An Inequality in Kinetic Theory

Leif Arkeryd

We discuss a kinetic inequality related to the Cauchy equation and with all solutions close to Maxwellians .

Consider a kinetic equation of the type

$$\frac{\partial}{\partial t}f + v \cdot \nabla_x f + E \cdot \nabla_v f = Q(f)$$

with f a nonnegative density, or equivalently

$$\frac{d}{dt}f^{\#} = Q(f)^{\#},$$

where # denotes evaluation along the characteristics. For simplicity we work in a 3D space domain, $x \in \mathbb{R}^3$, with velocities $v \in \mathbb{R}^3$ and with t the time variable. This equation models streaming (transport) of f driven by exterior forces (E) and collisions (Q). When there is mass conservation, formally $\int Q(f) dx dv = 0$. If an entropy function such as $\int f \log f dx dv$ makes sense (and E const.), then formally

$$\frac{d}{dt} \int f \log f dx dv = \int Q(f) \log f := D(f).$$

If the entropy dissipation term D(f) is non-positive, then the entropy is decreasing. If, moreover, the mass and energy of the system are bounded in time, then the entropy has a lower bound and so $\int_0^\infty D(f)dt < \infty$. That estimate is fundamental in most proofs of convergence to equilibrium for such equations. In a number of cases the convergence results were pioneered by NSA approaches. In e.g. the Boltzmann equation case a consequence of this entropy dissipation bound is that the factor $f_1'f_2' - f_1f_2$ in the D-integrand in a suitable sense converges to zero when $t \to \infty$. One is thus lead to the infinitesimal relation

$$f_1'f_2' - f_1f_2 \approx 0$$
 Loeb a.e. in ns *domain. (IR)

Here 1, 2 indicate two precollisional velocity variables (v_1, v_2) , and the prime indicates the corresponding postcollisional velocity (v'_1, v'_2) in a binary collision.

What does the relation (IR) per se imply about f? I first studied that question already in the 1980's by a combination of geometric and Loeb measure techniques in order to better understand the time asymptotics of the Boltzmann equation. The problem got a renewed actuality by a question from C. Cercignani earlier this year "What can strictly be proved (in the standard context) of the type: $f_1'f_2' - f_1f_2$ small, implies f close to a Maxwellian". Here f belongs to a family of (say $L^1_{\rm loc}$) functions, not necessarily having the extra structure of being a 1-parameter family $(f_t)_{t\in\mathbb{R}_+}$ representing the solution of some Cauchy problem for a Boltzmann equation with $\int_0^\infty D(f_t)dt < \infty$.

Starting from the above infinitesimal problem, I shall here give one type of answer to Cercignani's question and base the presentation on a recent approach due to [HA].

Theorem 1 ([HA]). Suppose $f: {}^*\mathbb{R}^3 \to {}^*\mathbb{R}_+$ is *Lebesque measurable, S-integrable in $\{|v| \leq \lambda\}$ for $\lambda \in ns^*\mathbb{R}_+$, and satisfying (IR) in $ns^*\mathbb{R}^3 \times \mathbb{R}^3 \times S^2$. Then for $n \in \mathbb{N}$, there exist internal functions $h_n: {}^*\mathbb{R}^3 \to {}^*\mathbb{R}_+$ such that $f-h_n \approx 0$ Loeb a.e. $ns^*\mathbb{R}^3$, h_n n times * differentiable in $ns^*\mathbb{R}^3$ with S-continuous derivatives and h_n satisfying (IR). Here $f_j = f(v_j)$, $f'_j = f(v'_j)$, j = 1, 2, $v'_1 = v_1 - (\omega, v_2 - v_1)\omega$, $v'_2 = v_2 + (\omega, v_2 - v_1)\omega$, $\omega \in {}^*S^2$, the unit sphere in ${}^*\mathbb{R}^3$.

Corollary 2. Under the hypotheses of Theorem 1, there is a standard function $g \in C^{\infty}$, such that $f - g^* \approx 0$ Loeb a.e. $ns^*\mathbb{R}^3$, $g_1' \cdot g_2' - g_1 \cdot g_2 \equiv 0$ in $\mathbb{R}^3 \times \mathbb{R}^3 \times S^2$.

Proof of Corollary 2. If g, \tilde{g} are standard continuous and ${}^*g - {}^*\tilde{g} \approx 0$ Loeb a.e. $ns^*\mathbb{R}^3$, then $g \equiv \tilde{g}$ in \mathbb{R}^3 . Define $g_n(x) = {}^0h_n(x)$ for $x \in \mathbb{R}^3$. Then ${}^*g_n - h_n \approx 0$ in $ns^*\mathbb{R}^3$, g_n is n times differentiable and $g_n = g_1 := g$, $n \in \mathbb{N}$.

Clearly g satisfies ${}^*g_1' {}^*g_2' - {}^*g_1^*g_2 \approx 0$ Loeb a.e $ns^*\mathbb{R}^3 \times \mathbb{R}^3 \times S^2$. Since g is standard, this implies

$$g_1'g_2' - g_1g_2 \equiv 0. \tag{FE}$$

For the proof of Theorem 1 we notice that if $\int f^* dv \approx 0$, then the theorem holds with $h \equiv 0$. Otherwise the proof will depend on the following lemma

Lemma 3 ([PLL], [BW]). Suppose $b(|v|, |w \cdot v|) \in C^{\infty}(\mathbb{R}^3 \times S^2)$, $g \in L^1(\mathbb{R}^3_v)$, $f \in L^2(\mathbb{R}^3_v)$ (or f, g conversely), b vanishes for v near 0 and for v large, uniformly in w, as well as for $|w \cdot v|$ near 0 and near |v| ($w \in S^2$). Set

$$Q^+(f,g)(v_1) = \int_{\mathbb{R}^3} dv_2 \int_{S^2} dw b(|v_1 - v_2|) |w \cdot (v_1 - v_2)|) f(v_1') g(v_2'), v_1 \in \mathbb{R}^3.$$

Then

$$||Q^+(f,g)||_{H^1} \le C||f||_{L^2}||g||_{L^1}$$
 (or f,g conversely)

for some C independent of f, g.

Lemma 4 ([LA1], [PLL]). Solutions $0 \le f \in L^1_{loc}(\mathbb{R}^2)$ of the functional equation *(FE)* are smooth.

Proof. We give the short proof of [PLL]. Clearly $g := \sqrt{f} \in L^2_{loc}(\mathbb{R}^3)$ satisfies (FE). There is nothing to prove if $g \equiv 0$. Otherwise, introduce

$$b_{\epsilon}(v_1, v_2, \omega) = \varphi_{\epsilon}^{(1)}(v_1^2 + v_2^2)\varphi_{\epsilon}^2(|v_1 - v_2| - |\omega \cdot (v_1 - v_2)|) \cdot \varphi_{\epsilon}^{(3)}(|\omega \cdot |v_1 - v_2|),$$

where $0 \le \varphi^{(j)}, j = 1, 2, 3,$

$$\begin{split} & \varphi_{\epsilon}^{(1)} \in C_0^{\infty}(\mathbb{R}), \; \varphi_{\epsilon}^{(1)}(t) \equiv 1 \quad \text{for } 0 \leq t \leq \epsilon^{-1}, \quad \text{and} \\ & \varphi_{\epsilon}^{(2,3)} \in C^{\infty}(\mathbb{R}), \; \varphi_{\epsilon}^{(2,3)}(t) = 0 \quad \text{for } t \leq \frac{\epsilon}{2}, \varphi_{\epsilon}^{(2,3)}(t) = 1 \quad \text{for } t \geq \epsilon. \end{split}$$

Given b_{ϵ} , define Q_{ϵ}^{+} as in Lemma 3, and set

$$\ell_{\epsilon}(v_1) = \int_{\mathbb{R}^3 \times S^2} b_{\epsilon}(v_1, v_2, \omega) g(v_2) dv_2 d\omega \in C_0^{\infty}(\mathbb{R}^3).$$

For given C > 0, we have $\ell_{\epsilon}(v_1) > 0$ where $|v_1| \leq C$ and ϵ is small enough. From $g'_1 g'_2 \equiv g_1 g_2$ it follows

$$g(v_1)\ell_{\epsilon}(v_1) = Q_{\epsilon}^+(g,g)(v_1).$$

So using Lemma 3, $g \in H^1_{loc}(\mathbb{R}^3)$. The proof of Lemma 3 actually implies that if $g \in L^1(\mathbb{R}^3)$, $f \in H^s(\mathbb{R}^3)$, then $\|Q^+(f,g)\|_{H^{s+1}} \leq C\|f\|_{H^s}\|g\|_{L^1}$. We conclude that in our case $g \in H^k_{loc}(\mathbb{R}^3)$, $k \in \mathbb{N}$, hence that $f, g \in C^{\infty}(\mathbb{R}^3)$.

Corollary 5. Solutions $0 \le f \in L^1_{loc}(\mathbb{R}^3)$ of (FE) are Maxwellians, $f \equiv a \exp(b(v-c)^2)$ for some $a \in \mathbb{R}_+, b \in \mathbb{R}, c \in \mathbb{R}^3$.

Proof. This is a well known result for smooth f's. The proof is there reduced to solving the Cauchy equation

$$\varphi(x) + \varphi(y) = \varphi(x+y), \quad x, y \in \mathbb{R},$$
 (CE)

for which it is easy to see that any continuous solution φ is of the type $\varphi = \text{constant } \cdot x$.

Proof of Theorem 1. We consider the case ${}^{0}\int f^{*}dv > 0$. Set $g = \sqrt{f}$. Similarly to the proof of Lemma 4

$$g(v_1) \approx Q_{\epsilon}^+(g,g)(v_1)/\ell_{\epsilon}(v_1).$$

(Here ϵ is chosen depending on the set $|v| \leq \lambda$, so that $\inf_{|v| \leq \lambda} {}^0\ell_{\epsilon}(v) > 0$, which is possible since f is S-integrable with ${}^0\!\int f^*dv > 0$.)

The first derivatives of the right-hand side in the above relation are in ${}^*L^2(|v| \leq \lambda)$. Since f is finite Loeb a.e. $ns^*\mathbb{R}^3$, by overspill there is a function $q^1 \in {}^*L^1(|v| \leq \lambda)$ with its first derivatives having finite norms in ${}^*L^1(|v| \leq \lambda)$ for λ finite, $q^1 \approx f$ and (IR) holding for q^1 , Loeb a.e. $ns^*\mathbb{R}^3 \times \mathbb{R}^3 \times S^2$. By iteration, for $n \in \mathbb{N}$ there is a function q^n with all derivatives of order $\leq n$ finite in ${}^*L^1(|v| \leq \lambda)$, when λ is finite, $q^n \approx f$ and (IR) holding for q^n , Loeb a.e. $ns^*\mathbb{R}^3 \times \mathbb{R}^3 \times S^2$.

It follows that a subsequence $(h^n)_{n\in\mathbb{N}}$ of (q^n) has all derivatives up to order n S-continuous in $ns^*\mathbb{R}$.

It follows from Corollary 2 and Corollary 5 that

Theorem 6 ([LA2]). Suppose $f: {}^*\mathbb{R}^3 \to {}^*\mathbb{R}_+$ is *Lebesgue measurable, is S-integrable on $\{|v| \leq \lambda\}$ for λ finite, satisfies (IR) Loeb a.e. $ns^*\mathbb{R}^3 \times \mathbb{R}^3 \times S^2$. Then there is a standard Maxwellian M_f such that

$$f - {}^*M_f \approx 0$$
 Loeb a.e. $ns^*\mathbb{R}^3$.

One implication of Theorem 6 in the standard context, is the following result.

Theorem 7. Given C > 0, consider the set of non-negative functions with $\int f(1+|\log f|)dv \leq C$. Set

$$S_{\delta} = \{(v_1, v_2, \omega) \in \mathbb{R}^3 \times \mathbb{R}^3 \times S^2; |v_1| \le \delta^{-1}, |v_2| \le \delta^{-1}\}.$$

Given $\epsilon > 0$, there is $\delta > 0$ such that if $|f_1'f_2' - f_1f_2| < \delta$ in S_{δ} outside of some (f-dependent) subset of measure bounded by δ , then there is a Maxwellian M_f with

$$|f - M_f| < \epsilon \quad for \ |v| \le \epsilon^{-1},$$

outside of some (f-dependent) subset of measure bounded by ϵ .

Remark. The condition $f \log f \in L^1(\mathbb{R}^3)$ can be replaced by L^1 -conditions involving weaker, strictly convex functions of f than $f \log f$. In fact, the theorem holds for any locally weakly precompact set of positive L^1 -functions.

Proof. Consider the set of *Lebesgue measurable functions f with $\int f(1+|\log f|)^*dv \leq C$. Such function are S-integrable on $\{|v| \leq \lambda\}$ for λ finite. Let F_{δ} be the set of such functions with $|f'_1f'_2-f_1f_2| < \delta$ on S_{δ} outside a subset of measure $\leq \delta$. If this holds for $\delta \approx 0$, then (IR) holds Loeb a.e. $ns^*\mathbb{R}^3 \times \mathbb{R}^3 \times S^2$. (A converse is also true.) It follows by Theorem 6 that there is a Maxwellian M_f such that $f-M_f \approx 0$, Loeb a.e. $ns^*\mathbb{R}^3$. In particular given $\epsilon > 0$ and standard, $|f-M_f| < \epsilon$ for $|v| \leq \epsilon^{-1}$ outside of a (f dependent) set of *Lebesgue measure bounded by ϵ . For each infinitesimal δ this holds for all $f \in F_{\delta}$. But the set of δ for which the ϵ -property holds for all $f \in F_{\delta}$, is internal. Hence there is also a standard $\delta > 0$ such that it holds for all $f \in F_{\delta}$. For ϵ, δ standard, by transfer the statement holds in the standard context.

Corollary 8. Given C > 0 consider the set of non-negative functions f with $\int f(1+v^2+|\log f|)dv \leq C$. Given $\epsilon > 0$ there is $\delta > 0$ (only depending on C,ϵ) such that if $|f_1'f_2'-f_1f_2| < \delta$ in S_{δ} outside of some subset of measure bounded by δ , then for some Maxwellian M_f (depending on f) $\int |f-M_f|dv < \epsilon$.

Remark. The corollary holds for any weakly precompact set of positive L^1 -functions.

Proof. In the class of non-negative functions f with

$$\int f(1+v^2+|\log f|)dv < C(<\infty),$$

evidently

$$\int_{|v|>\lambda} f dv \le \frac{C}{1+\lambda^2} < \epsilon \quad \text{for} \quad 1+\lambda^2 > \frac{C}{\epsilon}.$$

There is $(\epsilon >>)\epsilon_1 > 0$ (and depending on C) such that for any f in the class and any set S of measure bounded by ϵ_1 ,

$$\int_{S} f dv < \epsilon 10^{-3} \quad \text{(equi-integrability)}.$$

Given λ take ϵ_1 so that, moreover, $\int \epsilon_1 dv < \epsilon$.

Recall that by Theorem 7, there is $\delta > 0$ such that the following holds. If in S_{δ} outside of some subset of measure bounded by δ

$$|f_1'f_2' - f_1f_2| < \delta,$$

then there is a Maxwellian M_f such that outside of some set S_1 of measure bounded by ϵ_1 ,

$$|f - M_f| < \epsilon_1 10^{-3}$$
 for $|v| \le \epsilon_1^{-1}$,

in particular for $|v| \leq \lambda$.

If $\int f dv < \epsilon$, then the corollary holds with $M_f \equiv 0$. Otherwise, take λ so that

$$\int_{|v| > \lambda 10^{-3}} f dv < \epsilon 10^{-3}.$$

If M_f attains its maximum for $|v| \geq \frac{\lambda}{2} - 1$, then

$$\int f dv \le \int_{A_1} f dv + \int_{A_2} |f - M_f| dv + \int_{A_2} M_f dv + \int_{S_1} f dv \le$$

$$\le 3\epsilon 10^{-3} + \int_{A_2} M_f dv.$$

There

$$A_1 = \{v; |v| \ge \lambda 10^{-3}\},\$$

$$A_2 = \{v; |v| \le \lambda 10^{-3}, v \notin S_1\}.$$

But in this case

$$\int_{A_2} M_f dv \le \int_{A_3} M_f dv \le \int_{A_3} |M_f - f| dv + \int_{A_3} f dv \le 2\epsilon 10^{-3}$$

with $A_3 = \{v; \lambda \ge |v| \ge \lambda 10^{-3}, v \notin S_1\}$, and so

$$\int f dv \le 5\epsilon 10^{-3}.$$

That contradicts the present assumption $\int f dv > \epsilon$, and so M_f attains its maximum for $|v| \leq \frac{\lambda}{2} - 1$.

With $A_4 = \{v; \lambda \ge |v| \ge \frac{\lambda}{2}, v \in S_1\}$

$$\int_{A_4} M_f dv \le \int_{A_4} |M_f - f| dv + \int_{A_4} f dv < 2\epsilon 10^{-3}.$$

Hence

$$\int_{|v| \ge \lambda/2} M_f dv \le 4\epsilon 10^{-3}.$$

If $\int_{|v| \le \lambda/2} M_f dv \le \frac{\epsilon}{2}$, then

$$\int f dv \le \int_{|v| > \lambda/2} f dv + \int_{A_5} |f - M_f| dv + \int_{A_5} M_f dv + \int_{S_1} f dv < \epsilon.$$

Here

$$A_5 = \{v; |v| \le \frac{\lambda}{2}, v \notin S_1\}.$$

Since $\int f dv \geq \epsilon$, we conclude that $\int_{|v| \leq \lambda/2} M_f dv > \frac{\epsilon}{2}$.

Consider now the case when S_1 is a sphere with centre at the maximum of M_f . If $\int_{S_1} M_f dv \leq \frac{\epsilon}{2}$, then the corollary holds. If $\int_{S_1} M_f dv > \frac{\epsilon}{2}$, set S_2 as the sphere concentric with S_1 and with ten times its radius. If

$$\int_{S_2 \setminus S_1} M_f dv > \epsilon 10^{-2}$$

then

$$\int_{S_2 \setminus S_1} f dv \ge \int_{S_2 \setminus S_1} M_f dv + \int_{S_2 \setminus S_1} |f - M_f| dv > \epsilon 10^{-3}.$$

This contradiction implies that $\int_{R^3\setminus S_1} M_f dv \leq \epsilon 10^{-1}$, hence that

$$\int f dv \le \int_{|v| \ge \lambda} f dv + \int_{|v| \le \lambda} f dv \le \epsilon 10^{-3} + \int_{A_6} |f - M_f| dv + \int_{A_6} M_f dv + \int_{S_1} f dv \le 2\epsilon 10^{-1}, \quad A_6 = \{v; |v| \le \lambda, \ v \notin S_1\},$$

which again contradicts our assumption.

Hence the corollary holds provided S_1 is a sphere with centre at the maximum of M_f . Finally if all or part of the bad set S_1 lies outside of the above sphere, then the previous argument still holds with minor changes.

There are corresponding results in the space-dependent case.

Theorem 9. Given C>0 and $\Omega\subset\mathbb{R}^3$ measurable. Consider the set of nonnegative functions f with $\int_{\Omega\times\mathbb{R}^3} f(1+|\log f|) dx dv \leq C$. Given $\epsilon>0$, there is $\delta>0$ such that if for $x\in\Omega, |x|\leq\epsilon^{-1}$, outside of some (f dependent) subset $S(f,\epsilon)$ of measure $<\frac{\epsilon}{2}$, it holds that $|f_1'f_2'-f_1f_2|<\delta$ in S_δ outside some (x,f dependent) subset of measure bounded by δ , then there is a (local) Maxwellian M_f such that outside of the subset $S(f,\epsilon)$ of measure bounded by $\frac{\epsilon}{2}$ in $x,|f-M_f|<\epsilon$ for $|v|\leq\epsilon^{-1}$ outside of a v-subset of measure bounded by ϵ .

Proof. This is similar to the proof of Theorem 7.

Corollary 10. Given C > 0 and a bounded measurable set Ω in x-space. Consider the set of non-negative functions f with $\int f(1+v^2+|\log f|)dxdv \leq C$. Given $\epsilon > 0$, there is $\epsilon_1 > 0$ and $\delta > 0$, such that if $|f_1'f_2'-f_1f_2| < \delta$ in S_{δ} outside of some subset of measure $< \delta$ for all x in Ω outside a subset of measure $< \epsilon_1$, then for some local Maxwellian M_f (depending on f)

$$\int |f - M_f| dx dv < \epsilon.$$

Remark. The Corollary also holds for unbounded measurable sets in x-space when $\int f(1+v^2+x^2+|\log f|)dxdv < C$.

Remark. The integral bounds in Theorem 9 and Corollary 10 can be replaced by conditions of weak L^1 precompactness.

References

- [HA] H. Andreasson, A regularity property and strong L^1 -convergence to equilibrium for the relativistic Bolzmann equation SIAM Journ. Anal. 1996, to appear.
- [LA1] L. Arkeryd, On the Boltzmann equation, Arch. Rat. Mechs. Anal. 45, 1-34 (1972).
- [LA2] L. Arkeryd, On the Boltzmann equation in unbounded space far from equilibrium, CMP 105, 205-219 (1986).
- [PLL] P. L. Lions, Compactness in Boltzmann's equation via Fourier integral operators and applications I, Journ. Math. Kyoto 36, 391-427 (1994).
- [BW] B. Wennberg, Regularity in the Boltzmann equation, Comm. PDE 19, 2057-2074 (1994).