Abstract

We study long range mixed site-bond percolation and the question of in-
terest for us is whether, when there is percolation, the long edges are needed
in order for the process to percolate. Meester and Steif (1996) showed, among
other things, that for a long range bond percolation model with exponentially
decaying connections, the limit of critical values of any sequence of long range
percolation models approaching the original model from below is the critical
value for the original long range percolation model. As a corollary they ob-
tained, for the long range bond percolation model, the result that within the
supercritical regime, the long edges can be removed and percolation still occurs.
Here we extend these results to site-bond models. One of the reasons for inter-
est in this is that it seems that this is a first step in analysing the analogous
problem in continuum percolation.
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1. Introduction

The problem to be discussed in the present work emanates from an article by
Meester and Steif (1996). They study the continuity of the critical value for
long range bond percolation with exponentially decaying connections. As a
corollary to their main result, they obtain that if we are in the supercritical
phase then there exists some k so that edges longer than k are not needed in
order for the process to percolate.

We wanted to extend this result to continuum percolation. In these models
points are distributed in space according to a Poisson process and there is an
edge between any two pair of points with a probability that depends on the
distance between these two points. In our case the connection function would
be exponentially decaying. However, this problem turned out to be difficult.

Many problems in continuum percolation are studied by some sort of dis-
cretisation process, and it is then hoped that results for the discretisation pro-
cess can be translated to the original continuum model. When this discretisation
is done, typically site-bond models arise. Therefore in our case, a possible first
step in showing the result for the continuum model, is to obtain the analogous
result for the site-bond model. This is what we prove in this paper.

In section 2 we give a brief introduction to some aspects of percolation.
Section 3 consists of a summary of the relevant parts of the two articles that
compose the background to the current one. Section 4 includes a concise de-
scription of continuum percolation and a discussion of some of the problems
involved in the extension of the discrete result to continuum percolation. Fi-
nally sections 5, 6 and 7 contain the actual work, namely the extension of the
result of Meester and Steif for long range bond percolation, to an analogous
result for long range mixed site-bond percolation.

2. Percolation

Percolation can be thought of as the study of connectivity properties of random
graphs. The theory as it is known today originates from an article by Broadbent
and Hammersley (1957). They study the spread of a fluid through a random
medium. The fluid itself shows no random behaviour and it thereby differs from
diffusion theory, where all randomness comes from the behaviour of the fluid
and the medium is fixed. A couple of years earlier, Broadbent (1954) modelled
the medium as a system of channels where some channels were narrow and some
were wide. He assumed that the fluid could pass through all the wide channels,
but not through any of the narrow ones. In an idealized form the system of
channels was represented by the edges of Z%. Letting each edge between points
of Z4 at distance 1 from each other (= a channel) be open (= wide) with
probability p independent of all others, we arrive at ordinary bond percolation
on Z% with parameter p. One question of interest is if “fluid” is added to one
point of Z¢, whether the number of points that are then “wetted” is infinite or
not.

Our mathematical formulation is as follows. Each element of the d-dimen-
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Figure 1: A realization of bond percolation with p = 0.5 on
a part of Z?2

sional integer lattice in Z¢ is a vertex. Two vertices z = (1, T2, ...,z4) and
y = (y1,Y2,-.-,yq) are called nearest neighbours if their distance |z — y| =
Z?Zl |z; — ;| equals 1. Between each pair of nearest neighbours there is an
edge, also called a bond. The set of edges will be denoted by E. With each edge
e of E there is associated a {0, 1}-valued random variable X (e). The edge e is
said to be open if X(e) = 1 and closed if X (e) = 0. We consider the sample
space 2 = {0,1}¥ and we equip it with the usual o-algebra F. We study
product measure with density p and we write P, for it. A path is a sequence of
distinct edges such that any two consecutive edges are connected to a common
vertex, and such that there are no loops. An open path is a path consisting
only of open edges. The open cluster of a vertex x, C(z), is the set of vertices
containing z and all other vertices that can be reached from z via open paths.
Let 0 denote the origin and let 0 <> oo be short for the event that there exists
an infinite open path starting at the origin. Let 6(p) = P,(0 <> 00). 6(p) will
be referred to as the percolation probability. It is obvious that 6(0) = 0 and
that 6(1) = 1. It is also true that 6(p) is non-decreasing in p. This is intuitively
obvious, and it can be shown by a simple coupling argument. There therefore
exists a critical value p, = p.(d) of p such that

=0 ifp<p,
O(p){ >0 ifp>pe.

The existence of an infinite path from the origin is equivalent to the event that
the cluster of the origin is infinite, thus 6(p) = P,(|C(0)| = oc). When 6(p) > 0
it has been shown that there a.s. is a unique infinite cluster. For general d
this was proved by Aizenman, Kesten and Newman (1987). Harris (1960) had
shown it for d = 2. Burton and Keane (1989) gave a more accessible proof in
a more general case. As the existence of an infinite open cluster is not affected
by the opening or closing of finitely many edges, Kolmogorov’s 0-1 law tells us



that the probability of that event is either 0 or 1 and we have
6(p) > 0 < Py(there is an infinite open cluster) = 1.

For d > 2, it can be shown that p. is strictly between 0 and 1. (In the case
d =1, there is a.s. no infinite open cluster unless p = 1.)

When d = 2, p. equals % This was not shown rigorously until 1980 by
Kesten (1980), but it was generally believed to be true after Harris in 1960 had
shown that 6(1) = 0. As 0(3) = 0, this means that there is no infinite cluster at
the critical value in two dimension. This is thought to be true for all d, but so
far has only been shown for d = 2 and for d > 19. See Hara and Slade (1994).

Another percolation process is obtained if we let the status of the vertices be
random, instead of that of the edges. We declare a vertex open with probability
p and closed otherwise, independently of all other vertices. The open clusters
of this site percolation model are the subgraphs of the lattice induced by the
set of open vertices. Every bond percolation process may be reformulated as
a site percolation process on a different lattice. This is not true the other way
around, and in that sense site percolation models are more general.

An even more general percolation process, is mixed percolation. Here both
edges and vertices may be open or closed. The corresponding probabilities need
not be the same.

Returning to bond percolation, one can also consider the more general situ-
ation where one allows edges between every pair of vertices in Z% We call
the obtained models long range bond percolation models and they can be con-
structed as follows. Let p = (p(z) : x € Z%) be a collection of numbers in the
interval [0,1). We suppose that p(z) = p(—z) for all z € Z% FEach pair of
distinct points  and y is, independently of every other pair, joined together by
an edge with probability p(z — y). In order to ensure that every vertex a.s. has
finitely many edges emanating from it, we assume that ) p(z) < co. Ordinary
bond percolation with edge probability p, can be recovered by letting

(z) = p if £ or —zx is a unit vector
PRI =0 0 otherwise.

While nearest neighbour percolation on the line is obviously uninteresting,
infinite-range percolation in one dimension has many interesting features. We
will look at one of them here. Take p to be the vector (p(n) : n > 1) of numbers
in [0,1) and let each pair z and y of points in Z be joined by an edge with prob-
ability p(|z —y|). Sometimes we will also use the notation p,, for p(n). Here we
restrict ourselves to a class of vectors for which p(1) = p and

p(n)
pn—«

for some positive constants o and 3, meaning that for large n, p(n) behaves
more or less like fn~®. Since we assume that ) o> ; p(n) < oo, we must have «
strictly greater than 1. We will see that if the p(n)’s are sufficiently small, there
will a.s. not exist any infinite components. We look at two such conditions.

—lasn— o




For the first one, let us compare the component at the origin with a branch-
ing process. This can be found in Schulman (1983). There is no problem
making the following argument rigorous. The mean number of vertices that
share an edge with the origin is 4 = 23 °°, p(n). For each such vertex x
the mean number of new, in the sense not directly connected to the origin,
vertices that share an edge with z is at most u. If we look at the cluster of
the origin as a branching tree with the origin as the ancester or root, we see
that each component has a family mean size not greater than y. Therefore
the size of a certain branching process with mean family size ¢ dominates the
size of the component at the origin in the percolation process. Branching pro-
cesses with mean family size less than or equal to 1 are known to be finite, and
this would then imply that if 2)°>°, p(n) < 1 then there a.s. does not exist
an infinite cluster of the origin. (For branching processes with mean family
size 1, we need the additional assumption that P(one child) < 1 for the total
size to be finite. In the percolation case this corresponds to assuming that
P(there is exactly one edge emanating from an arbitrary vertex) < 1, which of
course holds.) In terms of our parameters, this describes the case that £ is
sufficiently small.

In order to discuss the second condition, we introduce some events. Let A
be the event that no vertex z (< k) is joined to any vertex y (> k+ 1). Now
study the sequence of indicator functions 14, for —oo < k < oo. The sequence
is stationary with trivial tail o-algebra and the random variables all have mean
P(Ap). If we can show that P(Ap) is greater than 0, the ergodic theorem
applied to the sequence of indicator functions will tell us that infinitely many
of the Ag’s occur. This in turn means that there are no infinite components.
To see when P(Ay) is strictly positive we introduce some new events. Let B,
for n > 1, be the event that there is at least one edge of length n from a vertex
z < 0 to a vertex y > 1. We have that Ag = N%°, BS. It follows immediately
that if

1. P(B,) <1 Vn
3. By’s are independent

then P(NX ,BE) > 0. P(B,) < np(n), P(B,) <1 Vn and the events B,
are all independent, so if >°>° , np(n) < oo we have that P(Ag) > 0 and as a
consequence there are no infinite components. Assuming that > | np(n) < 0o
is the same as assuming that a > 2.

Now we will see what happens if p satisfies

Y np(n) =oc0 and <Y, p(n) < occ.

This implies that « belongs to (1,2]. In our model p measures the strength of
nearest neighbour interactions and $ and « measure the long distance inter-
actions. Both types of interactions are relevant to the occurence of a critical
phenomenon. Let 6(p, , 3) denote the probability that there is percolation. It
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can be shown that if 1 < @ < 2 and 8 > 0 there exists a critical value p.(«, §)
strictly between 0 and 1 such that

=0 ifp<pc(04aﬂ)
9(p7a7ﬁ){ >0 1fp>pc(aa/8)

When @ = 2, 8 <1 and p < 1 there exist no infinite cluster a.s.. But if a = 2
and (8 > 1 there exists a critical value p.(2, 3) such that

9(?527ﬁ){ Z ﬂl/Q lfp >pc(27ﬂ)

Both these latter facts are shown by rigorous renormalization type arguments.
The arguments are more sophisticated than those concerning the case a > 2
and the case of sufficiently small .

Summarizing we see that there is a critical phenomenon if 1 < a < 2 or if
a =2 and 8 > 1. Note that in the latter case the percolation probability is
discontinuous at p.(2, ), a very interesting phenomenon. These results are due
to Newman and Schulman (1986) and Aizenman and Newman (1986).

For more details on particularly bond percolation, the reader is referred to
the book by Grimmett (1989). Another review can be found in Kesten (1987).

3. Some background material

We just give a summary of some of the ideas and results in the articles by
Grimmett and Marstrand (1990) and by Meester and Steif (1996). The reader
is referred to the relevant article for details.

Grimmett and Marstrand study site percolation in the supercritical phase.
They prove a general result concerning critical probabilities of subsets of Z2.
To state their main theorem, we introduce some notation. Let B(n) denote the
box {z € Z%: |z| < n} and if A is a set, let p.(A) denote the critical probability
for percolation on A.

Theorem A. If F is an infinite connected subset of Z¢, and p.(F) < 1, then
for each n > 0 there exists an integer k > 0 such that

pc(2kF + B(k)) < pc(Zd) + 1.

To see what this theorem says, consider a slice of thickness k£ which is given
by S(k) = {z € Z¢: 0 < z; < k,j > 2}. Note that p.(Z%) < p.(Sk) and that
pc(Sk) is a non-increasing function of k. As a consequence of Theorem A they
obtain that, when d > 3, the limit of the critical probabilities of a slice of Z¢
whose thickness tends to infinity, equals the critical probability of percolation
on Z¢%. This result follows immediately from the theorem if we choose F' = Z2.
In this case 2kF + B(k) is a translation of the slice S(2k) having thickness 2k.

However it is not their result so much as the techniques they use to prove
it, that is of interest for us at present. The idea of the proof is to consider a



renormalization of the lattice, and then study site percolation on the renormal-
ized lattice. Place a grid with side-length 2V in the original lattice, so that the
lattice can be seen as consisting of translates of the box B(N). Let each box
in {4Nz + B(N) : x € Z%} correspond to a vertex in Z¢, the latter being the
renormalized lattice. They present a method to build a cluster of boxes, in a
stepwise manner, in such a way that if there is an infinite cluster of boxes (=
an infinite cluster of vertices in the renormalized lattice), then there determin-
istically also exists an infinite cluster of vertices in 2kF + B(k). Let there be a
fixed ordering of the edges in F. The ordering gives rise to an ordering of the
vertices of F'. The corresponding boxes {4Nz + B(N) : z € F} are studied in
that order to determine whether they are open or closed. The rule that is used
has the above mentioned property. By this property, we know that if there is a
cluster of boxes, then there must also be a cluster of vertices in 4N F + B(N).
There are two key lemmas to this procedure. Lemma 1 more or less says that
if the probability that the next box to be studied is open given the past of
the procedure, is strictly greater than p.(F') and is independent of how far we
have come and of what we have seen in the cluster building procedure, then
the probability of there being an infinite cluster of boxes is strictly greater than
zero. The other is Lemma 6 which ensures that there is a high probability for
a certain long open path within a box, and it is used to control the probability
of boxes to be open.

The setting in the article by Meester and Steif is long range bond percolation
and they study the continuity of the critical value in the case of exponentially
decaying connections. Their main result is a sufficient condition under which
the critical probability is continuous from below for long range bond percola-
tion models. To state their result they introduce a condition which the model
is assumed to satisfy. They later show that models with exponentially decaying
connections satisfy this condition, which they call Condition C. In fact they do
not believe the condition to be much stronger than having exponential connec-
tions, but find it convenient to have their results stated using the condition. We
will not go into detail about this here, but merely state their main result. Recall
that p, denotes the probability of there being an edge between two vertices at
distance n from each other. As in the above example of long range percolation
in one dimension, it is only p; that is allowed to vary, all others are kept fixed.

Theorem 1.1. Let d > 2. Assume that po, p3, ... satisfies Condition C, and
that py, py, ... are such that for all t > 2 and n > 1, p}' < p; and that for all
1> 2, limy,_y00 pi' = p;. Then

lim pc(ph,p3,-.-) = Pe(p2, 3, ---)-
n—oo

The result of interest for us, is obtained as an immediate corollary of The-
orem 1.1.



Corollary 1.2. Letd > 2. Assume that pa, p3, ... satisfies Condition C and let
p1 > pe(p2,p3,-..). Then there exist some integer k so that there is percolation

under (p17p2ap3a -+ Pk Oa 07 )

The proof relies very much on the renormalization technique described in
Grimmett and Marstrand. The idea is that when determining whether a certain
box is open or not, you only look at edges within that box. The cluster that
is found using this method cannot contain any edges longer than the distance
between the two corners in the box furthest away from each other. To be able
to use the techniques of Grimmett and Marstrand, some lemmas are needed to
take care of the fact that Meester and Steif study long range bond models as
opposed to the site models of Grimmett and Marstrand.

4. The continuum case

Here a brief description of the ideas and some of the problems encountered will
be discussed. The model to be considered is an example of the Poisson random
connection model. Instead of just considering points in the lattice, points are
now distributed in space according to a Poisson process. Between each pair of
points, there is an edge with a probability that depends on the distance between
the two points.

"

Figure 2: A realization of a random connection model

In order to be able to state our conjecture, we need some notation. First let
A be the intensity of the Poisson process and let g be the connection function,
that is the probability of there being an edge between z and y in R? is given
by g(z —y). Assume g satisfies [z, g(x) dz < co. Assume also that g(z) = g(y)
whenever |z| = |y| and that g is non-increasing in the sense that g(z) < g(y)



whenever |z| > |y|. Denote by W the component containing the origin. A
component is defined in the usual graph-theoretical way, namely it is a set of
points such that any two points of the set are connected, and that the set is
maximal in this respect. Let us write 0,(\) = Py 4(|W]| = 00), where Py,
denotes the probability measure in the model. It is a fact that, when d > 2,
under these conditions there exists a density Az (g) € (0, 00) such that 4(X) =0
for A < Ap(g) and 64(X) > 0 for A > Ag(g), see e.g. Meester and Roy (1995).
We state our conjecture.

Conjecture 4.1. Let d > 2. Assume the connection function g(z) is ayl?l,
where a,y € (0,1), and let A > Ag(g). Then there exists some k > 0 such that
there still is percolation when g(x) is replaced by

_ [ 9(a) |z| <k
g’“(‘”)_{gﬂ |z| > k.

How do we go about to prove this? One approach could be to find a continu-
um version of the main lemma in Meester and Steif (1996) that is needed for
the renormalization. A problem that arises here is how to define the boundary
of a set when there is no such thing as a nearest neighbour. Another approach
could be to find a discrete translation of the process into a long range mixed
percolation model. Let us discuss this latter approach.

We begin by placing a grid in space and letting each box correspond to a
vertex in Z?. We choose the side-length of the boxes so small that the probabil-
ity of having more than one point of the Poisson process within the same box is
sufficiently small. A vertex in Z¢ is said to be open if there is exactly one point
of the Poisson process in the corresponding box in R¢. One could of course
instead have chosen a rule that declares a vertex in Z? to be open if all Poisson
points in the corresponding box are connected, but one would then run into
problems with multiple edges between boxes. Let there be two ways to declare
an edge open in the discrete case. If the two endpoints of the edge in Z¢ are
open, let there be an edge in Z? if there is an edge between the corresponding
boxes in R?. If on the other hand at most one of the edge’s endpoints in Z¢ is
open, we let the edge be open with the following probability

fBl f32 gz —y)dr dy
vol(B))2

where B; and B, are the boxes in R? corresponding to the endpoints of the
edge. If we had chosen only the first rule, the process we would have ended
up with would not have been a proper long range mixed percolation model,
as there could never have been any edges without both their endpoints being
open. To see that the process we get by using both edge rules is indeed an
example of a long range mixed percolation model, we make some observations.
First we observe that the status of a vertex is independent of the status of all
other vertices. This is so because the number of Poisson points in disjoint parts
of space are independent. Further, the probability of there being an open edge
between any two pair of points in Z? only depends on the distance between



the two points since an easy computation shows that the probability we chose
for edges to be open when at most one of their endpoints is open is exactly
the probability to be open for an edge between two points that are open. The
status of a given edge is independent of the status of every other edge. As the
two conditional probabilities for the presence of open edges given the status of
their endpoints are equal, it is also true that the status of edges and vertices
are independent. These observations lead us to conclude that the process we
obtain is a long range mixed percolation process.

As we defined our translation between continuous and discrete, we see that
if the cluster of the origin in the discrete case is infinite so is the cluster of the
origin in the continuum case. This would not have been the case if we had
allowed vertices in Z% to be open if there were more than one Poisson point in
the corresponding box, not demanding them to be connected. We could then
have had a path in the discrete model that had no counterpart in the continuum
model if there were two edges incident to the same box, but not to the same
Poisson point and these points were not connected. The extra edges that were
added to the discrete process above can never be used in a path from the origin
to infinity, as they do not have both their endpoints open, so they do not pose
any problems.

Unfortunately, but as could be expected, knowing that there is percolation
in the continuum model does not imply anything for the discrete model. If
we could, e.g. by in some way altering the translation, ensure that the discrete
translation was supercritical in the sense that if we lower both the probability
for the existence of open vertices and the probability for the existence of open
edges of length one, this new model would still percolate, then we could use
the result to be described for long range mixed percolation to conclude that
in the discrete model, the long edges could be removed. By the nature of our
translation, we would then know that also in the continuum model the long
edges could be removed without altering the fact that the process percolates.
The only thing that remains, is to take care of the opening if. An attempt could
be as follows.

Let us study the following process. Fix € > 0 such that A > A — e > Ag(g)
and let there be points in space according to a Poisson process with intensity .
Let there also be edges according to the edge law g. Now place a grid in space
with side-length §. If there is more than one Poisson point in a “d-box”, all
points in the box are removed along with the corresponding edges. Let P)f’ g be
the measure of the resulting process. This continuum model percolates at the
same time as the above described discrete translation of the original Poisson
process with intensity A and edge law g. How do we know when this new
process percolates? If it were the case that it dominated a Poisson process with
intensity A — € and edge law g, it would certainly percolate. If not, we have
to find another way to ensure percolation. However, we end up with problems
even if P)‘i g should happen to dominate P(,_¢) 4. This is so because in order to
use our result for long range mixed percolation we need our discrete model to
be both “site-supercritical” and “bond-supercritical”, and by comparing it with
P)‘i g We will only be able to establish whether or not it is “site-supercritical”.



Not to our surprise, however, we find that P)‘f,g cannot dominate any Poisson
process. One way to see this is to observe that the number of points in a ball
with radius << § is deterministically at most 2% in the Pji g—model, whereas in
the Poisson case there is no such limit.

We now hope that we have made it clear that carrying over results from the
discrete setting to the continuum setting is not an altogether simple task.

5. Preliminaries

We will now try to give a description of the long range mixed percolation model.
We let Z¢ denote the standard d-dimensional cubic lattice. Most of the time we
will equip it with the L;-norm given by |(z1,...,z4)| = 2?21 |zi|. If |z —y| =1,
z and y will be called nearest neighbours. Sometimes we will also need the
Lo-norm given by ||(z1, ..., 2¢)|| = max; |z;|. As we are in the world of mixed
models, we will mostly study sets consisting of both vertices and edges. In fact,
if not otherwise stated, a set is supposed to contain both vertices and edges.
Consider a set R = R” U R®, where RY denotes the vertices of the set and
R¢ denotes the edges. We will often discuss what happens “just outside” R,
and so we introduce the edge boundary of R and the vertex boundary of R.
The vertex boundary of R, AR, will consist of vertices that have at least
one edge of R€ incident to it and that are not themselves a member of R”. The
edges contained in the edge boundary, A°R, will be those edges of length one
which have one endpoint among the vertices in R and the other one outside both
R and the vertex boundary of R. (Note A°RNR® = ().) More formally we write;

A’R = {z:z¢ R",3y € R, {z,y} € R%}
AR = {{z,y}:{z,y} ¢ R®,z € R*,y ¢ (R UA"R),|z —y| =1}
AR = A'RUAE°R.

It may well be that for a particular R one of these two sets is empty, but
they cannot both be, unless R = Z% of course. We introduce the vertex bound-
ary of aset Sonaset T. f R=SNT we let

AYrR = (A'S)NT.

On T, AR is a subset of A% .R. The need for this set is understood while
studying the renormalization process.
It is not only the elements closest to R which we will need to consider,

but also vertices “two steps outside” R. We will call them the two-step vertex
boundary of R and denote them by AA®R;

AA°R = {z:z¢ R’ Jye R’ {r,y} € A°R}
AAR = AA°R.

So far nothing has been said about probabilities, but that will be taken
care of now. The model which we will study will have exponentially decaying
connection probabilities p,, € [0,1), n = 1,2, ..., meaning here that there exist
some Ny and a,p € (0,1) so that p, = ap™ for n > Ny. (Hereafter writing

10



exponentially decaying, we will always mean exponentially decaying in this
strict sense.) We naturally have that

Z Py < 00. (5.1)

T€Z4,x#0

For each pair of vertices x and y, x # y, we declare the connecting edge to be
on with probability pj; | independently of all other edges and of the vertices.
By the Borel-Cantelli lemma and (5.1) we know that, a.s., every vertex will
have a finite number of edges emanating from it. At the same time declare
each vertex to be open, independently of all other vertices and all edges, with
probability q.

An open vertex-to-vertex path is a finite alternating sequence of open
vertices and open edges starting and ending with a vertex. There will also
be need for vertex-to-edge paths, edge-to-vertex paths and edge-to-edge paths.
They are defined in the obvious way. Writing a <+ b means that there is an
open path from a to b, in that both ¢ and b are open in addition to all other
elements used for the path. Writing A <+ B, where A and B are sets, means
that there is an open path between some element of A and some element of B.
By A + B in C we mean that the open path between A and B should use
only elements of the set C'. The first element in A and the last element in B
are allowed to be outside C, but they must all be open. Let A — oo denote
the event that there is an open path from one element of A to oc.

The cluster, C, of the origin, 0, consists of all vertices and edges that are
reachable from the origin. We write

( {z € (Z%? : z is open and 3 open vertex-to-vertex path form 0 to z}
U{{z,y},z,y € (Z%" : {z,y} open and 3 open vertex-to-edge path
from 0 to {z,y}}
if 0 is open

L 0 if 0 is closed.

We let 6(q,p1,p2,...) = P(]C| = 00) and call it the percolation probability. It
depends on g, p1, po, ..., as well as on d. We say that there is percolation under
q, P1, P2y - if 0(q, p1,p2,...) > 0. For a moment disregarding the vertices, the
usual approach to long range percolation in one dimension is to consider p; as
a parameter and to fix all the other connection probabilities. This is also the
approach used by Meester and Steif (1996). Here we will consider both g and
p1 as parameters, while fixing the other connection probabilities.

In order to make some things more like the approach in Meester and Steif, so
that we can build on their results, we introduce a condition for the connection
probabilities. First we need some preliminary definitions. If V is a set of
vertices, let E(V) = {{z,y} : z,y € V}. Now B(n) = B(n)" U B(n)¢, where

B(n)® = {ze€(Z%":|z||<n} and
B(n)® = E(B(n)").

11



We now introduce Condition C. We say that po, ps,... satisfy Condition
C if for all p; € (0,1) there exists ¢ > 0 such that for alln > 1, if R = SN B(n)
where § C Z4, v € (B(n))” and v € (R* U AY, By Y AA°R), then

Z Pz = C Z Pig—r|- (5.2)

RUAAeR)NB(n) z€(RVUAY RUAAeR)NB(n)

ze(A $.B(n)

v
S,B(n)

Note that nothing is required for the vertices in concern.

Remark. There exists ¢ > 0 such that if S C Z% and v ¢ (S¥ U AVS U AA®S)
then

Z Plz—y| 2 € Z D)z—ry]- (5.3)

TE(AYSUAAES) 2E(SVUAYSUAAES)

If S is finite, we can take n large enough in Condition C and we are in the
same situation. If we believe (5.3) to be true for a finite S, a simple limiting
argument together with (5.1) will prove it for all S. O

Meester and Steif (1996) show that in the long range bond percolation model
at least our form of exponentially decaying sequences of probabilities satisfies
Condition C. We claim that this result is valid also in our setting. The first thing
to note is that the condition only involves the status of edges and that these
edges in both cases are independent. A"S in the long range bond model “covers”
the whole of the boundary of S. In the mixed model, the closest boundary is
represented by AYS U A°S. For each edge in A®S there is exactly one point in
AACS, so AYS U AAES are the points “covering” the boundary here. These
reflections make clear the difference in appearance between the “infinite” case
of Condition C in the both settings. In the “finite” form of Condition C there
is yet another difference between the two formulations of the condition. In the
mixed model Agy m It 1s used instead of A”R. That exponentially decaying
sequences of probabilities satisfy our version of Condition C can be obtained
by a trivial alteration of the proof of Meester and Steif.
We state the main theorem.

Theorem 5.1. Let d > 2. Assume exponentially decaying connections in the
strict sense described above and let p and q be supercritical, in the sense that
0(q,p,p2,p3,-..) > 0 and that even if you lower both q and p this new model
percolates, then there erists some integer k so that there is percolation under

(g,p,p2,P3, - Pk, 0,0, ...).

Here we just give a sketch of the proof. The actual proof is deferred to the end
of the article.

Consider a rectangular grid of large disjoint cubes with side-length N. The
boxes are ordered in some way and then investigated, according to a special
rule, in that order. The rule declares a box to be either occupied or vacant. It
will be important to find a good rule and there are at least three requirements
for one to declare a box to be occupied;

12



(i) Conditioned on the past of the procedure, the probability for a new box
to be occupied should always be larger than and uniformly bounded away
from the critical probability for nearest neighbour independent site perco-
lation. If this is the case we can use Lemma 1 of Grimmett and Marstrand
(1990) to conclude that we have percolation in the renormalized model.

(i9) There should be a link between the boxes and the underlying long range
mixed percolation model such that if there is a nearest neighbour path
of occupied boxes, then there must be a corresponding open path in the
underlying model visiting all boxes in this open path.

(#i) The event that a certain box is occupied should depend on the state of a
uniformly bounded number of edges and vertices and the edges it depends
on should have uniformly bounded lengths.

Having found such a rule, we can then find some large N so that if there is
percolation in the long range mixed percolation model then the renormalized
model percolates as a nearest neighbour model. But now we see, by (i) and
(i), that the underlying model percolates using all the vertices but only edges
up to a certain finite length and the proof is complete. It only remains to
make this reasoning a bit more rigorous, which will be the aim of the next two
sections.

6. The lemmas

This section will be devoted to stating and proving the main lemma needed for
the renormalization. But first, we will have to introduce some more notation.
Let T'(n) be the set

{z = (z1,22, -, zq) € (ZY? : 21 =n,0 < zj < nfor j =2,...,d},
which is a subset of a face of B(n). For positive m and n with 2m < n, we let
T(m,n) =T(m,n)" UE(T(m,n)")

where
2m—+1

T(m,n)" = |J {jej + T(n)}.
j=1
Here e; is the vector which is 1 in the jth position and 0 in the other d — 1.
An open m-pad is a translate of B(m) with all vertices on and such that each
pair of vertices in this set is connected by an open path in this set. Finally we
let K(m,n) denote those open vertices in T'(n) that have an open edge to a
nearest neighbour in 7'(m,n) which is part of an open m-pad in T'(m, n).

To be able to simultaneously couple all of the processes as g and p; varies
and p; with ¢ > 2 are fixed, we introduce continuous uniform random variables
for the vertices and edges of length 1. Let V denote (Z%)?, E; all edges of length
1 and Es all edges of greater length. Now let Q = [0,1]Y x [0,1]F* x {0,1}2
and let it be equipped with the usual o-algebra and with product measure P

13



where each measure on [0, 1] is uniform and if e € Ey has length £ (> 2) then
the marginal for e is pgd; + (1 — px)do (here 1 represents e being open). For
z€V,y € E; and w € Q we let w(z) and w(y) denote the value at = and y
respectively. w(z) and w(y) have uniform distribution. We say that a is p-open
if w(a) < p and that it is p-closed if w(a) > p. We will also talk about ¢,p-open
m-pads and ¢,p-open paths. They are of course m-pads and paths consisting of
g-open vertices which are connected by open paths using p-open edges of length
one and which longer edges are all open.

We obtain a realization of a long range mixed percolation model with para-
meters 7y, p, p2, p3, ... if we look at the set of y-open vertices together with the
p-open edges of length 1 and the open edges of length greater than 1.

In the rest of the section we have fixed po, ps3, ..., exponentially decaying,
and p,q € (0,1) such that 6(q, p, p2, p3,...) > 0. We begin by stating the main
lemma.

Lemma A. Let ps, p3, ... be exponentially decaying in the strict sense described
above, p, q € (0,1) and 6(q, p, p2,p3,...) > 0 and let ¢, 6 > 0. Then there exist m
and n such that 2m < n and such that if S O B(m), (SUASUAAS)NT(n) =0
and R = SNB(n) and if § : A°RNB(n) — [0,1-6] and § : A g R = [0,1-4]
we have P(G | H) > 1 — € where

H = {Ve € A°RN B(n),e is B(e)-closed } N {Vv € Ag g, R, v is B(v)-closed }

and G is the event that there is a path from R to K(m,n) in B(n) with one of
the following characterizations;

e [t is a vertez-to-vertex path which second element e is a (B(e) + J)-open
edge in A®R. All subsequent vertices and edges are open, meaning q-open
for vertices and p-open for edges of length 1. Apart from the first edge of
the path, no edges of A°R and no vertices of Ag’B(n)R are used.

e It is an edge-to-vertex path which second element v is a (B(v) + §)-open
verter in Ag’B(n)R. All subsequent vertices and edges are open, meaning
g-open for vertices and p-open for edges of length 1. Apart from the first
vertex, no edges of A°R and no vertices of Ag’B(n)R are used.

We first state three for us useful lemmas concerning {0,1}-valued random
variables, without their proofs, from Meester and Steif (1996).

Lemma 6.1. Let ¢ > 0. Let {X;}ier be independent {0, 1}-valued random vari-
ables with p; = P(X; = 1). Let {Y;}jes be independent {0,1}-valued random
variables with pj = P(Y; = 1). If 37,1 pi > €325 pj then for all integers k
and € > 0, either

P() X;<k)<e

i€l

or
2k

ce’

4
P(ZYJ-Z@JF ) <.

jeJ
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Lemma 6.2. Given M and € there exists L = L(M,e€) such that if X1, Xo, ...
are independent {0,1}-valued random wvariables with p; = P(X; = 1) and
> ipi <M, then for all subsets S C {1,2,...}, we have

o0
PO X;i>L|Y X;i>1)<e
i=1 €S

Lemma 6.3. Given b,y € (0,1), and N > 1, there exists § = 6(b,y,N) such
that if {X;}icr are independent Bernoulli random wvariables with p; = P(X; =
1) <b for alli and such that P(}_,.; X; > 1) > 16, then P(}_;c; X; > N) >
1—+~.

i€l

The next lemma, tells us that if there are many edges between a random set
and the union of a fixed set together with its vertex boundary and its two-step
vertex boundary, then there must also be a certain amount of edges between
the random set and the union of the vertex boundary and the two-step vertex
boundary of the fixed set.

Lemma 6.4. Let R = SN B(n) with (SUASUAAS)NT(n) = 0. Let T
be a random subset of (RU AR UAAR)® N B(n) consisting of open edges and
open vertices and which is measurable with respect to the edges and wvertices
contained in (SUASUAAS)C. Let E be the set of open edges between vertices
n (Ag,B(n)R U AA°R) and vertices in T and let F' be the set of open edges
between vertices in (R U Ag,B(n)R U AACR) and vertices in T. The vertices in
R, A%,B(n)R and AA°R can be either open or closed.

Then for all integers k and all e > 0

P(E| <k |F| > — + 2y <
ce ce
where ¢ is as in (5.2).

Also if S C Z%, T is a random subset of (S U AS U AAS)® consisting of
open edges and open vertices and which is measurable with respect to the edges
and vertices contained in (SUASUAAS)C, E is the set of open edges between
vertices in (AYS U AA®S) and vertices in T and F is the set of open edges
between vertices in (S U AYS U AA®S) and vertices in T. The vertices in S,
AYS and AA®S can be either open or closed. Then for all integers k and all

e>0 A ok
P(E| <k, |F| > — + 25y <
ce ce

where ¢ is as in (5.3).

Proof. It suffices to show that P(|E| < k,|F| > % + 28 | T =T) < ¢ for all
subsets I of (R U AR U AAR)® N B(n) consisting of open vertices and open
edges and for which P(T =T') > 0. By the FKG inequality, see e.g. Grimmett
(1989), and the measurability of 7" we need only show that

4 2k
P(lE|<k|T=T)P(|F|>—+—|T=1)<
(BI<KIT=T)P(F| > —+—"|T=T)<e
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forallT' C (RUARUAAR)®N B(n) with P(T'=T) > 0. Fix such a I". By
Lemma 6.1 it is enough to show that

> ple—v) > c > plz =),

e VUAY e
RUAA€R)NB(n), z€(R UAS,B(n)RUAA R)NB(n),

yer yer

=¢85, Bm)

but this follows from (5.2) if we sum over +y last.
The second case of the lemma is proved in a similar way using (5.3).
|

The following lemma demonstrates that the number of vertices in a fixed
set that are endpoints to edges between that set and a random set, cannot be
very small if there is a considerable amount of edges between the two sets.

Lemma 6.5. Given € and k there exists a(k,€) such that if S1 is a subset of
74, Sy is a random subset of Z1\ Sy consisting of open vertices and open edges
and which is measurable with respect to edges and vertices contained in 7.2\ S,
E is the set of open edges between vertices in So and vertices in S1, and V is
the set of vertices in S1 which are endpoints of open edges to vertices in So then

P(|V| <k, |E| > a(k,€)) <e.
Proof. In the same way as in Meester and Steif (1996). ]

We introduce some more notation. Let W, ,, be the set of open vertices and
open edges in B(n—1) that are connected to B(m) inside the box B(n—1). Let
Fpn be the set of open edges from W, ,, to vertices in B(n — 1)¢. Further let
Vin.n be the set of vertices in AA®B(n — 1) which have an open edge to Wy, 5,
and let E,, ,, be the set of open edges from Wy, ,, to vertices in AA°B(n — 1).

Lemma 6.6. For all k and m > 1

lim P(|Fp,,| < k,B(m) — o0) = 0.

n—oo

Proof. Fix k£ and m. Then

lim sup P(|Frn| < k, B(m) — 00) < P(limsup{|Fp, | < k, B(m) = co})

n—oo n—oQ
by Fatou’s lemma. We will now show that the latter probability equals 0.

Let R, be the, possibly empty, set of vertices in B(n — 1)¢ which are end-
points of, open, edges in F,,. Define integers n{, ng, ... inductively as fol-
lows. Let ny = m+ 1, ng = inf{i > ny : R, C B(i — 1),|Fp ;| < k}, and
npy1 = inf{i > n, : R, C B(i —1),|Fpni| < k}. These will be random
numbers. In addition, if R,, = 0, let n;y; = oo and if some n, = oo, let all
subsequent 7;’s be co. For r > 1, let

E, = {n, < oo, there is an open edge between R,, and WS }.

m,ny
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It is now immediate that

o0
limsup{|Fy, n| > k, B(m) — oo} C ﬂ E,,
n

r=1

S0 we can concentrate on this latter event. However, it is clear from indepen-
dence and the fact that |R,| < |F),,| that there exists @ = a(k) < 1 such that
forallr > 1, P(E,41 | Ey N EaN---NE;) < a. From this the above follows.

|

Lemma 6.7. For all k and m >1

lim P(|Vipn| <k, B(m) — o0) =0.

n—oo

Proof. Let k, m > 1 and let € > 0. Let ¢ be as in (5.3) and a(k,€) be as in
Lemma 6.5. We have

P(|Vm,n| <k,B(m) = o0) < P(|Vm,n‘ <k, ‘Em,n| > a(k,¢))

4 2a(k,e
T P(|Em’"| < a(k,e), |Fm,n| > ) + M

4 2a(k,
+ Pl < — + otk

)

ce

. ,B(m) — o0).

The first term is at most € by Lemma 6.5 with S = AA*B(n — 1) and Sy =
Wi fwelet S¥ = {z : d({z},B(n—1)) > 2}, S = SYUE(S") and T = Wy, ,
then AYS = 0, (SU AA®S) = B(n — 1)¢, and AA®S = AA°B(n —1). An
application of the second case in Lemma 6.4 with these choices of S and T,
gives that also the second term can be bounded from above by e. The third
term goes to zero as n — oo as a consequence of Lemma 6.6. As € > 0 is
arbitrary, the result follows. [ |

Lemma 6.8. Let a > 0. Then there exist integers m and n such that 2m <n
and

P(B(m) +» K(m,n) in B(n)) > 1— a.
Proof. Since 8(q,p,p2,ps,...) > 0 there exists m = m(d, ¢, p, @) so that

P(B(m) = o0) >1— (%a)‘ﬂd.

Let gp(m) be the probability that B (m) is an open m-pad and that there is an
open edge between each vertex of {z € B(m) : z; = —m} and its unique nearest
neighbour whose first coordinate is —(m + 1) and that this neighbour also is
open. Now choose M sufficiently large so that at least one of M independent
events, each with probability ¢p(,), occur with probability greater than 1 —a/2.
Next, choose [ so large that for any n and for any subset S of T'(n) of size [ or
more, S will have the property that there will be M disjoint translates of B(m)
in T(m,n) each at distance 1 from some point of S.
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Let us now show that

liminf P(|V/ | >1)>1— 2,
n ’ 2

where V,, , denotes the set of vertices in T'(n) which have an open edge to a
vertex in Wy, ,. We note that there exists a group of symmetries of the cube of
order (2d)2¢~! = d2¢, and which have the following property: if the elements
of the group transform 7T'(n) into T3 (n), ..., Tj9a(n), then

d24
AAB(n—1) C | Ti(n).
=1

If we let Vﬁ'm denote the set of vertices in T;(n) which have an open edge to
Wi n, it follows that

d2¢
NIVl <1 C {|Vin| < d2%1}.
=1

The FKG inequality now gives

d2d
. d d
P(|Vinul < d24) > TPVl <) = (P(Vial < 1),
=1
which implies that

1

P([Viul > 1) > 1= P(|Vin| < d21) @2

By Lemma 6.7 we have

lim sup P(| Vi n| < d2°1) lim sup P(|Vin.n| < d2%1, B(m) /£ o0)
n n

< P(B(m) # o).

As desired, we now obtain
liminf P(|V' | >1) > 1 — (P(B(m) /4 c0))@? > 1 — %
n )

It is now time to reach the conclusion of the lemma. Let A be the event
that at least [ in T'(n) can reach B(m) in B(n), that is A = {|V};, ,| > I}, and
let B denote the event that at least one in T'(n) that can reach B(m) in B(n)
also is open and has an open edge of length 1 to an open m-pad in T'(m,n).

P(B(m) <> K(m,n) in B(n)) > P(ANDB)
P(B|A)P(4)
> (1-5)0-3)
> 11—«
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Having read the statement of the above lemma one could think that this is
all that is going to be needed in the renormalization process. However this is
not so, since the events we are going to study are not independent. Lemma A
will take care of this.

Lemma 6.9. Lete > 0 andl > 1. Then there exist m and n such that 2m < n
and such that if S is a connected set with S O B(m) and with (SUASUAAS)N
T(n) =0 and R = SN B(n), then if W is the union of the set of vertices

{ve(RUARUAAR)*NB(n):v+ K(m,n) in (RUARUAAR)° N B(n)}
and the set of edges
{e = {v1,v2}, v1 € (RUAR)*NB(n) and v € (RUARUAAR)° N B(n) :
e <> K(m,n) in (RUARUAAR)° N B(n)}
(which includes K(m,n) by convention) and F = Fy U Fy where
Fy, ={e={v1,v2} : e open, v1 € (RU Ag,B(n)R) and ve € W}

and

Fy ={v e AA°R : v open, Jy € W such that {v,y} € W},
then P(|F| > 1) >1—e.

Proof. In the notation of Lemma 6.3 we let b = sup;co1,2..}Pi (where py = ¢
and p1 = p), v =€/2, N =1 and we let § be as in the conclusion of that lemma.
Let us also require ¢ to be less than ¢/2. By Lemma 6.8 we can choose integers
m and n such that 2m < n and

P(B(m) <> K(m,n) in B(n)) > 1 — 6%
Now, as B(m) C R C B(n), it must follow that
P(R < K(m,n) in B(n)) > 1 — 62,
which of course implies that
P((RUARUAAR)N B(n) < K(m,n) in B(n)) > 1 — 6%
Considering the geometrical meaning of F', we see that we must have
P(|F|>1)>1-§

It follows that there is a subset S’ of {all subsets of vertices in (R U ARU
AAR)® N B(n) and edges in B(n) with no endpoint in (RU AR) and at most
one in AAR} = 8§, such that P(|F| >1|W =S)>1—¢forall S € § and
PWeS)>1-4.

To see this we let

§'={S:P(|F|>1|W=25)>1-4},

19



and suppose P(W € §') <1—-§< P(W ¢ 8') > 6. Then

P(|F| > 1)

= Y P(F|>1|W=8PW=58)+ )Y P(F|>1|W=_8)PW =5)
Ses’ S¢S’

< PWeS)+(1-6PW ¢S
= 1-6PW ¢S
< 1-462,

and we arrive at a contradiction. Therefore it must be the case that P(W € §')
>1-4.

Conditioned on the event {W = S}, —F— is a sum of independent random
variables. An application of Lemma 6.3 tells us that P(|F| > [|W = §) > 1—¢/2
if S belongs to S’. This in turn leads to the conclusion of the current lemma
as P(|F|>1) > Y gea P(|F| 21| W =8)PW =8) > (1-¢/2)P(W € §') >
(1-¢/2)2>1—c

|

Lemma 6.10. Let € > 0 and k > 1. Then there exist m and n such that
2m < n and which have the following properties; If S is a connected set with
S D B(m) and with (SUASUAAS)NT(n) =0 and R= SN B(n), then if
V. = {z€AgpuR:Iy e ((RUARUAAR)*N B(n))" such that
{z,y} > K(m,n) in (RUARUAAR)°N B(n)

and

E = {e={z,y} € A°R:z € R,y ¢ R" such that
y <> K(m,n) in (RUARUAAR)°N B(n)},
then P({|V| >k} U{|E| > k}) > 1 —c¢.
Proof. Let b be so large that if X is a binomial random variable with para-
meters b and ¢ then P(X < k) < ¢/8. Next let a = 2a(b, g), where the function
a() is as in Lemma, 6.5. Let W, F} and F5 be as in Lemma, 6.9 and then choose
m and n according to that lemma with € replaced by €/2 and [ replaced by
4 2
Q(W + %)
P{IV] >k} U{|E| > k})

4 2a

> P((VI>kUI|E|>Fk), |FI| > —5+ ) (6.1)
C(g) Cg
4 2a 4 2a
P k E k), |F: —— + —, |F: —_—+ —
FPUIVI> KU B> B, (A< o + o 1Bl > g + )

20



We start investigating the second of the above terms. Since each edge in A°R
has exactly one endpoint in AA®R, it is a fact that |E| is equal to \F2| This in
turn implies that P((|V| >kU|E| > k) 1P < ey R >+ 2 2a ¢)is

equal to P(|Fi| < )2 + 2 |Fs| > o )2 + 2“) smce we can take for granted

that & is not greater than —=— + 22,
C(s) Cs

Let us now turn our interest to the first term in (6.1). Let E’ be the set of
open edges between AY $,B(n R and W and let E” be the set of open edges with
one endpomt in AA°R ancf one in W. We study the complement of the event
on {|F1| > - qr + 2“}

4 2a
P(|V| <k, |E| <k, |F1|> o(9)2 + c_ﬁ)
8 8
" 4 2a
< P(VI <k, |E| <k, |Fi|+|E"| > -5+ =)
C(g) Cg
' 1 1 4 2a
= P(V| <k, |E| <k, |E'|+|E" <a, |Fi| +|E"| > —5 + —)
C(g) Cg
/ 1" 1" 4 2a
P(|[V| <k, |E| <k, |E'|+|E"| > a, |FA| +|E"| > -5 + =)
C(g) Cg
/ " " 4 2a
< P(E|+|E"<a, |Fi|+|E"| > 5+ —)
c(§) cg
+ PV <k, |B| <k B> 3)
’ a " a
P(VI<h, (B <k )< 2 "] > &)
2a
< PUE|+|E" <a |Ri| 4B > 2 1 29 (62)
C(g) Cg

+ PV <k, |E'| 2 5) + P(B| < k, |B"] > 3)

Let us first look at the last of the above terms. We introduce yet another set,
V", which will consist of the endpoints in AA°R to the edges in E”. |E| is
equal to |Fy| and F» consists of those vertices in V" that are open. Conditioned
on |V"| being equal to b, |E| is binomially distributed with parameters b and q.

P(|E| <k,|E"| > g) < P(V"| < b,|E"| > )+P(|E| <k,|V"|>b)
and
P(IE| <K, [V"| > b) < P(|E| < k[|V"| >b) < P(|E| <K [[V"] = D).

By the way b was chosen we know that P(|E| < k| |V"| = b) can be bounded
form above by §. We now turn to P(|V"| < b,|E"| > §). This term also can
be be dominated by §, as we see if we apply Lemma 6.5 with AA®R as S1 and
W as Ss.

P(|V| < k,|E'| > &) must be less than P(|V| < b,|E'| > ) as b is greater
than k. To find an upper bound for this term we once again apply Lemma, 6.5,
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this time with Ag 5 R as S) and W as S5. As 5 = a(b, §), we get g as an

upper bound for P(|V| < k,|E'| > §).

There is still one term left in (6.2) to be studied. It can be seen to be less
than g by an application of Lemma 6.4 with § as itself and W as T. Now we
have shown that P(|V| <k, |E| <k, |Fi| > c(%ﬁ + g—g) cannot be greater than
5=

Let us go back to the very beginning of the proof and take up where we left
off:

PV >k} U{|E] > k})

4 2a
> P((|[V|>k U |E|>k), |F1|Z?+—£)
c(s) Cy
4 2a 4 2a
+P((|V|>ku|E‘>k)’|F1|<W+C_E"F2|>W+c_£)
8 8 8 8
4 2a 4 2a
> P(|F|>——5+—)—P(V|<Ek, |E| <k, |F| > 5 +—
= (‘ 1|_C(§)2+C§) (l |— 7| |— 7| 1|_C(§)2+C§)
4 201 4 2a
P(|F| < 5+ =5 [ B3| > -5 + — E| = |F
+ P(|F] a2 tee | P2 C(§)2+c§) (as |E| = |Fy|)
4 2a
> P(|F | >2 et
> P(F|+|F| = (C(§)2+c§))
_P(V| <k B <k [F|> — 4 2%
= vy = vy l_c(g)Q C%
1_¢_¢
2 2
= 1l—e

Now we are ready for the highlight of this section, namely the proof of the
main lemma.

Proof of Lemma A. Choose ¢ such that (1 — §)! < ¢/2. Choose m and n
according to Lemma, 6.10 with ¢ and €/2 playing the role of k£ and €. Let V and
E be as in Lemma 6.10.

Let A’ = {e is (B(e)+d)-open for some e € E} and let A” = {vis (6(v) + ¢)-
open for some v € V'}.

p

X

G| H)

P((A'N{|E| = t}) U (A"n{|V| = }) | H)

P((A'N{|E| = t}) u (A"n({[VI =} \{|E| > t})) | H)
P(A'N{|E| =t} | H)

+PA'N{IVI = 1\ {|E| > t}) | H)

P(A"[{|E| >t} N H)P({|E| > t} | H)

+PAY({IVI 2 3\ {|E| = t}) n H)P{|V| = t} \ {|E| > } | H)

>
>
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In each pair of terms in this last equation, the first term is at least 1 — (1 — §)*
which is greater than 1 — /2. For the second “first term” this is seen by noting
that the fact that knowing that {|E| > ¢} does not occur, does not tell us
anything about the status of the vertices in V', which we know to be at least ¢
in number. This means that the equation can be bounded from below by

(1- %) (PHIE| >t} [ H) + P({IV] =t} \{|E| > ¢}) [ H) )

= (1= g) P{|E| =t} U({IVI = t}\{|E| > t}) | H)

(1—3) PUIBI 2 1} U{IV| > £} | H)

(1- 5)2

1—e

Y

Y

7. The renormalization

Let N = n+m + 1, where 2m < n. Take d to be at least 2 and order the
edges between nearest neighbours of Z% in some arbitrary way. Consider boxes
of the form {4Nz + B(N) : z € Z%} and call them site boxes. Each one of
them will correspond to a site in the lattice Z¢, the latter will be referred to
as the renormalized lattice. Between two site boxes there is room for exactly
one translate of B(N). These boxes sitting in between, we will call halfway
boxes. Write Tj(n) for the image of T'(n) under the “earliest” isometry that
preserves the origin and maps the first coordinate direction onto the jth, for
j =1,...,2d. Define T}(m,n) and K;(m,n) as isometries of respectively T'(m,n)
and K (m,n) in the same manner.

We will examine each site box and determine if it is occupied or vacant, ac-
cording to rules which are to be described below. See Grimmett and Marstrand
(1990) for details.

Now use the following rules. We say that the site box of the origin, B(N),
is occupied if the following three things occur;

(1) B(m) is a g,p-open m-pad.

(2) B(m) is connected in B(n) to K;(m,n) for j =1,...,2d. If there is more
than one g¢,p-open m-pad in T;(m,n), we choose one of them according
to some nonrandom rule decided upon in advance. We call this ¢,p-open
m-pad the target open m-pad in the jth direction.

(8) For all j, the target open m-pad in (2) in the jth direction, (b; + B(m)), is
connected in (b; + B(n)) to a vertex next and connected to a g,p-open m-
pad in (bj+77 (m,n)), which is in the halfway box next to B(V) in the jth
direction. Call this ¢,p-open m-pad a target open m-pad. 77 (m,n) is the
image of Tj(m,n) under the symmetry which fixes e; and for k # j sends

23



er to —eg. Here e;, 1 = 1,...,2d, are the unit vectors. This reflection is
necessary to make sure that the target open m-pads are in the appropriate
halfway boxes, and we call this a steering action.

Figure 3: An illustration of the event that the origin in the
renormalized lattice is occupied. The black boxes
are g,p-open m-pads, the central one is B(m). The
larger boxes are translates of B(NN). The boxes
drawn with all non-dashed lines are site boxes.

If all this happens, B(m) is now connected in two steps to a target ¢,p-open
m-pad in all its neighbouring halfway boxes, see Figure 3. To determine which
site box to examine next, we consider the above mentioned ordering of the edges
starting at the origin. We can suppose, without loss of generality, that the first
edge is e;. We call the site box 4Nej + B(N) occupied if the following occur;

(1’) The target open m-pad of (3) above in the first direction is connected in
two steps, which are analogous with the two steps described above, to a
point next and connected to a g,p-open m-pad in 4Ne; + B(N). This will
again be called a target open m-pad. Here we will have to use a steering
action to make sure we end up in the correct site box.

(2’) The target g,p-open m-pad of (1’) is in two steps connected to a point
next and connected to a ¢,p-open m-pad in all halfway boxes next to
4Ne; + B(N), which are not next to any site box that has yet been
examined.

This procedure is continued. At each step we look for the first edge according
to the ordering, which connects an occupied site box to a site box which has
not yet been examined, and we decide on the status of the latter site box.
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We will now show that if 7 is a small positive number and ¢ and p are such
that 0(q, p, p2,p3,...) > 0, i.e. the underlying long range mixed model percolates,
then the renormalized nearest neighbour model percolates under ¢ + 7 and
p + n for a suitable choice of m and n. (By the expression “under g and p” we
mean “using only g-open vertices, p-open edges of length one and open edges of
length greater than one”.) Consider a number @ which is strictly larger than
the critical probability for independent nearest neighbour site percolation on
Z4, p.(site), and strictly less than 1. If we can show that at each step, the
conditional probability given the past of the procedure that a new site box is
occupied is at least (@ and independent of the site box being examined and of
what we have seen up to this point, then the renormalized model percolates
with positive probability. This is due to Lemma 1 in Grimmett and Marstrand
(1990).

Before we begin calculating probabilities, we fix p and g so that 6(g, p, p2, p3,
..)>0.Letn>0,0= g’—d and € = w and let m and n be as in Lemma
A for this choice of ¢, p, € and §. Let us now investigate the probability that
B(N) is occupied. The probability that B(m) is a g,p-open m-pad is small, but
positive. It serves only as a starting point for the procedure, so this does not
impose any problems.

Let C? = B(m)" and C¢ = {the open edges of B(m)} (p-open for edges of
length one). Create four functions, two defined on the edges of length one of
the original lattice Z¢ and two defined on the vertices of the original lattice Z¢.
Let v, take the value p for edges of length one in C} and 1 for all the edges of
length one in Z%\ C{. Let B, equal 0 for all edges of length one. Let 4, be q
for vertices in C7 and 1 for all other vertices, and finally let ,3~1 equal 0 for all
vertices in Z¢. Having only checked if B(m) is a g,p-open m-pad, we have no
information about vertices and edges outside B(m). Now every vertex v of Z¢
is 41 (v)-open and B (v)-closed and all edges e of Z? of length one are ~y; (e)-open
and (31 (e)-closed. Apply Lemma A with § = Ci, § as [ restricted to A°Cy
and 3 as [ restricted to AYC;. This lemma tells us that the probability for
the existence of a path from B(m) to K(m,n) within B(n) is at least 1 —e. By
symmetry it follows that the event in (2) occurs under ¢ and p with probability
at least 1 — 2de.

Let B; = B(n) U U?ilTj(m,n) and Cy = C1 U E; U F| where

E} = {z€ACi:zis (fi(x) + §)-open}
Ef = {ee€ A°Cy:eis (fBi(e) + 6)-open}
FY = {z € B} :z g-open, z can be joined by a path in B, \ B(m) to

AC;. The path being ¢,p-open except for the unique element
y = y(z) of AC; which is (81 (y) + d)-open if y € A°C; and
(B1(y) + &)-open if y in AVCy.}

Ff = {e€ Bf:e p-open, e can be joined by a path in By \ B(m) to
AC:. The path being ¢,p-open except for the unique element
y = y(e) of AC; which is (1 (y) + d)-open if y € A®Cy and
(B1(y) + 6)-open if y in A”Cy.}

While examining step (2) we have gained new information about some of
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the vertices and edges in By \ C;. The vertices that appear in Cy we know to
be g-open. As AYB(m) is empty, even E7 must be empty, so there can be no
d-open vertices. (The reason for still including E7 is to have this first step look
the same as the following ones.) For the edges of length one in Cy we can say
that they are either p-open, those in Cy \ AC1, or é-open, those in Cy N AC].
We can summarize this knowledge in saying that all vertices v in Z% are 7,(v)-
open and (3 (v)-closed and all edges e of length one in Z% are y,(e)-open and
B2(e)-closed, where the four functions are defined in the following way;

Bl(fu)—l—é vEA”ClﬂCg
q veC§\ (CYUAC)
1 (v) otherwise

i Bi(v)+6 wve(ACy\CY)NBY
Ga(v) = q v € (AYCy \ A"Cy) N BY

B1(v) otherwise

Bi(e) +6 e€ A°C1NCS
P e € Cs\ (CfUAeCH)

71(€) otherwise

Yo(e) =

Bi(e) +6 ee€ (A°Cy\ C5)N B
D e € (A°Cy \ A°Ch) N BY
Bi(e) otherwise

It is now that the need for the vertex boundary of a set on another set
arises. It takes care of all the negative information we have about the elements
in the boxes b; + B(n) for i+ = 1,...,2d. For example, it may well be that
there is an edge in Co that has one endpoint in Co and the other one, z, on
the border of by + B(n) and that this endpoint does not belong to Cy but to
B(n). We then have negative information about z as we know that it does not
belong to Co. It is clear that = does not belong to AY(Cs N (b1 + B(n))), but
to AZ, 5 ¢ B(n) (CoN (b1 + B(n))), so if we use the ordinary vertex boundary in
Lemma A, the event H will not contain all the information known to us.

Let us now investigate the probability of step (8). This we do by apply-
ing Lemma A 2d times — each time centred at b; for j = 1,...,2d. The first
time centred at b; and using the set S = C> and the above described [, and
(s restricted to A¢(Cy N (by + B(n))) and to Agz,(b1+B(n))(C2 N (b1 + B(n)))
respectively. The lemma gives that the (conditional) probability under ¢ and
p of the first of the 2d events in (8) is at least 1 — e. For the discussion of
the second application of the lemma, we introduce yet some notation. Let

By = b1 + (B(n) UT(m,n)) and C3 = Cy U Ey U F5 where

26



EY = {ze€A"Con (b +B(n)):zis (B2(z) + &)-open}

ES = {ee€ A°Con(by + B(n)):eis (B2(e) + d)-open}

Fy = {z € BY:z g-open, z can be joined by a path in By \ Cs to
AC5. The path being ¢,p-open except for the unique element
y = y(z) of ACy which is (82(y) + d)-open if y € A°Cy and
(Ba(y) + &)-open if iy in AVCy.}

F$ = {e€ BS: e p-open, e can be joined by a path in By \ Cs to
AC5. The path being ¢,p-open except for the unique element
y = y(e) of ACs which is (82(y) + §)-open if y € A°C, and
(Ba(y) + 6)-open if y in AVCy.}

If the last step was successful, namely we have reached b; +77 (m,n) from Co
in By, our current knowledge about the edges and vertices of Z¢ is summarized
by saying that the vertices are all ¥3-open and Bg-closed and the edges of length
one are all ys-open and (3-closed, where the four functions are defined in the
following way;

Bo(v)+6 veA'CoNCY
Y3(v) = ¢ ¢ v e Cy\ (C3 UA"Ch)
Fa(v) otherwise

Bo(v) +3 v e (AYCy\ CY) N BY

Bs(v) = q v € (A"C3 \ AYCy) N BY
B2(v) otherwise
B2(e) +6 ee€ A°CoNnNCy

v3(e) = QP e€ 05\ (C5UAChH)
o (e) otherwise

B2(e) +0 e (A°Cy\ C§) N BS

Bile) = { e € (A“Cy \ A°Cy) N B
Ba(e) otherwise

Applying Lemma A “centred” at by with S = C3, § as (3 restricted to
A(C3 N (by + B(n))) and 3 as B3 restricted to AY, , By (C3 N (b2 + B(n))),
we get that the conditional probability of success in this second step of (&) also
is at least 1 — e. Continuing in this way we can show that all 2d events in (3)
occur with conditional probability at least 1 — €.

We note that any particular region can be “updated” at most 2d + 1 times
— for vertices this means by an amount of § at most 2d times and by ¢ at
most once, for edges of length one it means by ¢ at most 2d times and by an
amount of p at most once — implying that the open cluster we find is open
under ¢ + 2dé and p + 2dd ( = under g + 1 and p + n). The probability, given
that B(m) is a ¢,p-open m-pad, that the site box of the origin is occupied under
g+ n and p + 7 is greater than (1 — 2de)(1 — €)?? > (1 — 4de). This quantity is
at least Q = 3(1 + p.(site)), which is strictly larger than p.(site).

One can in a similar manner show that success of the events described in
(17) and (2’) have sufficiently high probability under ¢ + 7 and p + 7.

Having come this far, we have proved the following theorem;
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Theorem 7.1. Consider a long range mized percolation model with exponen-
tially decaying connections on 7%, d > 2. Let g be the probability for a vertez to
be on, p be the probability for edges of length one to be on and let p; for i > 2
be the probability for edges of length i to be on. Suppose that q,p € (0,1) and
0(q,p,p2,-..) > 0. For any n > 0 there exist m and n such that the renormalized
site percolation model with underlying long range mized percolation model g+,
p+n, p2, 3, ... described above percolates with positive probability as a nearest
neighbour model.

Now we are ready to give a proof of the main theorem.

Proof of Theorem 5.1. We have chosen p and ¢ supercritical, so we can find
some small € > 0 so that the long range percolation model with parameters g—e,
p — €, P2, P3, ... percolates. By Theorem 7.1 we know that for any choice of
€ > 0 there exist m and n such that the renormalized site percolation model with
underlying long range mixed percolation model (¢ —¢€) + ¢, (p —€) +¢€, pa2, P3, .
(= (q,p, p2,ps, ...)) percolates. We observe that the event that a certain site box
in this renormalization is occupied depends on the state of a uniformly bounded
number of edges which are all of L;-length at most 4(n+m+ 1) = 4N. Taking
away all edges of Li-length greater than 4N does not affect the percolation of the
renormalized site model. As the construction of the renormalization was made,
we know that if the renormalized site model percolates, so does the underlying
long range mixed percolation model. We can now draw the conclusion that also
the long range mixed model without its longest edges percolates. [ |
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