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Abstract

Consider a graph, G, for which the vertices can have two modes, 0 or
1. Suppose that a particle moves around on G according to a discrete time
Markov chain with the following rules. With (strictly positive) probabilities
Pm, Pe and p, it moves to a randomly chosen neighbour, changes the mode
of the vertex it is at or just stands still respectively. We call such a random
process a (pm,Pe, Pr)-lamplighter process on G. Assume that the process
starts with the particle in a fixed position and with all vertices having mode
0. The convergence rate to stationarity in terms of the total variation norm
is studied for the special cases when G = Ky, the complete graph with N
vertices, and when G = Z mod N. In the former case we prove that as
N — o0, %N log N is a threshold for the convergence rate. In the latter
case we show that the convergence rate is asymptotically determined by the
cover time C in that the total variation norm after aN? steps is given by
P(CYN > aN?). The limit of this probability can in turn be calculated by
considering a Brownian motion with two absorbing barriers. In particular
this means that there is no threshold for this case.

1 Introduction

Studies of quantative convergence rates for Markov chains is a steadily expanding
area of modern probability. One reason, which should not be underestimated, for
the activity in this area is that these problems are often easily described and raise
people’s curiosity. Card shuffling is one example of this. Assume that a deck of
cards is initially arranged in some known order. We start to mix the deck with
some shuffling technique. How many shuffles are required to properly mix the deck?
This question has been studied and answered for a variety of different shuffling
techniques by different authors. The most famous result of this type is found in
Bayer and Diaconis [5] where it is shown that about seven ordinary riffle shuffles are
sufficient for a deck of 52 cards to become reasonably well-mixed.

Another reason, perhaps more important from a practical point of view, is the
application to Markov chain Monte Carlo algorithms, where a Markov chain is de-
fined in such a way that its distribution converges to some probability distribution
of interest. It is obviously very important to know how long time is required to
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obtain satisfactory convergence. However, bounds which are at the same time rig-
orous and good enough to be of practical use are often very difficult to find. As
a consequence of this, much of today’s Markov chain Monte Carlo practice lacks
rigorous theoretical justification.

There of course exist general results on rates of convergence for Markov chains,
but in all but the very simplest situations these are much too crude to be of any
use in practice. Therefore, one is forced to study special cases (or, at best, classes
of special cases). During such studies many useful techniques have been developed,
such as coupling, strong stationary times, eigenvalue analysis, etc. We refer to
Rosenthal [16] who gives a survey of such methods. These methods have in common
that they have all arisen as tools to solve particular problems but have later proved
to apply to many different situations. Likewise, for every special case studied there
is a hope that the methods used will prove useful in other situations as well. It is
our hope that our studies of convergence rates for lamplighter processes will, apart
from satisfying our own curiosity, shed light on other problems.

We now describe our setup. Imagine a finite connected graph, G, equipped with
a lamp at each vertex. Imagine further a person doing a simple random walk on
this graph, but apart from walking he can choose either to push the button or to
rest, both with strictly positive probability. The random process obtained is an
irreducible and aperiodic Markov chain on the state space G x {0,1}¢ (we identify,
with some abuse of notation, G with its set of vertices) of possible positions for
the person and possible modes for the lamps. It is easy to see that the unique
stationary distribution for the process consists of having each lamp independently
on or off with probability % each, and independently of this the position of the person
is distributed according to the stationary distribution of simple random walk on G
(i.e. the probability of standing at a vertex g is proportional to the number of edges
incident to g). The principal question of this paper is the following:

If we start with the person at a fixed vertex and all lamps off, how long
does it take to come close to the stationary distribution?

By “close” we mean close with respect to total variation norm (see Section 2). The
restriction to starting configurations with all lamps off is for simplicity of description
only: a moment’s thought reveals the convergence rates are the same for arbitrary
initial states of the lamps. In the sequel we will be more formal and instead of
talking about lamps we shall say that the vertices can have two modes, 0 or 1, and
the person will be reduced to a particle. If the particle moves, changes the mode of
the vertex it is at or rests with probabilities p,,, p. and p, respectively, we will call
the process a (pm, Pe, pr)-lamplighter process on G.

The question of the convergence rate will be answered for two cases, namely for
G = Ky, i.e. for the complete graph on N vertices, and for G = Z mod N, i.e.
for the case where G consists of N vertices arranged in a circle with edges between
adjacent vertices. In both cases the answer will be given in terms of the asymptotics
as N — oo. We shall see that the answers are quite different in the two cases;
for the complete graph a threshold phenomenon is exhibited, while for the circle
the convergence to equilibrium is much smoother. This result seems to be closely
related to the fact that the cover time of simple random walk on G (i.e. the time
taken until the random walk has visited every vertex, see e.g. [1] and the references
therein) exhibits a threshold phenomenon for Cy but not for Z mod N. It would
be very interesting if one could come up with some reasonably sharp result which
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for general G relates the convergence rate for its lamplighter process to the cover
time for simple random walk on G.

We have chosen to work exclusively in a discrete time setting. All our results and
methods have straightforward analogues for continuous time. For the case G = Ky
the case of continuous time is in fact even a bit easier since the complications of
Section 3.2 do not arise.

Lamplighters and related processes have been studied in a few previous papers.
The lamplighter on Z was studied by Kaimanovich and Vershik [11]. It can be
viewed as a random walk on a group, and some of its interest comes from the fact
that it lies “between” random walk on Z¢ and random walk on a Caley tree, in
that on one hand it moves away from the starting point at sublinear speed while
on the other hand the group has exponential growth. Variants of this model have
been studied in [14] to demonstrate counterintuitive behaviour for biased random
walks, and in [9] as a prototype for a random walker interacting mutually with its
environment.

In the next section we give some necessary preliminaries. Section 3 treats the
lamplighter on Ky while Section 4 is devoted to the lamplighter on Z mod N.

2 Preliminaries

In the study of finite state Markov chains, the common way to measure the distance
between two probability measures is in terms of the total variation norm.

DEFINITION. Let F be a finite set and let P and () be probability measures on
F. The total variation norm of P — @ is given by

1P = @Il = sup(P(4) - Q) = 5 3 IP(#) - Qo).

zeF

Let (2, F, P) be a probability space and let { X, } be an irreducible and aperiodic
Markov chain with finite state space, S, defined on this probability space. Then
the distribution of X, converges to the unique stationary distribution, 7. Assume
that the Markov chain starts in some fixed state. When studying the rate of the
convergence to stationarity we observe the behavior of ||P(X,, € -) —7|| and say that
we are close to stationarity if this is close to 0 and far from stationarity if it is close
to 1. (Note that the total variation norm is a quite conservative measure of how
close you are to stationarity. Assume for instance that {X,} is a lamplighter process
about which we know that at time k it is completely stationary except for that we
know that one particular lamp is on. Then ||[P(X) € -) — 7|| = 5.) If the state
space, S, is large it is often hard to say very much about the total variation norm
because of the enormous calculations such statements involve. In many situations,
however, it is possible to let the size of the state space grow in a natural way, and in
such cases one can sometimes make sharp statements of the asymptotic behavior of
the total variation norm as |S| — oo, where |S| is the cardinality of the state space.
Such statements are often made in terms of lower and upper bounds and thresholds

for the convergence rate.

DEFINITION.  Let {Sy,N = 1,2,...} be a sequence of state spaces and let
{{X]N}2,, N =1,2,...} be a sequence of Markov chains on S, Sy, ... respectively.

n=01
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Further, let 7', 72, ... denote the stationary distributions of the Markov chains re-
spectively. If {k(V)} is a sequence such that

. N _ N —
Jim [[P(X}y) € ) — ]| =1

then we say that k() is a lower bound for the convergence rate of the sequence of
Markov chains. If, on the other hand,

. N _ - N|| —
Jim [[P(X}y) €)=V =0

we say that k() is an upper bound. If {k(N)} is such that for any € > 0, (1—¢)k(N)
is a lower bound and (1 + €)k(N) is an upper bound, then k(N) is said to be a
threshold for the convergence rate.

These definitions make sense due to the well known and easily proved fact that

the total varaition norm is decreasing in n. When calculating lower bounds one

method is to find a sequence {AN} of easily analyzed sets such that P(X ﬁ N €

AN) — 0 whereas 7V (AY) — 1. Then k(N) is a lower bound. For upper bounds,
two useful tools are coupling times and strong stationary times.

DEFINITION. Let {X,} and {Y,,} be two Markov chains on the same state space
and with the same transition probabilities, and suppose that their joint behaviour
is specified in such a way that for each ¢, X; = Y; implies X;;; = Y; ;1. Define the
random variable

T =inf{n: X, =Y,}.
We call T the coupling time for the two Markov chains.
DEFINITION. Let {X,,} be a Markov chain on the state space S, with stationary
distribution 7. Assume that 7 is a stopping time such that P(X,, = z|T = k) = n(z)

for every n and k such that £ < n and every x € S. Then T is said to be a strong
stationary time for {X,,}.

The reason for the usefulness of these tools is the well known coupling inequality
(see e.g. Lindvall [13]). We state it below and, for later purposes, we supply the
proof.

LEMMA 2.1 Let {X,} be a Markov chain with state space S and let {Y,} be another
Markov chain with the same state space and the same transition probabilities starting
in the stationary distribution, w. If T is a coupling time for the two chains, then

|P(Xn € ) —7[| < P(T > n). (1)
If T is instead a strong stationary time for {X,} then (1) still holds.
Proof. Suppose that 7" is a coupling time. Then, for any subset, A, of S
P(X,€ A) —n(A)=P(X, € A)— P(Y, € A)
=P(X,€AT<n)—PY,€ AT<n)

+P(X, € A,T>n)—P(Y,€ A, T >n)
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< P(T >n)

since the events {X,, € A, T < n} and {Y,, € A, T < n} are the same. If T is
instead a strong stationary time for {X,}, the formalism is exactly the same, but
the philosophy is a bit different since these events are no longer the same. They
have, however, the same probability. O

For further discussion see e.g. [13], [3] or [6].

3 The Complete Graph

In this section we consider a (pm, pe, pr)-lamplighter process on G = Ky, the com-
plete graph with NV vertices. The probabilities p,, and p. are assumed to be strictly
positive. For convenience, we will use the convention that the embedded random
walk is allowed to jump to the vertex it is presently at. Readers who dislike hav-
ing loops in graphs may think of this as moving a probability 1/N from p,, to p,.
This makes no difference for our asymptotical considerations. The advantage of this
convention is that the position of the particle is uniform immediately after its first
move.

Now, to be formal, let (€2, F,P) be a probability space and let {X,} be a
(Pm, Pe, pr)-lamplighter process defined on €2, starting in the state Xy = (g,0,0,...,0)
for some fixed vertex g, i.e. with the particle in vertex g and with all vertices having
mode 0. The stationary distribution of this process is the uniform distribution on
G x {0,1}%. This means that the modes of the vertices are 0 or 1 with probability
% independently of each other and of the position of the particle which is uniformly
distributed on G. We are going to show that a threshold for the convergence rate
to stationarity is given by

2pc + Pm

N log N. 2
AP cPm @

It turns out that this is much simpler to show in the case when p. < p,, so we will
do this case first and only then move on to the general case.

3.1 The case p. < p,

The main tool for determining the convergence rate in the case p. < p, is the
use of an auxiliary process { X} with state space G x {0,c}, where o is short for
“stationary” (the reason for this notation will be evident from Lemma 3.1 below).
We will run {X*} and {X,} simultaneously on the same probability space. Just
as the original process, {X*} is a Markov chain which should be thought of as a
particle moving in the graph G and switching the modes of the vertices it visits.
The precise behaviour of {X*} is as follows. At each time n, the particle chooses
either

e to move to a uniformly chosen vertex, with probability p,,, or

e to turn the state of the vertex it stands at into state o (irrespective of its
previous state), with probability 2p,, or

e to rest, with probability p, — p..
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Note that a vertex in state o remains in this state forever.

We now construct a Markovian coupling of {X,,} and {X}. Start {X} at time
0 with the same particle position as for {X,,}, and with all vertices in state 0. The
joint behaviour is then specified through the following conditional behaviour of { X, }
given {X}.

e Whenever the {X*} particle moves, the {X,} particle moves to the same
vertex.

e When the { X} particle chooses to turn its vertex into state o, then the {X,}
particle chooses either to switch its vertex or to rest, each with conditional
probability %

e When the {X}} particle chooses to rest, then its {X,} colleague does the
same.

It is easy to check that {X,,} defined in this way has the correct marginal behaviour,
and also that the following result holds.

LEMMA 3.1 For each n, the conditional distribution of X,, given X is as follows.
The positions of the particles are identical for the two processes, all vertices which
are in mode 0 for X are in mode 0 for X,, as well, whereas the vertices which are
in mode o for X are for X,, independently in mode 0 or 1 with probability % each.

Now, for a > 0, define two stopping times for the {X}}-process:

T o =inf{n: X}(v) = o for all but at most N — N'/?*¢ vertices v}
Tiq = inf{n: X’(v) = o for all but at most N — N'/27¢ vertices v}.

Our candidates for lower and upper bounds for the { X} process are

2p; + Pm
k_,(N)=1(1/2—2a)——Nlog N
(V) = (12— 20) 2t Py 1

and

2pc + Pm

PcPm

kio(N) = (1/2 + 2a) Nlog N

respectively. The following lemma relates these to the stopping times 7", and T',,,.
LEMMA 3.2 With the definitions abowve,

P(T >k 4N)) —1
and

P(Tia > kya(N)) = 0

as N — oo for any a > 0.
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Proof. In order to “stationarize” a vertex, the {X} particle has to first arrive
at a vertex and then turn its state into . The time taken between two such sta-
tionarizations is the sum of two independent geometric random variables, the first

of which has mean zﬁ and the second of which has mean i. Hence this time has
1—2

mean 25004;’” and variance % + Tgpc. Let the random variable Z_ denote the
number of such stationarizations needed to reach the stopping time 7"_,. Since the
vertices visited are iid uniform, we are in the well known coupon collector’s context,
and we get E[Z_] ~ (1/2 —a)Nlog N and Var(Z_) = O(N?). (These calculations
are elementary and have been made many times before, see e.g. [2] on the “top to
random”-shuffle.) Using Chebyshev’s inequality twice (first for Z_ and then for the
time taken to do Z_ stationarizations), the first half of the lemma follows. The

second half is completely analoguous. O

Next, we write X, as (ay, By, 7n) Where ay, is the mode of vertex g (recall that g is
the vertex where the particle starts), 3, is the configuration of modes on G'\ {g} and
v, is the position of the particle. The stationary distribution 7 can be decomposed
as T = Ty X Tg X T, where m,, mg and 7, are the uniform distributions on {0,1},
{0,1}4\9} and G, respectively. It is clear that if we know that there is a certain
number of 1-vertices in G \ {g}, then the distribution of these is uniform on the
family of subsets of G \ {g} of the size in question. Stated formally we have:

LEMMA 3.3 Let L, denote the number of 1-vertices in G\ {g} at time n. Then
|P(Bn € -) =gl = || P(Ln € ) = B(N —1,1/2)]]

where B(m,p) denotes the law of the binomial distribution with parameters m and
p.

Now let D, be the event that the particle at time n is at a vertex which has
already been made stationary, and let D! be the event that X}(g) = o, i.e. that
the starting vertex has become stationary. Clearly, P(D,|T, < n) > & _IZ\Yl/z —1
as N — oo so that P(Dy, v) N {T}e < kio(N)}) — 1 as N — oo. Similarly,
P(Dy, v) = 1 as N — co. Hence,

P(Dyg, vy N Dy, ooy M {T4a < kpa(N)}) — 1

as N — oo. Since, for any event F|
|1P(Xn € ) = || < [|P(Xy € -|E) — [ +[|P(Xy € -|E®) — m|

it is enough in order to establish k,,(/N) as an upper bound to prove that
1P (Xkrav) € “[Drrav) N D vy N {740 < kia(N)}) — 7f| = 0.

Under this conditioning, ag, vy, Bk .(v) and 7k, (v) are independent, and further-
more ay,, vy and g, ,(v) have the desired (i.e. uniform) distributions. Lemma 3.3
thus implies that

P(Xk,o(n) € | Diyuvy N Dy vy M {T 40 < kga(N)}) — 7]
= P(Bryav) € | Diya(v) N Doy vy N {Tha < kia(N)}) — ol

<||B(N — NY*%_1,1/2) — B(N —1,1/2)|| = 0
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(the last two steps follow by conditioning on the number of stationarized vertices
and using the Local Central Limit Theorem, see e.g. [7]). This shows that k()
is an upper bound for {X,}.

Now, if we can establish k£ ,(INV) as a lower bound we will have proved the
desired threshold result. This, however, follows immediately from the fact that the
probability of having at least N/2 — N'/2t9/2 vertices in mode 1 tends to 1 for the
stationary distribution whereas it tends to 0 for the distribution of X} _,(n). This
fact in turn follows immediately from the Central Limit Theorem keeping in mind
that at times earlier than 7, there are N'/?t¢ vertices which are & priori known to
have mode 0, and using Lemma 3.2. We have thus proved the desired result for the
case pe < Dr.

PROPOSITION 3.4 For the (pm, pe, pr)-lamplighter process with p. < p, on the com-
plete graph with N wvertices starting in a fixed vertex with all vertices in mode 0, a
threshold for the convergence rate is given by

2pc + Pm

N log N.
ApcPm

3.2 The general case

The task in this subsection is to build on the approach of Section 3.1 in order to
extend Proposition 3.4 in such a way that the condition p. < p, can be dropped.
The critical use of this condition is in the definition of the {X}} process, where a
probability mass of size p. is moved (compared to the { X, } process) from the resting
probability to the switching probability. This breaks down for p. > p, because the
resting probability would drop below 0.

An obvious way to try to handle this problem for the p. > p, case is to give
{X:} state space G x {0,0,1}%, and to let the particle switch its vertex to o with
probability 2min(p.,p,). The arguments giving the upper bound in Section 3.1
would then go through essentially unchanged to yield, for any a > 0, an upper
bound of

2min(pe, pr) + Pm
1+a - Nlog N 3
U+ min(pe, pr)Pm (3)

in the general case. However, the arguments for the lower bound do not go through,
and in fact the upper bound (3) is not sharp in the p, > p, case. (This approach
will be used in Section 4 for the lamplighter on Z mod N, where it, in contrast to
on Ky, gives the correct convergence rate.)

In order to find the correct convergence rate for the general case we shall take
a different approach: namely to consider an embedded (time-transformed) process
{Y,}. This process has the same state space as {X,} and equals the {X,} process
sampled at times at which the particle has just moved. More precisely, if k,, is the
nth time that the particle decides to move in the {X,} process, then Y,, = Xj, ;.

It is clear that {Y,} is a Markov chain, and in order to calculate its transition
probabilities we shall calculate the probability that when the particle of the {X,}
process leaves a vertex, the mode of that vertex is different from what it was when
the particle first arrived. Denoting this probability d and conditioning on the first
step after the arrival, we have

d=p(l—d)+pd
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so that
P D
L+pc—pr 2pc + Dm

The transition probabilities for {Y,,} are thus as follows. At each time point the
particle chooses a new vertex uniformly at random, and independently of this choice
the mode of the vertex it just left switches with probability d. The point of in-
troducing the {Y,,} process is that d < % for all values of (p,, pe, pr), so that the
approach used in the p. < p, case becomes applicable for {Y,}. Indeed, we may
define a Markov chain {Y,*} which relates to {Y, } in the same way as {X*} relates
to {X,,}. The state space of {Y,*} is G x {0,0}¢, and its transition probabilities are
such that the particle positions are iid uniform, and the vertex which the particle
has just left turns into mode o with probability 2d, and keeps its value otherwise.
We can couple {Y,,} and {Y;*} in a way analogous to the coupling of {X,,} and {X}
in Section 3.1, and a ({Y,},{Y,’}) analogue of Lemma 3.1 then holds. Proceeding
as in Section 3.1, we arrive at the following result (note that {Y;,} obviously has the
same unique stationary distribution 7 as {X,}):

PROPOSITION 3.5 Fiz a > 0, and let k_o(N) = (1/2 — 2a)2522Nlog N and
kio(N) = (1/2+ Qa)%g%]\flog N. We then have

1P vy €)=l =1
and

1PV, vy € ) —7ll =0

fya(N
as N — oo, so that 2”“L“’m]\flog]\/' is a threshold for {Y,}. ForY}; () WE further-

more have that P(Yk_a(N) € ENY - 0 and 7(EN) — 1 as N — oo, where EY is the
event that at least N/2 — N'/2+%/2 yertices are in mode 1.

Next, write T} for the random time point in the {X,} process corresponding to
time & in the {Y,} process (i.e. T} is the time immediately after the kth move of
the {X, } particle). We have that T} is the sum of k iid geometric random variables
with mean _-, whence E[T;] = -5 and Var(T}) = ﬂ%. Using Chebyshev’s
inequality, we see that T} W(V) and T} () A€ Very well concentrated around (1/2 —

2a)% 2pc“’mN log N and (1 /2 + 2a) 2”CJ""’”N log N, respectively. Naively, one might
thlnk that this together with Proposmon 3.5 would immediately yield the desired
threshold for {X,}. This would indeed be the case if T} ) and T}y, were

fixed times, or if we knew that Xr, (resp. X7, v )) was independent (or nearly

a(N)
independent) of T}, (resp. T} (N) because then we could treat T;_.(n and

ch+a( ) almost as strong unlform tlmes We do not know this, however SO some
more work is needed. The following lemma supplies a lower bound rather painlessly.

LEMMA 3.6 Fiz a > 0, and let

A

7 2 c m
k_o(N) = (1/2 — 2a)};iNlogN ++v/NlogN.

cpm

Then

1P(X

i € )=l =1

as N — 0.
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Proof.  Fix a > 0, and define EY as in Proposition 3.5. Note that since
m(EN,) — 1 as N — oo, it is sufficient to show that

P(X; ) € Bdja) =0 (4)

as N — oo.
Pick € > 0. By Chebyshev’s inequality, we can find a constant K such that the
event

P
A = {(1/2-20) PP N1og N — K, /NTog N < T
9 k—a(N)

PeDm
2 C m
< (1/2—QG)%NlogNJFKM/NlogN}

satisfies P(A;) > 1 — € for all sufficiently large N. We furthermore define the event
A= X #EN} = Vi o 2 ED).

By Proposition 3.5 we have that P(Ay) — 1 as N — oco. Hence P(A1NAy) > 1—2¢
for large N. On the event A; we have for large N that k_,(N) > T} (v and that

~

ko(N) =T (xy < VNIlogN + K1y/Nlog N,
so that the number of vertices that turn from state 0 to state 1 between time T}y,

and time /A-c_a(N) is at most /N log N + K11/Nlog N. Hence, for large N, the event
A; N Ay implies that at most

N/2 — NY%#*e/2 L \/Nlog N 4+ K11/Nlog N (5)

vertices are in state 1 at time k_,(NN). The expression (5) is less than N/2— N1/2+a/4
for large N, whence

P(X:

i € El,) <1—P(A1N Ap) < 2

for large N. Since € was arbitrary, (4) follows. O

The upper bound is given by the next lemma, whose proof requires a bit more
machinery.

LEMMA 3.7 For a, K >0, define

2pc + Pm

brar(N) = (1/2+20) 5

Nlog N + KN.

For any a,e > 0, there exists a K such that

IP(X;, oy €)=l <e

for all sufficiently large N.
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Proof.  Let us first consider yet another process {Z,} embedded in {X,}.
We give {Z,} the usual state space G x {0,1}“, and obtain it by sampling {X,}
at times where the particle has just left a vertex leaving it in a different mode
compared to its mode when the particle arrived (another way to say this is that
{Z,} can be obtained by sampling {Y,,} at times at which the number of 1-vertices
has changed). The process {l(Z,)} is then identical to the Ehrenfest urn model, i.e.
to the birth-and-death process on {0, 1,..., N} with transition probabilities

% %f y=x—1
Doy = ~ fy=z+1
0 otherwise

(recall that the function [ : G x {0,1}¢ — {0,1,..., N} simply counts the number
of vertices in mode 1). Let {V¥(¢)};>o denote the normalized Ornstein-Uhlenbeck
process starting at y, i.e. the diffusion on R with V¥(0) = y, drift parameter p(z) =
—z, and diffusion parameter o%(z) = 1. We shall exploit the well-known fact (see
e.g. [10] or [12]) that the Ehrenfest urn model, suitably normalized, converges in
distribution to the Ornstein—Uhlenbeck process as N — oco. Writing {I(ZM)} for
the modification of {l(Z,)} obtained by starting with M 1-vertices (instead of 0),
we have for any y € R that

l ( P

[Nt/2]

N2 = V() }s0-

>0

The convergence is in the weak topology on the set of continuous functions on R .

Since { X, } is, basically, a slowdown of {Z,} by a factor zﬁ = 2”;0%, we get as a
standard consequence that
; XN/2+y,/N/2 N
[Nt/2pmd] ) D
= {V¥(1)}150- (6)

N/2
>0
The idea is now to use the recurrence of the Ornstein—Uhlenbeck process in order
to find a coupling of {I(X,)} and a stationary version of the same process, with the

property that the two trajectories meet before time /Ac+a, x (N) with high probability.
Pick € > 0, and set ¢ = 5. Since

(1 = pm)kya(IN)
P

2 C m
2pcp3

cm

VaI‘(ch+a(N)) == = (1/2 + 20/)

we may, by Chebyshev’s inequality, pick a constant K, such that
P(EY) >1—¢ (7)

for all N, where E; is the event that

2pc + Pm /
(1/2+ 2G)TN10gN - KZ NlogN S Tk+a(N)

cr’'m
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2 C m
< (1/2+ 2a)§iNlogN+ Ko\ /NlogN.

PcPm

Similarly, we can pick K3 such that for all N and a random variable &£y with law
B(N,1/2) we have that

P (N/z — K /N/2 < én < NJ2 + K, N/z) S1-¢ (8)
By Proposition 3.5, we then have for all sufficiently large N that
P(EY) >1—2¢ 9)

where EY; is the event that

N/2 = Kg\/N/2 < U(Xr, ) < N/2+ K3\/N/2.

By an application of (6), we have that

P sup  (I(XM) = N/2|) < 2K3y/N/2 | >1—¢
n<2Ks+/Nlog N

for large N and all M € [N/2 — K31/N/2, N/2+ K31/N/2|. In conjunction with (7)
and (9) with EY being the event that

N/2—2K3\/N/2 S l (X(1/2—|—2a)2§;;€;"NlogN—I—Kg\/m) S N/2+2K3 N/2

this implies that for sufficiently large NV,
P(EY) > 1 —4€. (10)

Now pick K so large that if {V¥(¢)} and {V¥(¢)} are two independent Ornstein—
Uhlenbeck processes we have
inf P (VY(t) = V() f K 1—¢
s (V (t) = V¥(t) for some t € [0, 4]) > €
(standard monotonicity arguments [13] imply that the infimum is attained for y =
—2K3,7 = 2K3, so such a K, can be found by recurrence and a.s. continuity of the
Ornstein—Uhlenbeck process). For such a choice of K, we even have
inf P (V¥(t) = VI(t) for infinitel K 1-¢. (11
. (V (t) = V¥(t) for infinitely many ¢ € [0, 4]) > €. (11)
Let us now couple {X,} with an independent process {X,} with the same tran-

sition probabilities but started in stationarity. By (10) and (8) we have for large
. °1: !
N that with probability at least 1 — 5€¢’ both X(1/2+2a) Zpetam N log N+ Kp/Nlog N and

X (1/2+20) e N log N+ K3 /Nog N are in the interval

[N/2 — 2K;3\/N/2, N/2 +2K;,/N/2].

By invoking (6) and (11), we thus have for any K5 and sufficiently large N that the

trajectories of {I(X,)} and {I(X,)} cross each other at least K5 times before time

foa c(N) = (1/2+2
cor(N) = (1/2+20) T E

NlogN + KN



RATES OF CONVERGENCE FOR LAMPLIGHTER PROCESSES 13

with probability at least 1 — 6¢'; here we take K = 4K p,,d. Each time the trajec-
tories cross, their value has to differ by at most 1 at some time point, and on each
such occasion the probability that the trajectories will coincide after a few (say 2)
time units is bounded away from 0. The probability that this happens in such a
way that the state of the lamp at which the particle stands is identical for the two
processes, is also bounded away from 0. We may then modify the coupling of {X,}
and {X,} so that I(X,,) = I(X,,) from that time on. By picking K large enough we

can make this coalescence happen before time l::+a,K(N ) with probability at least
1 — 7€ for large N, so that by the coupling inequality we have

1P, ) €)= BOV1/2)]| > 1= 7€

It is clear from the discussion in Section 3.1 that {X,} rapidly forgets the particle’s
starting position, so a straightforward analogue of Lemma 3.3 implies that

1P(X; €)—ml[>1-8>1—¢

+a,k(N)

for large NV, and we are done. O

The desired theorem now follows immediately from Lemmas 3.6 and 3.7:

THEOREM 3.8 For the (pm,pe, pr)-lamplighter process on the complete graph with
N wertices starting in a fired vertexr with all vertices in mode 0, a threshold for the
convergence rate is given by
2pc + pm
4pcpm

4 7Z mod N

N log N.

We now turn our attention to the case G = Z mod N, i.e. when the vertices are
connected in a circle. Just like for the complete graph the state space of the process
is G x{0,1}¢ and it is assumed that the process starts in (g, 0,0, ..., 0) for some fixed
g. Again it is clear that the stationary distribution, 7, is the uniform distribution on
G x {0,1}¢. We let, as before, X,, denote the state of the process at time n. It will
be shown that asymptotically as N — oo, the total variation norm ||P(X,, € -) — ||
is completely determined by the distribution of the cover time, CV, for the simple
random walk of the particle, i.e. by the distribution of the first time the particle
has visited all the vertices. This is stated in the following theorem. In particular, it
means that a lower bound for the convergence rate must be of strictly smaller order
than N2 and that an upper bound must be of strictly larger order than N2, whence
there is no threshold.

THEOREM 4.1 For the (pm, pe, pr)-lamplighter process on Z mod N, with py,, p. and
pr all strictly positive, the following holds: For any a > 0,

. N — 1 N 2
Jim [[P(Xoy2 € ) = 7][ = lim P(CT > aN")
= Pr(M(apm,) — m(ap,) < 1)

and, consequently,

o POty -1 {8 409 =00
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(It should be noted that the convergence to 1 for the total variation norm for the
case k(N) = o(IN?) can be obtained directly by a simple consideration of the particle
position.)

Here M (t) = maxo<s<; B(s) and m(t) = ming<,<; B(s), where B(t) is standard
Brownian motion. An explicit formula for Pr(M(z) — m(z) > 1) is given below.
It can be calculated by integrating the joint density M and m. A formula for this
density can be found e.g. in Feller [8], page 342. We are grateful to Jean-Francois
Le Gall for supplying these calculations, thereby saving us a great deal of effort.

B _ - 8 —1(2k+1)2n2g
Pr(M(z) —m(z) > 1) = Ig <7(2k 1 —1—8:6) e ? .

In Section 4.1 it is shown that the time, T, taken to visit all but 2log, N vertices
is asymptotically equal to C” in distribution. Since the appearance of an unbroken
row of 2log, N 0-vertices is extremely unlikely for the stationary distribution, it will
follow that P(CY > n) is an asymptotic lower bound for ||P(X,, € -) — 7||.

In Section 4.2 we introduce an auxiliary process {X} similarly as in Section
3.1. We also argue that very soon after the time CV (at an NZ2-scale; it follows
from well known random walk considerations that E[C"] ~ 5 -N?, see e.g. [4,
Chapter 6, page 8|), all vertices will have been visited at least blog N times with
high probability, where b is abitrary but fixed. This will imply that the probability of
having an unstationary vertex (i.e. a vertex g with X*(g) # o) soon after C¥ is very
low. This fact combined with a coupling argument on behalf of the position of the
particle will give us P(C > n) as an asymptotic upper bound for ||P(X,, € -) —7]||.

Theorem 4.1 will follow immediately from the lower bound in Section 4.1 and
the upper bound in Section 4.2.

4.1 Lower Bound

The following simple lemma is a kind of reversed variant of the coupling inequality.

LEMMA 4.2 Let T be a stopping time for a Markov chain, {Z,}, with state space S
and stationary distribution n. Assume that for a certain subset A of S it holds that

P(Z, € AT >n) =1.
Assume further that for a given € > 0 we have that n(A) < e. Then
|P(Zn€-)—n|| > P(T >n)—ce
Proof. 'This is immediate since

|P(Zn € ) —nll = Zlég(P(Zn € B) —n(B))

and

P(Z,e A)—n(A) > P(T >n) —e.

Apply the above lemma to {X,,} with T = TV the first time all but 2log, N
vertices have been visited, and A being the set of states with at least one unbroken
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row of at least 2log, N O-vertices. We have that P(X, € A|T > n) = 1 because
vertices not visited by the particle are in state 0. Since the stationary probability
that an unbroken row of 2log, N O-vertices starts at a fixed position, 4, is 272182V =
1/N?, it follows that the expected number of such rows is 1/N whence 7V (A4) < 1/N.
We get that

1P(XY e )—nN|| > P(T"N >n)—-1/N

so asymptotically, P(TY > n) is a lower bound for the total variation distance
between the distribution of X,, and the stationary distribution.

To see that TV and OV are asymptotically equal in distribution we use the well
known Brownian motion approximation of a simple random walk. By Donsker’s
Theorem (see e.g. Durrett [7])

{%S([N%])}DO 3 {B(t)}15q

as N — oo, where S(n) is a simple symmetric random walk starting at the origin and
B(t) is a standard Brownian motion. The mode of convergence is the same as in the
proof of Lemma 3.7. Now, let M(n) = maxXo<,<, S(r) and m(n) = ming<,<, S(r)
and recall that M (t) = maxo<s<; B(s) and m(t) = ming<s;<; B(s). Since the events
{CN > n} and {T¥ > n} correspond to the events {M([npm]) — m([npm]) < N}
and {M ([np,]) — m([npm]) < N —2log, N} respectively (the motion of the particle
is basically a slowdown of {S(r)} by a factor 1/p,,), we get for any positive number
a that

P(CY > aN?) — Pr(M/(ap,) — m(ap,) < 1)
and

P(TY > aN?) — Pr(M(ap,,) — m(apy,) < 1).
Let us sum up the results of this subsection in a proposition.
ProproSITION 4.3 For any a > 0 we have

.. N . N 2
1%£f||P(XaN2 €)—mll > J}EI;OP(C > aN?)
= Pr(M(apm) — m(apm) < 1)

where M and m are the maximum and minimum processes of a standard Brownian
motion, respectively.

4.2 Upper bound

In order to derive an upper bound for the {X,} process, we will introduce an
auxiliary process {X;} similarly as in Section 3.1. The state space of {X}} is
G x {0,0,1}%, and the process is a Markov chain which as usual should be thought
of as a particle walking on G and changing the modes of the vertices it visits. At
each time n, the { X} particle chooses either

e to move to a uniformly chosen vertex, with probability p,,, or



16 HAGGSTROM AND JONASSON

e to turn the state of the vertex it stands at into state o (irrespective of its
previous state), with probability 2 min(p,, p;), or

e if p. < p,: to rest, with probability p, — p.

e if p. > p,: to switch the the state of the vertex it stands at into state 1 (resp.
0, o) if its previous state is 0 (resp. 1, o), with probability p. — p,.

(Note that if p. < p,, this definition of { X} is identical to that in Section 3.1.) We
can now construct a coupling of {X,} and {X;} in exactly the same fashion as in
Section 3.1, and the following analogue of Lemma 3.1 is then obvious:

LEMMA 4.4 For each n, the conditional distribution of X,, given X is as follows.
The positions of the particles are identical for the two processes, all vertices which
are in mode 0 (resp. 1) for X are in mode 0 (resp. 1) for X,, as well, whereas the
vertices which are in mode o for X are for X, independently in mode 0 or 1 with
probability % each.

The main part of the game of deriving the upper bound for the {X,} process
will be to show that with high probability, all vertices v satisfy X (v) = o shortly
after cover time. To this end, we are now going to show that for any fixed positive
b, all vertices have, with high probability, been visited at least blog N times shortly
after cover time. Let for a fixed a > 0 the random variable U? be the number of
vertices which have not been visited at least blog N times at time CV + aN2.

blog N
LEMMA 4.5 E[UY] < =28
a

Proof.  Let, for all vertices, i, the time C; be the first time that vertex 7 is
visited and let A; be the event that 7 is not visited at least blog N times before time
CY + aN?%. The Ergodic Theorem (see e.g. Durrett [7]) implies that the expected
time between two visits at a vertex is N. Thus

Nblog N blog N
P(A;) < =
(4) < aN? aN

by Markov’s inequality, using the fact that C; < CV. Therefore

blog N
a

B0 = Y P(4) <

as desired. O

Now fix an € € (0,1/2). Let us from now on call the vertices which have not
been visited at least blog N times by time C + aN? “bad”. Divide the bad vertices
into two classes:

(1) the bad vertices at a distance at least e N from L, and

(2) the bad vertices closer than eN from L,
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where L is the last vertex to be reached by the lamplighter, i.e. L is the position of
the lamplighter at time CV. Write

Us =U,(1) + U(2)

in obvious notation. We are going to prove that P(U°(k) > 0) — 0 as N — oo for
k =1,2. The key to our proof is the following result, which is of some independent
interest and which also seems related to the study of cutpoints for simple random

walk (see [15]).

THEOREM 4.6 Consider a simple symmetric random walk, {S(n)}, on Z starting
at the origin and with a reflecting boundary at N, where N > 0. Let T be the first
time that S, = N and let U be the number of vertices in {0,1,...,[(1 — €)N]}
which have not been visited at least blog N times by the time T + aN?. Then

)
logN”

P(Uy > 0) < O(

The strong Markov property implies that as far as the points to the right of the
origin are concerned we can regard the origin as a reflecting boundary so that by
the same arguments as those used to prove Lemma 4.5 we have that

< 3blog N
a

E[U/?] < = O(log N).

Since it is true for any pair, (Z, W), of nonnegative random variables that

E[Z]
P(W >0) < BZW > 0]

we have that Theorem 4.6 will follow if it can be proved that
E[U3%/2|7% > 0] > O((log N)?).
For this we need a couple of preliminary lemmas.

LEMMA 4.7 For a simple symmetric random walk on the integers, the number of
excursions from 0 required to reach +M has a geometric distribution with mean 2M .

Proof. The strong Markov property implies that the paths of two excursions
are iid. A standard martingale argument shows that an excursion has probability
1/2M of reaching +M. O

LEMMA 4.8 Let &,&, ... be iid {0,1,2}-valued random variables with distribution
{po,p1,p2} and let Z = inf{i : & € {1,2}}. Then Z is independent of the event
{€z = 2} so that, in other words, the distribution of Z given £z = 2 has a geometric
distribution with parameter p; + po.

Proof.

_ P _
= PQP’S t= 2 (pl +p2)p’5 t= P{fz = Q}P{Z = k}
p1+ D2



18 HAGGSTROM AND JONASSON

Proof of Theorem /.6. Note that since Ug’f > Ué’,’e for a < d, it is no restriction
to assume that a is small. Let a be small enough to ensure that the probability
that the particle hits [(1 — ¢/2)N] in the time interval (T, T + aN?) is less than 1/2
uniformly in N. Let B be the event that this does not happen and note that B is
obviously positively correlated with the event {U>¢ > 0} upon which we are going
to condition. Now, for z = 1,..., N, let V; be the number of visits at 7 before time
T + aN?. Let X be the leftmost bad vertex, i.e. X = inf{i: V; < blog N} and note
that this is well defined under the condition U > 0. If we can show that

E[U3"|Up¢ > 0,X = 2] > O((log N)?)

for any z < (1 — €)N, we will be done. By the above arguments, it is therefore
enough to prove that

E[U3</2|U% > 0, X =z, B] > O((log N)?).
Under these conditions we may write V;, fori =z + 1,24+ 2,...,(1 —€¢/2)N as
‘/; — ‘/;I + ‘/;II

where V' is the number of visits at ¢ before the last visit at « and V;” is the number of
visits at ¢ after the last visit at  and before T'. Note that V' and V;" are conditionally
independent.

Now, unconditionally, we have that the expected number of visits at ¢ between
two successive visits at x is 1. Given V, = v, write

v—1
Vi=3 &
k=1
where &, is the number of visits at 7 between visits k and £+ 1 at x. The conditions
Ub¢ >0, X =z, B and V, = v means for the kth excursion from z that

(i) the excursion ends before it hits N, and

(ii) all states to the left of x are visited at least blog N times before the end of the
(v — 1)th excursion.

Condition (ii) makes excursions more likely to go to the left than to go to the
right, and condition (i) also biases the random walk leftwards. Thus the conditions
decrease the probability of hitting ¢ at all. Also, given that ¢ is hit, Lemma 4.8
implies that the expected number of times 7 is visited before the particle is back at
x is not increased through this conditioning. We can conclude that

E[WIUSG >0,X =2,B] <blogN —1 <blogN.

Using Markov’s inequality yields

P(V} < 2blog N|U®¢ > 0,X =z, B) >

N | =

The next issue is to come up with a corresponding result for V. Let us classify
the excursions from 7 after the last visit at  into three goups:
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(1) those who hit NV,
(2) those who hit z,
(3) the others.

Since we are considering what happens after the last visit to z, we know that (1)
will happen before (2). Calculating the unconditional probabilities of excursions of
type (1), (2) and (3), and using Lemma 4.8, we obtain that V;” has a geometric
distribution with expectation

2

1 1
i—T + N—i

which is less than or equal to 2(i — z). Thus

P(‘/;IISbIOgN‘[}g’f>0’X:x’B) > 1_(]__ )blogN

2(i— )

which is at least %ﬁ% for i — z = Q(log N) and N large enough. Combining this

with what we know about V/ we get
P(V; < 3blog N|U* > 0, X =z, B)
= P(V/ < blog N|U" > 0,X =z, B)P(V] < 2blog N|U>* > 0, X = 2, B)

blog N
8(i — )

>

eventually for i — 2 = Q(log N). In terms of the expectation of U3%¢/? this becomes
(1-¢/2)N

E[U*20 > 0,X =2,B]= Y. P(V; <3blogN|U > 0,X =z, B)
i—=x+1

Tel/2 blog N blog N
g 0g
> E > O(log N
- 8(1’—.1‘)_ 8 (og )

i=z+(log N)?

= O((log N)?)

as desired. O

Now let us move on to the random walk on Z mod N. Conditioning on the
position of L, say L = [, we know that the particle will visit one of the neighbours
of [ and then turn and go all the way around to reach [ from the other direction.
Associate the vertex at distance [eN] from [ in the direction of that neighbour with
the origin in a simple random walk. From the time this vertex is hit until cover
time the walk behaves like a simple symmetric random walk under the condition
that [(1 —e€)N] is hit before —[eN]. Let us call this event FE and note that P(E) = e.
The occurrence of the event {U?(2) = 0} can now be associated with the occurrence
of the event {U%¢ = 0} given E. Since this event has an unconditional probability
which goes to 1, we can for any 6 > 0 choose N large enough to have

€—0

€

P(U;(2) = 0) >
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which proves that
PU2)>0)—0

as N — oo. To see that P(U’(1) > 0) — 0 choose, for a fixed but arbitrary
¢ > 0, € so small that the expected cover time for Z mod ceN is less than §N2. By
considering a random walk on Z mod ceN starting at the position of the original
particle at time CV + aN? we get that

2 0
PUL) >0) < -+ 47

where p is the probability that U?(2) > 0 for the random walk on Z mod ceN given
that its cover time is less than a /N2, a probabilty which we know goes to 0. The first
term in the above inequality comes from the well known fact that the position of the
vertex last reached by simple random walk on Z mod ceN is uniform. The second
term follows from Markov’s inequality. Since § and ¢ were arbitrary, it follows that

PU? > 0) — 0.
We have proved the following theorem.

THEOREM 4.9 Let U? be the numer of vertices of a simple symmetric random walk
on Z mod N which have not been visited at least blog N times by time CN + aN2.
Then

PU’>0)—0
for any positive numbers a and b.

We are now finally ready to go back to the lamplighter process {X,} and its
auxiliary process { X }. Let SV denote the the first time all the vertices have become
stationary, i.e. have turned into state o for the { X} process. For any a, b and € > 0
choose N so large that P(U?) < € and note that the probability that a given vertex
is unstationary after blog N visits is ¢°'°¢", where ¢ = sy < 1. Thus
the probability of having any unstationary vertex at time CY + aN? is at most
€ + Ng"°8N_ Since b and € are arbitrary we get

P(SY — O > aN?) — 0

as N — oo for any a > 0. Since
cN cN
— Pr(M((a — 6)pm) —m((a = 6)pm) <1 < M(apm) — m(apm))
where as before M and m are the maximum and minimum processes of a standard

Brownian motion, we can make this difference arbitrarily small by choosing N large
and 0 small. Combining these two facts yields

P(SY > aN?) — P(CN > aN?) = 0

as N — oo.
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We are, however, not finished yet. By Lemma 4.4, the time SV is obviously
a strong stationary time for the part of the process concerning the modes of the
vertices, but it is not obviously so for the whole process including the the position
of the particle. Write X, as X,, = (a, 5,) where «,, is the configuration of modes
and [, is the position of the particle. Let X| = («a},,3),) be a copy of X,, starting
in stationarity. Allowing ourselves to make a slight lie, we claim that by letting
the particle of X! move in the opposite direction of the original particle until they
meet, 3, and [/, will with certainty have coupled before covering. This is completely
true only when NN is even and the two particles happen to start an even number of
steps apart. Otherwise the coupling can be made to yield coalesence of the particle
positions with a probability which tends to 1 as N — oo by modifying it e.g. in such
a way that the two processes evolve completely independently at times at which the
particles are at an odd distance less than % apart. Define

SN —=inf{n : S¥ < n and the two particles have coalesced}.

With the above coupling we have that P(§N = S]f) — 1 as N — o0, so that given
¢ > 0 we can pick N sufficiently large so that P(SY # SV) < e. By imitating the

proof of the coupling inequality (Lemma 2.1) and using Lemma 4.4 we get, for such
N

Y

> |[Plan = w,bn = 2) = P(ay, = w) P(B, = 2)|
< ZP(SN > n) ‘P(an =w, B, = 2SN >n) - P(a!, = w)P(B, = 2|V > n)‘ +

+P(SY <n)|Plan = |V <n)P(B, = 215V < n) - Pla}, = w)P(8, = 218" <n),

<2P(SY > n)
<2(P(SY > n)+e)
so that
|P(X,€-)—P(X, e)||=|P(X,€-)—n| < P(SY >n)+e

Since € was arbitrary, and by the Brownian motion considerations in Section 4.1, we
have established the following result:

ProrPOSITION 4.10 For any a > 0 we have

limsup ||P(X,n2 € -) — 7| < lim P(CY > aN?)
N—oo N—oo

= Pr(M(apy,) — m(apm) < 1)

where M and m are the maximum and minimum processes of a standard Brownian
motion, respectively.

Theorem 4.1 now follows without further ado from Propositions 4.3 and 4.10.

REMARK. If instead p, = 0, Proposition 4.10 may fail due to reducibility of the
Markov chain. For instance, consider the (2/3,1/3,0)-lamplighter. If N is even
and the particle starts in a known position, the present position of the particle will
immediately tell us whether there is an odd or even number of 0-vertices.
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