follows once we have shown that, for
small k,

-1
1
(211) Y Gl < CM (ti g1 + klog E) for 0 <t <ty < tn <T,

s§=m

so that (2.7) holds for pns = ||Gnsl|, with v = 3, 7 = (4CM)~" and ko = ko(M).
In order to prove (2.11) we write

Gns=k D AB 7 wniQuat kY AET wna(Qje = Qns)
j=s+1 Jj=s+1

tk Z AEZ_j_i—l(sz - wns)st = G71ls + G?Ls + G?LS
j=s+1

Here G}, = (I — E}”®)wnsQns, so that by (1.2) and Lemma 2.1 (cf. (2.3))

|G + Gll < Cums (14 kD ta s AEF 7)) < Moy,
Jj=s+1
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Also .
IGoll < CME Y 8,2, wjs — wnsl.
j=s+1
We shall show
1-1
(2.12) Z Wns < ti—m + CkY,
and, for small £ and t,, < T,
-1 n 1
(2.13) YL D taliilwjs — wns| < Chilog 1,
s=m j=s+1

which together show (2.11). In order to prove (2.12) we note that the quadrature
formula is exact for constants (cf. (1.6)) and use (1.7) to get

-1 -1 -1 m—1
Z Wns = Zwls Z Wms — Z Wis — wns) + Z (wms - wns) S tl—m + Ck1.
s=m s=0 s=0 s=0

For the proof of (2.13) we use (1.7) as follows:

-1 n min (I—1,7—1)
DI I DRRINETY SN DU R
s=m j=s+1 j=m+1 s=m
n
_ t
SCEITY N 4t < CE(1+log
j=m+1

_t’") < C’kqlog%. O

The following is a modified stability result for the time stepping method.

Theorem 2.4. Assume (1.2) and (1.9), let {g°} C X and r € (1,00] be arbitrary.
Then we have, for the solution of (1.5), for some d € (0,1), fort, <T, k < ko(Ms),

o7l < @ Mo, &) {3 (Joll+ K317 - of1) + M (63 1o)™Y
= =1

Proof. Again we have (2.9) and instead of (2.10) we use (1.9) and Lemma 2.1 to
get, for ¢ sufficiently small,

HkZE" gl < 0M5kzt 2 alefl < oo (k3 11) "

1=1

It remains to bound le_:in ||Grsl|, so that Lemma 2.2 may be applied with p,s =
||Grns|| and with 7 depending on Mj instead of M. For this purpose we use (1.9)
and Lemma 2.1 to get, with the above notation,

n n
1Grhe +Gagll < Cwnsk Y [|AER 7MY < CMywnsk Y 1,277, < CMst,® jwns,
j=s+1 j=s+1
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and

||G s” < CM(Sk Z tn J+1‘wys wns|-
j=s+1

Estimating le_:lm |G2 .|| we have, uniformly in §, (cf. the proof of (2.13))
-1 n n j—1
kD 2 tnleis —wns Sk D ) [is — v
s=m j=s+1 j=m+1 =

< Ok Z tpti < Ck1™ 510gk
Jj=m+1

In order to bound le_:lm IGL, + G2,|| in terms of t;_,, and k, we argue as in the
proof of (2.12). We have

-1 -1 m—1
Z £ gwns = Zt;iswls - Z t2 sWms
s=m = =
— Zt wls wns + Z t_6 wms wns)
tl
:/ (tn —8) Cds+€ —e™ —n' +q™
¢

m

where, uniformly for small §, and using the elementary inequality (z+y)? < z7+y?
for z,y 2 0, V€ (07 1)a

t 1-6 1-4§ 1-46
—5 (tn —tm) % — (tn — 11) 7 1-6
| (tn =)0 ds = S < Em<onsh

Moreover, according to (1.6) we have

€] = | ((t = ) |<ck/ ZIDl(t 079 dt < Chi P,

again uniformly for small §, where for simplicity we have replaced 0 by 1 in the
final step. Also, according to (1.7),

|77 | = ‘Zt wzs Wns)

Together these estimates show

<k~ 5Z|ww wns| < CKI9.

(2.14) Zt sWns < Ot + Ckt P, + CkL°.

Since our estimate of € may be as large as Ck'~P (when #; = t,_1), we have to
make a refined estimation. Let ¢ > 0 be arbitrary. The contribution of the terms



BACKWARD EULER TYPE METHODS 9

in le_l t70 wne with t,_ s > (k/e)l/p is then bounded by Ctll__gl + Ce + CkI9

=m N—S8

according to (2.14). On the other hand, the contribution of the terms with ¢,,_s <
(k/€)'/? can be bounded, using (2.12), by

E ) wne SETO((R/0)MP + CRY).
tn_s<(k/e)l/P

Thus, putting these bounds together we have (cf. (2.11))

-1
S 1Gusll < OMy (75 + e+ k0412 4 ja-21og ),

s=m

so that (2.7) holds for p,s = ||Gns||, if 0 < § < min(g,1/p), by choosing € =
k(—p0)/(14P) | with k < ko(Ms) sufficiently small, and 7 = (4CM;)~Y/ (=9 O

In analogy with (2.5) one may also show that under assumption (1.9) we have
for the solution of (1.5)

[0 < O, My, 8) (12 loll + D0 1225l 1), for b < T
1=1

Since this will not be used below, we refrain from the details.

3. Error estimates. We show the following error estimate in our abstract frame-
work.

Theorem 3.1. Assume that (1.2) holds. Then we have, for the solutions of (1.5)
and (1.1), with C = C(T), fort, <T

tn p
U™ = utn)|| < CeOM MK / (el + D 1 4u®1]) di.
=1

If also (1.9) holds, then the result holds with the stability factor C(T, Ms)M, for
some (sufficiently small) § > 0.

Proof. Set e = U™ — u™. Then
0e" + Ae"™ = o(Bpe) + " + 13,

where 7 = —(0u™ — uy(t,)) and 7% = " (Byu). Here, |72 < fti"_l ||uee|| dt, and

using (1.6),
t, P
Il <k [ 737 Au dr
0 =1

(Note that, by duality, the assumption (1.6) for scalar functions implies the corre-
sponding statement for vector valued functions.) By the stability result of Theo-
rem 2.3, we now have

le”l| < Ce“Mpk Y (171l + lIm31),

J=1

from which the first result follows. The proof of the second is analogous, using
Theorem 2.4 instead of Theorem 2.3. [
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4. Application to piecewise linear finite elements. In this section we con-
sider the case of the initial value problem (1.1) when A is a self-adjoint positive
definite elliptic operator, and B(t, s) is a second order partial differential operator
with smooth coefficients, in a plane convex domain €2 and with Dirichlet boundary
conditions. Together with this problem we shall consider its spatial discretization in
piecewise linear finite element spaces Sy. With (-, -) the standard La-inner product
on 2, the spatially discrete analogue of (1.1) is to find wup(t) € Sy, for t > 0 such
that

t
(uh,t7X) +A(uhaX) = / B(ta S;uh(8)7X) d8+ (.f7 X)7 VX € Sha te [OaTL
0

Up (0) = Vh,

(4.1)

where A(-,-) and B(t,s;-,-) are the standard bilinear forms associated with A and
B(t, s). Introducing the discrete operators A;, and By(t, s) : Sp, — Sp by

(Ah¢aX) = A(l/)aX)a (Bh(ta S)¢5X) = B(t’s;waX)a V1/’,X € Sha

the problem (4.1) may be expressed as (1.1), with A and B(t, s) replaced by their
discrete analogues Ay, and By(t, s) in Sp. It is to this spatially discrete problem that
we now apply the backward Euler discretization (1.5), which yields the completely
discrete problem to find U™ € S}, such that, with B,(s;-,-) = B(tys, s;-, ),

(OU™, x) + A(U™, x) = o™(Bn(U,x)) + (f*,Xx), VX € Sh, n>1,

4.2
( ) UO = Vp-

We shall begin by considering this problem in the Hilbert space Ly (€2). In order
to apply the above theory to this problem, we recall the well known fact that for
Ep(t) = e~ we have, with respect to the Ly-norm,

[ER(O) + tAnEn(®)] < C,  for t >0,
so that (1.2) is valid. We also need to assume that, uniformly in h,
(4.3) 1AL Br(t, )l + 14, " Be(t, s)|| + | Bu(t, 5) A, ]| < C©

(cf. (2.2)). This is the case, e.g., if the triangulation underlying the definition of Sj,
is quasi-uniform, or if the principal part of B(t,s) equals a scalar function b(t, )
times the principal part of A, see [4], [5], [6].

Under these assumptions we have the following. We assume for simplicity that
the discrete initial value is Rpv, where Ry, : H}(Q) — S}, denotes the Ritz projec-
tion, i.e., the orthogonal projection with respect to the inner product A(-,-).

Theorem 4.1. We have, for the solutions of (1.1) and (4.2) with vy, = Rpv,

IU™ = u(ta)l| < C(T, u)(h* + k), fort, <T.

Proof. We write

e" =U"—u" = (U" — Rpu") + (Rpu™ —u™) = 0™ + p".
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It is well known that

(4.4 16| < CR2|ju 1z

For 6" € Sj, we note that, with By, ,(s) = Br(tn, s),
(4.5) 00™ + Apb™ = 0"™(Bpnb) + 7",

where, with €™ defined in (1.6),

tn
= —3(Rpu™ — u™) + (Fu” — ) + € (Bnn Ra) + / (B Rn — PoBy)udt
0
=7+ 7y + 75 + 74

Here, by standard estimates,

1 tn tn
Il + gl < O / |l dt + / lusell dt < C(u)(B? + k).

tnf tnfl

Further, since || By, A, '|| < C and Ry, = A} ' P, A,

tn, P
1731 = " Bl < C [ 7S 400 dt <
0 =1

For 73 we have, with Z}, ,, = By n Ry — P By,

tn tn—l tn tn—l _
kot = / Zppudt — / Zhprudt = / Zpnudt +k / 8 Zn pudt.
0 0

tno1 0

We shall show presently that

(4.6) 1A Zh || + || Ay, 0Zh nul| < C(u)h?.

Vge now apply Theorem 2.3 to (4.5), with f" = Z?zl T, g™ = 74, to obtain, since
6° =0,

n n
lom1l < ) (kDU N+ 11+ 73l + Az 7 | + & Y [145 281
j=1

< C(T,u)(h? + k). l

Together with (4.4) this completes the proof.
It remains thus to show (4.6). We have, taking the supremum over all x € Sy
with [|x[| =1,

| A5t Zh mul| = sup(A;,  Zhonu, X) = sup(A, 1 (Bhn Ry — PoBn)u, X)
X X
= sup B, (p, A;, ' x) < sup Bu(p, (A5, — A71)x) + sup B, (p, A" x)
X X X

< Cllpllzrh + Cllpll sup B A" x| < C(u)h?,
XESh
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which completes the proof of the first part. The second part follows similarly from

1Ay, ' 0Zp, qu|| < Ck™ sup (Bu(p, Ay 'X) — Bn-1(p, Ay 'x)) < C(w)h®. O
X

We now turn to a discussion of the above problem in the Banach space Cy(2)
and throughout the rest of this section we now use the maximum norm |jv|| =
sup,cq |v(z)|. We note that in the general case A~'B(t, s) is then not a bounded
operator and (4.3) cannot be expected to hold. We therefore now restrict the
considerations to the case that A = —A, B = —b(t,s)A, where A is the Lapla-
cian and b(t,s) is a smooth scalar function. In this case A(-,-) = (V-,V-) and
B(t,s;-,-) =b(t,s)(V-, V-), and the discrete analogues of A and B(t, s) are defined
by Ap = —Ap, Br(t,s) = —b(t, s)Ap, where

_(Ah¢7X) = (V% VX)’ V¢aX € Sh

In order to apply our abstract theory in this case, we note that A,:lBh(t, s) =
b(t,s)I is bounded together with its derivatives. We also need to know to what
extent the assumptions (1.2) and (1.9) are satisfied for A, = —Ajp. We first recall
from [3] that, if the family of triangulations underlying the definition of S}, is quasi-
uniform, then for Ej(t) = e~ “4rt we have, with respect to the maximum norm,

1
(4.7) BRIl + t)lAnEn(t)]| < Clog -, for ¢ >0,
so that (1.2) is satisfied with M = C'log(1/h). We also want to show that (1.9) is

satisfied with My independent of h.

Lemma 4.1. Under the present assumptions we have, for any 6 € (0,1) and for
h < h57
IEL ()]l + tlAnEn(t)]] < Cst=°,  fort > 0.

Proof. We use techniques from [3, Theorem 3.3]. It is easy to show that || Ep(¢)]]
and ||ApER(t)|| are bounded for ¢ > to > 0 and decay exponentially (uniformly in
h) as t — oo, so it suffices to consider 0 < ¢ < 1, say. By the maximum principle,
|IE(t)|| < 1. We shall show that, with Py, the Lo-projection onto Sp,

(4.8) | Ex(t)Phv — E(t)v]] < Cst™°||v]|, for 0 <t <1, h< hs,

which, applied with v € S;, shows the desired estimate for Fp(t).
From [3] we quote that, for any € > 0,

(4.9) |EL(t) P, — E(t)|| < Cch® 3471t

which implies (4.8) for any § > 3. To consider smaller §, we use (4.9) with e = 3,
say, together with (4.7), to obtain, for 0 < § < % and h < hs,

1y1-26 26
IBa P — E@)l < (Clog =) (ChY/272) 7 < Cst ™,
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We now turn to the estimate for ApE}(t) = —Ej (t). As before the statement is
valid for the continuous analogue E’(t), so it suffices to show

]| B, () Pro — E' (t)v]] < Cst™°||o]|.
With up,(t) = Ex(t)Pyv and u(t) = E(t)v we write
up(t) — u(t) = (un(t) — Pru(t)) + (Pru(t) — u(t)) = n+ (.
Here, since P, is bounded in maximum norm,
tC )l = ¢l Phue(t) — we (@) < Ctllue(t)]] < Cllol| < Cst=°v]].
For n we note, with p = Rpu — u,
ne + Apn = Ap(Rp — Pp)u = ApPrp.
Differentiating and setting w = tn; we have
wt + Apw = ApPy(tpt) + mt,
so that, since w(0) = 0 and 7(0) = 0,

w(t) = /0 En(t — 5)(AnPr(spe(s)) +me(s)) ds

— () + / AnEn(t — 5)(Pu(spe(s)) — n(s)) ds.

We recall from [3] that, since (a+ 8)"! < o 17877, for a, 8> 0,0 <y < 1, we
have

1 1
[ARER ()] < Clog +-(t + h?)7t < Ch720) Jog ot
Further, using the stability of P}, the logarithmic stability of R, and the analyticity
of E(t) in Ly(£2), we have for a suitable v < oo,

|
s|Prpr(s)ll < Csllpe(s)]| < Clog 35 inf Jlur(s) — x|

1 1
< Clog Eh2_365||ut(s) [ r2—sc < Clog Eh2_363||ut(s)||W3—2e
1
h

1
< Clog Eh2_365_1+6||'u||,;u < Clog —h* 7357 1< |y]|.

It is easy to show 7(t) < Cst~? and, moreover, from [3, (3.17)] we have
In()]] < CR*=% sl

and we conclude

1\2 [*
lw(®)ll < Cstlloll + Ch*1=*( log ) / (t = s)7s™ < s

= Cst™° |lol| + CR*7= <t ||u]| < C5t~°|o],

by the choice € = d, v = 26. This completes the proof. [

We now show the analogue of Theorem 4.1 in the case of the maximum norm.
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Theorem 4.2. With respect to the maximum norm we have under the above as-
sumptions, for the solutions of (1.1) and (4.2) with vy, = Rpv, for h < hg, k < ko,

1
JU™ = u(ta)|| < C(T, u) log (h2 + k) fortn <T.

Proof. We follow the lines of the proof of Theorem 4.1. In maximum norm we have
n 2 1 n
o™l < Ch logﬁllu lwz -
Similarly to above we now get
n 2 1 n
Il < C(u)hlog -, [I73]| < Clu)k.

Further, since A, Ry, = PR A,

p

tn
1]l = [l€ (bnAnRutw) | < C / S Au® | dt < Cluk.
=1

In this case Zpn, = —b(tn, )(ApRp — PLA) = 0 and hence 7 = 0. Theorem 2.4
with f™* = Z?zl T, g™ = 7], therefore shows (recall that now M = C'log1/h)

AR

1
n < - 2 .
167 < C(T, w) 1ogh(h +k> 0

5. Quadrature rules. We now give some examples of quadrature rules satisfying
our assumptions. As mentioned in the introduction, the most obvious choice is the
rectangle rule, which corresponds to taking all w,s = k, for s < n. Clearly then
(1.6) holds with p =1 and the sum in (1.7) vanishes.

A drawback of this method is that all the previously computed values of the
solution enter into the equation (1.5), so that all of these have to be stored for
future use. Following the philosophy of [4] and [6] we shall now turn to some sparse
rules, that reduce the storage requirement.

We begin with a quadrature rule based on the trapezoidal rule on intervals of
lengths O(k/?), with a slight modification near t,. Let m = [k~/2], set ky, = mk
and t; = jki, and let j, be the largest integer with ¢, < t,. For the interval (0, ,)
we then apply the composite trapezoidal rule with stepsize k1 on (0,%;, ), then the
one-interval trapezoidal rule on (;,,%,_1), and finally the left side rectangle rule
on (tp—1,t,). Thus

- % Zn:(w@) +o(tj-1)) + %(tn—l — t5,)(@(tn—1) + ©(t5,)) + ko(tn_1).

" ()

Since the rule is second order in ky over (0,t;, ) and (¢;,,t,—1), and first order
on (tn_1,tn), (1.6) holds with p = 2. Here w,, < k'/2 for s < n, and it is easy
to see that (1.7) holds with ¢ = 1/2. The number of time levels that enter the
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computation is of order O(k~/2) for this rule, as compared with O(k~1) for the
rectangle rule.

In [4] a similar quadrature rule was used, with the difference that the left side
composite rectangle rule with stepsize k was used on (;, ,¢,). Again (1.6) and (1.7)
hold with p = 2, ¢ = 1/2. The reason for using the rectangle rule on (%;,,t,) in this
way was that here the w, are “dominated weights” in the sense described before
Lemma 2.2. In this example, we may take wy = O(k1) = O(k'/?) for s divisible by
m and ws = O(k) for all other s. Even though the storage requirement is increased
compared to the above method, it is still of the same order O(k~'/2). We remark
that the first sparse rule described above does not have dominated quadrature
weights, since w, 5_1 > ck/2 with ¢ > 0 for all ¢, in the right hand halves (say) of
the intervals (¢;_1,%;), so that ws > wys implies 22;01 wg > %ck_lﬂ.

Going one step further with the idea of reducing the storage requirement, we
may set m = [k~/4] and ko = m3k = O(k'/*), and do the following. We first
use Simpson’s rule on as many intervals of lengths 2k, that can be fitted into
[0,,_1), and then, on the remaining interval, which is of length at most O(k'/?),
the composite trapezoidal rule on as many intervals of lengths k, = m?k = O(kl/ 2)
as fit in, thus reaching ¢; , then the one-interval trapezoidal rule on the interval
(¢}, ,tn—1), and finally the left rectangle rule on (¢,_1,t,). Similarly to above, (1.6)
and (1.7) hold with p =4, ¢ = 1/4, and the number of time-levels that need to be
stored per unit time is now O (k5 ') + O(kok!) +1 = O(k~'/*). This rule does not
have dominated weights. Thus, our present assumptions allow some advantageous
rules that were not covered in [4] or [6].
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