An Inequality in Kinetic Theory

Leif Arkeryd

We discuss a kinetic inequality related to the Cauchy equation and with all solu-
tions close to Maxwellians .

Consider a kinetic equation of the type

%f‘i'v'vmf‘i'E'vvf:Q(f)

with f a nonnegative density, or equivalently
d
O e #

where # denotes evaluation along the characteristics. For simplicity we work in
a 3D space domain, z € R?, with velocities v € R? and with ¢ the time variable.
This equation models streaming (transport) of f driven by exterior forces (E)
and collisions (Q). When there is mass conservation, formally [ Q(f)dzdv = 0.
If an entropy function such as [ flog fdzdv makes sense (and E const.), then
formally

& [ f1og fisav = [ Q108 1 = D).

If the entropy dissipation term D(f) is non-positive, then the entropy is decreas-
ing. If, moreover, the mass and energy of the system are bounded in time, then
the entropy has a lower bound and so fooo D(f)dt < co. That estimate is fun-
damental in most proofs of convergence to equilibrium for such equations. In a
number of cases the convergence results were pioneered by NSA approaches. In
e.g. the Boltzmann equation case a consequence of this entropy dissipation bound
is that the factor fif; — fif2 in the D-integrand in a suitable sense converges to
zero when ¢t — oo. One is thus lead to the infinitesimal relation

fifs — fifa=~0 Loeb a.e. in ns*domain. (IR)

Here 1, 2 indicate two precollisional velocity variables (v1,vs), and the prime
indicates the corresponding postcollisional velocity (v, v5) in a binary collision.
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What does the relation (IR) per se imply about f? I first studied that question
already in the 1980’s by a combination of geometric and Loeb measure techniques
in order to better understand the time asymptotics of the Boltzmann equation.
The problem got a renewed actuality by a question from C. Cercignani earlier
this year “What can strictly be proved (in the standard context) of the type:
fifs — fifo small, implies f close to a Maxwellian”. Here f belongs to a family
of (say Li,.) functions, not necessarily having the extra structure of being a 1-
parameter family (f;)icr, representing the solution of some Cauchy problem for
a Boltzmann equation with [° D(f;)dt < co.

Starting from the above infinitesimal problem, I shall here give one type of answer

to Cercignani’s question and base the presentation on a recent approach due to
[HA].

Theorem 1 ([HA]). Suppose f : *R® — "R, is *Lebesque measurable, S-
integrable in {|v] < A} for X\ € ns*Ry, and satisfying (IR) in ns*R® x R3 x S2.
Then for n € N, there exist internal functions h, : R® — "R, such that
f—hp = 0 Loeb a.e. ns*R3, h, n times *differentiable in ns*R?® with S-continuous
derivatives and hy, satisfying (IR). Here f; = f(v;), f; = f(v}), j = 1,2,

v] = v — (W, 09 — v)w, vh = vy + (w,v2 — v1)w, w € *S?, the unit sphere in *R3.

Corollary 2. Under the hypotheses of Theorem 1, there is a standard function
g € C®, such that f —*g ~ 0 Loeb a.e. ns*R3, g} g5—g1-92 = 0 in R3 x R3 x 52

Proof of Corollary 2. If g, g are standard continuous and *¢g — *g =~ 0 Loeb a.e.
ns*R3, then ¢ = g in R3. Define g,(z) = %, (z) for z € R3. Then *g, — h, =~ 0
in ns*R3, g, is n times differentiable and g, = g; := g, n € N.

*x o %

Clearly g satisfies *¢} *g5 — *g7go =~ 0 Loeb a.e ns*R3 x R3® x S?. Since g is
standard, this implies

9195 — 9192 = 0. (FE)

U

For the proof of Theorem 1 we notice that if [ f*dv ~ 0, then the theorem holds
with A = 0. Otherwise the proof will depend on the following lemma

Lemma 3 ([PLL], [BW]). Suppose b(|v], lw-v|) € C®(R3xS5?),g € L*(R3), f €
L*(R3) (or f, g conversely), b vanishes for v near 0 and for v large, uniformly in
w, as well as for |w - v| near 0 and near |v| (w € S%). Set

Q () = [ v [ dubllon = sl (0 = ) F0Dg(u5). 1 € R



Then

1QT(fs )l < Cllfllezllgllze (o f,g conversely)
for some C independent of f,g.

Lemma 4 ([LA1], [PLL]). Solutions 0 < f € L, (R?) of the functional equa-
tion (FE) are smooth.

Proof. We give the short proof of [PLL]. Clearly g := v/f € L} _(R?) satisfies
(FE). There is nothing to prove if g = 0. Otherwise, introduce

be (Ul, V2, W ) SOEU

(Uf + v§)¢§(|v1 —va| = |w - (v1 —v2)]) - <P£3)(|w v — val),
where 0 < o), j =1,2,3,
o) e CP(R), ¢! )(t) =1 for0<t<e', and
<p23 € O®(R), p*¥(t) = fort§2ap£23)(t):1 for t > e.

Given b, define @ as in Lemma 3, and set
le(v) = / be(v1, V2, w)g(v2)dvadw € C°(R?).
R3xS?

For given C' > 0, we have £.(v;) > 0 where |v;| < C and € is small enough. From
9195 = 9192 it follows

g(v1)le(v1) = QF (g, 9)(v1).

So using Lemma 3, g € H _(R?). The proof of Lemma 3 actually implies that
if g € LY(R®), f € H*(R?), then [|Q*(f, g)l|lae+r < CI|f|lmslgllz:. We conclude
that in our case g € HF (RR?), k € N, hence that f,g € C®(R3). O

loc

Corollary 5. Solutions 0 < f € L (R?) of (FE) are Mazwellians,
[ =aexp(b(v —c)?) for some a € Ry,b € R,ceR3.

Proof. This is a well known result for smooth f’s. The proof is there reduced to
solving the Cauchy equation

o) +oy) =plz+y), zy€eR, (CE)

for which it is easy to see that any continuous solution ¢ is of the type ¢ =
constant - z. O



Proof of Theorem 1. We consider the case °f f*dv > 0. Set g = /f. Similarly
to the proof of Lemma 4

g(v1) = QF (9. 9)(v1)/Cc(v1)-
(Here € is chosen depending on the set [v| < A, so that inf), <) °/.(v) > 0, which

is possible since f is S-integrable with °f f*dv > 0.)

The first derivatives of the right-hand side in the above relation are in *L?(|v| <
A). Since f is finite Loeb a.e. ns*R?, by overspill there is a function ¢! €
*L'(Ju| < A) with its first derivatives having finite norms in *L'(Jv| < A) for A
finite, ¢' ~ fand (IR) holding for ¢', Loeb a.e. ns*R? x R® x S. By iteration, for
n € N there is a function ¢" with all derivatives of order < n finite in *L'(Jv| < )),
when ) is finite, ¢" =~ f and (IR) holding for ¢", Loeb a.e. ns*R3 x R3 x S2.

It follows that a subsequence (h™),en of (¢™) has all derivatives up to order n
S-continuous in ns*R. O

It follows from Corollary 2 and Corollary 5 that

Theorem 6 ([LA2]). Suppose f : R® — *R, is *Lebesque measurable, is S-
integrable on {|v| < A} for \ finite, satisfies (IR) Loeb a.e. ns*R3 x R® x S
Then there is a standard Mazwellian M such that

f—*M;~0 Loebae nsR"

One implication of Theorem 6 in the standard context, is the following result.

Theorem 7. Given C > 0, consider the set of non-negative functions with
[ F(1+|log f)dv < C. Set

S5 = {(v1,v0,w) € R? x R® x S%; |uy| <671, [va] <67}

Given € > 0, there is § > 0 such that if |f{fs — fif2] < 0 in S5 outside of some
(f-dependent) subset of measure bounded by 0, then there is a Mazwellian My
with

f — Mg <e for|v| <el,
outside of some (f-dependent) subset of measure bounded by €.
Remark. The condition flog f € L'(IR®) can be replaced by L!-conditions in-

volving weaker, strictly convex functions of f than flog f. In fact, the theorem
holds for any locally weakly precompact set of positive L!-functions.



Proof. Consider the set of *Lebesgue measurable functions f with

J f(1+|log f|)*dv < C. Such function are S-integrable on {|v| < A} for A finite.
Let Fj be the set of such functions with | f] f5 — f1fo| < 6 on Ss outside a subset of
measure < §. If this holds for § ~ 0, then (IR) holds Loeb a.e. ns*R3 x R? x S2.
(A converse is also true.) It follows by Theorem 6 that there is a Maxwellian M;
such that f — M; &~ 0, Loeb a.e. ns*R3. In particular given € > 0 and standard,
|f — M| < e for |v] < ! outside of a (f dependent) set of *Lebesgue measure
bounded by €. For each infinitesimal ¢ this holds for all f € Fs. But the set of
0 for which the e-property holds for all f € Fj, is internal. Hence there is also a
standard § > 0 such that it holds for all f € Fs. For ¢, standard, by transfer
the statement holds in the standard context. O

Corollary 8. Given C > 0 consider the set of non-negative functions f with
J (1 +v*+]log f|)dv < C. Given € > 0 there is § > 0 (only depending on C,¢)
such that if | f1fs— f1f2] < & in Ss outside of some subset of measure bounded by
8, then for some Mazwellian My (depending on f) [ |f — My|dv < e.

Remark. The corollary holds for any weakly precompact set of positive L!-
functions.

Proof. In the class of non-negative functions f with

/f(l + 02 + |log f|)dv < C(< o),

evidently

dv <
|v|zxf T

< e for 1—|—/\2>€.
€

There is (¢ >>)e; > 0 (and depending on C') such that for any f in the class and
any set S of measure bounded by ¢,

/ fdv < €107 (equi-integrability).
s

Given A take €; so that, moreover, f €1dv < e.

Recall that by Theorem 7, there is 6 > 0 such that the following holds. If in Sy
outside of some subset of measure bounded by ¢

\fifs — fufa] <6,

then there is a Maxwellian M such that outside of some set S; of measure
bounded by €y,

|f = M;| < el107® for |v| <€l
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in particular for |v| < .

If [ fdv < ¢, then the corollary holds with My = 0. Otherwise, take A so that

/ fdv < €107,
lv]>A10—3

If M; attains its maximum for [v| > 3 — 1, then

/fdv§ fdv—l—/ |f—Mf|dv+/ Msdv+ | fdv <
Ay A2 Az

S1

< 3610—3+/ Midv.
Ao

There

Ay = {v; |v] > A107°},
Ay = {v; o] < A107%v ¢ 51}

But in this case

Mgdv < Mpdv < / My — fldv+ [ fdv <2€107°
Ay As Ag Ag

with A3 = {v; A > |v| > A\1073, v ¢ Si}, and so

/fdv < 5¢1073.

That contradicts the present assumption f fdv > ¢, and so My attains its maxi-
mum for |v| < % -

With Ay = {v; A > |v| > 3, v € S1}

Mydv < / \M; — fldv+ [ fdv < 2€1073.
Ay

A4 A4

Hence

/ Mydv < 4e107°.
[v]2A/2

If fleSA/Z Mydv < §, then

/fdvg/ fdv + \f—MHdv%—/ Medv+ | fdv <e.
[v|>A/2 As As S1
Here

A
As = {v; ]v| < 5V ¢ Si}.
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Since [ fdv > €, we conclude that [, , Mydv > 5.

Consider now the case when S; is a sphere with centre at the maximum of M.
If fSl Mydv < 5, then the corollary holds. If fsl Mydv > 5, set Sy as the sphere
concentric with S; and with ten times its radius. If

Mdv > €102
S2\S1

then
/ fdv > Mfd?) +/ |f — Mf\dv > €103,
52\51 52\51 52\51

This contradiciton implies that | s, Mydv < €10~!, hence that

/fdvg fdv + fdv < €103 + |f—Mf|dv—|—/ M dv
[v]>X Ag

[v] <A Ag

+ / fdv < 2107, Ag = {v;o] < A\ v ¢ Si},
S1

which again contradicts our assumption.

Hence the corollary holds provided S; is a sphere with centre at the maximum of
M;. Finally if all or part of the bad set S; lies outside of the above sphere, then
the previous argument still holds with minor changes. O

There are corresponding results in the space-dependent case.

Theorem 9. Given C > 0 and Q C R?® measurable. Consider the set of non-
negative functions f with [ ps f(1+ |log f|)dadv < C. Given € > 0, there is
§ > 0 such that if for x € Q,|z| < €', outside of some (f dependent) subset
S(f,€) of measure < §, it holds that |f{f; — fifs| < 0 in S5 outside some (z, f
dependent) subset of measure bounded by 0, then there is a (local) Mazwellian M;
such that outside of the subset S(f,€) of measure bounded by 5 in x,|f — Ms| < €
for [v| < €' outside of a v-subset of measure bounded by €.

Proof. This is similar to the proof of Theorem 7. O

Corollary 10. Given C' > 0 and a bounded measurable set €2 in x-space. Con-
sider the set of non-negative functions f with [ f(1 +v* + |log f|)dzdv < C.
Given e > 0, there is €; > 0 and § > 0, such that if | f{ fo— fi1f2| < & in S5 outside
of some subset of measure < & for all x in Q outside a subset of measure < €,
then for some local Mazwellian M; (depending on f)

/|f— My|dzdv < e.



Remark. The Corollary also holds for unbounded measurable sets in x-space
when [ f(1+v*+2® + |log f|)dadv < C.

Remark. The integral bounds in Theorem 9 and Corollary 10 can be replaced
by conditions of weak L' precompactness.
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