1. INTRODUCTION

Estimates of growth and regularity of solutions to the d-equation in domains in C* were
obtained by L2-methods in the 1960s by Kohn, Hérmander et al. In the 1970s Henkin,
Skoda, and others introduced formulas for representation of solutions that gave further
information such as LP-estimates, Holder estimates, and so on.

In the unit disk, the solution to du = f that has minimal norm in L2 = L2((1—|¢[?)*Y),
a > 0, is given by by the formula
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is the orthogonal projection of L?(D) onto the subspace of holomorphic functions. Both
of these claims follow from the easily checked formula

(1.1) K,0u =u— Pyu.

and

In higher dimensions a relation like (1.1), where P, is some holomorphic projection, only
determines the action of K, on d-closed forms f. The canonical operator due to Kohn (cor-
responding to P = P;), K¥°'" is the operator that vanishes on forms that are orthogonal
to the 0-closed forms, with respect to the Euclidean metric

ng—/nygg

However, the explicitly given solution operators for @ found in the 1970s (which indeed seem
to be natural as several different approaches give operators with at least the same boundary
values) do not coincide with K*°" even in the ball . Much later Harvey and Polking, [10],
actually found an explicit expression for K¥°P in the ball, essentially expressed by rational
functions, but anyway not as simple as the previously known solution formulas.

It is known since long ago that if D is strictly pseudoconvex, then the d-operator behaves
differently in different directions; roughly speaking it acts as half a derivative in the complex
tangential directions. This is reflected in the standard estimates for d. For instance, the
well-known Henkin-Skoda estimate, [14] and [15], states that Ou = f has a solution such
that

(12) | topnule < [ (=) [V=lFle + 00 f1s].

Here, | | denotes the Euclidean norm of a form and p is a defining function for D, so that
—p is approximately the distance to the boundary, and dp A f determines the complex
tangential part of f near the boundary. This estimate was the first important success for
weighted integral formulas, and once they were constructed the estimate follows nicely, as

the very feature of the formulas reflects this difference in normal and complex tangential
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part. This suggests that these operators better should be understood in terms of a metric
that takes this difference into account.

The geometrical meaning of these operators in the ball was studied in [2]. They can be
described as the canonical operators with respect to the metric form (1—|z|2)i90 log(1/(1—
|z]?)), and certain weight factors (1 — |2|?)® on the fiber (of the trivial line bundle over
D). The objective of this paper is to generalize to the strictly pseuodoconvex case. For
simplicity we restrict to smoothly bounded sets and throughout this paper D = {p < 0}
denotes a strictly pseudoconvex domain in C* with smooth boundary, and p is a strictly
plurisubharmonic defining function. There is no hope even in one variable to find precise
explicit expressions for the canonical operators. However it was shown by Kerzman-Stein
[11] and Ligocka [12] that one can construct a projection operator P which is approximately
the orthogonal projection L?(D) — L?(D)NO(D), in the sense that the difference between
P and the orthogonal projection is compact. Analogously we show that certain (essentially)
well-known homotopy operators for 0 are approximately canonical with respect to the
metric = (—p)idd log(—1/p) and weights (—p)® on the fiber. For the precise statements,
see Section 5.

If the defining function p is real-analytic and v((, 2z) is the unique function near the
diagonal that is holomorphic in z, anti-holomorphic in ¢, and such that v((, () = —p((),
then the principal term of the canonical solution operator acting on (0, ¢)-forms has the
simple kernel

ocv A (0,0,v)1
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We also discuss the boundary complex and provide formulas for approximate canonical
homotopy operators for d,. These formulas have an independent interest but they are
furthermore intimately connected to the previously discussed operators.

For weights corresponding to o > 1, we prove that the orthogonal projection L2 —
L% N Ker 0 preserves regularity. Moreover, we show that the formal adjoint, considered as
a densely defined operator on L2, coincides with the von Neumann adjoint. When o = 1,
the corresponding holomorphic projection is the (unweighted) Bergman projection. In this
case we get, contrary to the Euclidean case, a nice Hodge decomposition, as in the case
with a complete metric; see Section 8.

It will be clear from the construction that most results, with appropriate modifications
of the formulations, still hold if the boundary is just C*, but in order to avoid some
technicalities we restrict to the smooth case.

The plan of the paper is as follows. In Section 2 we introduce the weighted Bergman type
norms and define the corresponding canonical homotopy operators. We also discuss the
canonical homotopy operator for the boundary complex. In the next section we compute a
formula for the formal adjoint 9} and discuss its relation to the von Neumann adjoint of 9.
It turns out that 5; is a first order differential operator with coefficients that are smooth
up to the boundary, that all forms smooth up to the boundary is in its domain and that,
for a > 1, it is equal to the von Neumann adjoint.
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In Section 4 we show that the canonical homotopy operator in our domain D can be
represented as the complex tangential boundary values of a canonical operator in a certain
domain D in C**! with respect to a weight one unit less. In Section 5 we introduce the
boundary values of some well-known explicit homotopy operators for d (and 8,). Expressed
in our special metric one can write them in a simple way that immediately suggests that
they provide the boundary values of some approximate canonical operators. The interplay
between canonical operators in D and D then suggests how to define our candidates for
approximate homotopy operators in the interior. This continuation to the interior is not
previously found in the literature.

The main results in Section 5 are proved in Section 6. In Section 7 we use the results
in Section 5 to express the canonical operators with approximate integral formulas, which
leads to regularity results in Section 8.

Acknoledgement: We are grateful to blablablablabla

2. CANONICAL HOMOTOPY OPERATORS

Recall that D = {p < 0} is a smoothly bounded strictly pseudoconvex domain in C",
and that p is a strictly plurisubharmonic C'*° defining function. For forms f and g, we let
(f,g) be the inner product generated by the metric form

Q = (—p)i0dlog(—1/p),

and for positive a we let

(1.9 = s [ o gy v

where dV = €, (Q = QF/k! and similarily for other metric forms). The corresponding
norms are denoted |f|? = (f, f) and ||f||2 = (f, f)a- The inner product (f, g) degenerates
on the boundary of D, and in order to understand its asymptotic behaviour, we can express
it in terms of 3 = i00p, which is equivalent to the Euclidean metric since p is strictly
plurisubharmonic. If (f, g) 5 denotes the inner product with respect to 3, for (0, q)-forms
f and g we have that, see Section 3,

2.1)  (f9)= ((—p) (f,9)5+(0p A f,0p A 9>ﬂ> /B and  (—p)Q, = Bf,,

where the function B = —p+ |5p|% is smooth up to the boundary and nonvanishing. Hence
dV is equivalent to the Lebesgue measure divided by the distance to the boundary.

Recall that a vector at a point p € 0D is complex tangential if it is annihilated by both
dp|, and d°p|,. If f is any form over 0D, we denote its restriction to the complex tangential
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vectors by f|p. This restriction is determined by dp A d°p A f, and in particular if f is a
(0, g)-form then f|, is determined simply by dp A f. On the boundary, (f, g) degenerates
to an inner product of the complex tangential parts f|, and g|, of f and g. When « tends
to 0 we get the following inner product for complex tangential (0, ¢)-forms f|, and g|p:

(ﬁ9%=(n_D{ADUﬂﬂw—-2nn / (Op N f,0p N g)4do/B,

2nﬂ-n

where do = dS/|dp|g and dS is the surface measure induced by (.
With this notation the estimate (1.2) becomes

C [ (=p)?|fldV.
/aD'“'f /D( A2 f

Thus roughly speaking one gains \/—p on the solution. There are many variants of this
estimate in various norms. The following weighted L?-estimates are fundamental for this

paper.

Theorem 2.1. Suppose that o > 0. For any 0-closed (0,q + 1)-form f in L
form u such that Ou = f, and

(2:2) lulls < Cllfllas-

For any e > 0 we also have a solution whose boundary values u satisfy

2 N1l |2
/BD'“' sce/D< o) | f2dV.

Thus one gains y/—p on the solution in all cases but o = 0. This theorem is readily
proved by integral formulas; see the end of Section 6. It is worth to notice that this theorem,
however, does not immediately follow from the standard L2-technique, but it requires an
extra argument due to Donelly and Fefferman, [7].

ioc there is a

Remark 1. If w = i001og(—1/p), thus w is precisely the Bergman metric in the ball case,
and

1120 = [ (=)0
then for an (p, g)-form f, see Section 3,

_I'(n+a)
(23) ||f||2 o nF( )”f”n pP—q+a,w’

and hence (2.2) < Cy

forall £ > n —gq.

By Theorem 2.1 we can define our canonical homotopy operators. Let Lz,q be the space
of locally square integrable (0, ¢)-forms in D such that (f, f), < oo and let

Kag = Li,q N Ker 0.
Theorem 2.1, in particular, implies that the densely defined operator
5: Li,q — Ica’q+1



is surjective for each ¢ > 0 and a > 0. We define the canonical operator

can , 2 2
K& L2 . — L

a,q+1 a,q’
so that K¢ f is the minimal solution to ou= fif df =0, and Kgaf =0if f € ICj,qH.
Let
P L2 o — Kay

be the orthogonal projection onto the Bergman space Iy o (the Bergman projection). One
easily verifies that

2.4 0K 4 K 5 — T
a,q

a,q+1

acting on f € L2 ., in Domd, i.e., such that also 5f € L2 ;.2 and that actually (2.4)
provides the orthogonal decomposition of Li,q 41, 16, OKZY' [ is the orthogonal projection

of f onto Ky 4+1. We also have
K330 =1— Py

on Dom 0, and therefore, if we let

n—1
K= 3K,
q=0
we can simply write
(2.5) K&0 + 0K® = [ — P&

on Dom 0 . An operator K, satisfying (2.5) (for some holomorphic projection P), is called
a homotopy operator for 0.

We have an analogue for the boundary complex. Let Lg,q denote the space of complex
tangential (0,q)-forms in L? over D, and let K;, be the kernel of 9,. If f € Ly, and
Opf = 0, then there is a solution u € Lf,q_l ifg<n-—1.1f ¢ =n—1, then a necessary and

sufficient condition for solvability is that f is orthogonal to Ker d;. This is well known but
follows also from Theorem 5.4. We thus have the homotopy relation

(2.6) Q™ + K™D, = I — PF™ — S,

can

where S5 is the orthogonal projection L7, — Kerd; N L3, ;.
blablabla Define F;*". blablabla



3. THE ADJOINT OPERATOR O

Let 07 be the formal adjoint of & with respect to ( , )a, i-e., (0f,9)a = (f,059)a for
all compactly supported smooth f and g. Our first objective is to find a formula for 9
that reveals its behaviour near the boundary. If € is a form, we let #— denote interior
multiplication by 6, with respect to the metric 3, i.e., (6—f, g}B = <f, 6 A g>ﬂ for all g. Let

v =1i0p A dp and, as before, B = —p + |9p|3.
Proposition 3.1. With the notation above, the formal adjoint is
- . a+n—p—gq
0, =1[0,(6—(1/B)y)" ]|+ ——F——

Jp—
B P
when acting on a (p, q)-form.

Since [ is non-degenerate on ?, the operators involved have coefficients that are smooth
up to the boundary and hence 9} is a first order differential operator with smooth coeffi-
cients.

Proof. ;jFrom (2.3) it follows that
(3.1) (=p)0; =0,

n—p—q+o,w?
and since w is a Kéhler metric, see [4] or [9],

dp

(3.2) o* =i[0,wy]+ (a+n—p— q)_—pﬂw,

at+n—p—q,w
if =, denotes interior multiplication with respect to w. Thus we just have to express
w-y, and dp—, in terms of — (i.e. —5). To this end, we choose an orthonormal frame
e, ... e, with respect to 3, for the space of (1,0)-forms, such that e; = dp/|0p|g. Then

B=1>"e; Nej, and

B Y D16 N8 OpAdp T i
w = + = —— + 1 = aiey N e + bn e; N\ €;,
(=p)  (—p)? (=p) (—p)? Y JZ:; T
where @ = B/(—p)? and b = 1/(—p). Thus é;—.e; = (e1,e;), = (1/a)d; and hence
dp—, = ((—p)?/B)dp—. Moreover, it is readily verified that
wow = (1/a)ier Aer=+ (1/0)i Y (=p) (e Ag;) == (=p) (B — (1/B)y) .

=2

The desired formula now follows from the last two equalities, (3.1) and (3.2). O
Proof of (2.1) and (2.3). Using the notation in the preceding proof, we have that
(=p)dV = (=p)Q"/nl = (=p)"*'w" /nl = (=p)" " ab""' 6" /nl = B"/n!.

The first equality in (2.1) is easily checked for f = g = é;, A... A &g, and from this the
general case follows. In the same way it follows that if f is a (p, ¢)-form, then

[fIFdV = (=p)" P 9| flw" /nl,
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which implies (2.3). O
An f € L2 is in Dom &, (the domain of the von Neumann adjoint) if there is a g € L2
such that (g,u), = (f,0u) for all u € Dom 0. If this holds, then clearly 0} f = ¢ in the
distribution sense, but in general the converse is not true, i.e., there are f € L? with
0:f € L2 such that yet f does not belong to Dom 9%. In particular, this is the case in the
Euclidean metric and o = 1. Our situation is much nicer.
Let &, denote the space of (0, ¢)-forms in D that are smooth up to the boundary. In the

Euclidean case (and o = 1) an f € &, is in the domain of §* if and only if dp—f = 0 on
the boundary. However, we have

Proposition 3.2. If a > 0 and f,g € &, then (0.f,9)a = (f,09)a-

Proof. Since 9% has smooth coefficients, the boundary integral that occurs when integrating
by parts must vanish if & > 1. Since the expression is analytic in «, the general case follows

by analytic continuation. O
Theorem 3.3. Suppose that o > 1. If f,g € L2 and 0..f and Og are in L2 as well, then
(3.3) (05, 9)a = (f,09)a-

That is, f € L2 is in Dom 07, if and only if 0% f is in L2.

Since the the image of 0: Liq_l — Liq is equal to IC, for ¢ > 1, we have in particular
that f € Li,q is in ICiq if and only if 0% f = 0. Theorem 3.3 is an immediate consequence
of Proposition 3.2 and the following approximation lemma.

Lemma 3.4. Suppose that P is a first order linear differential operator with coefficients
that are smooth up to the boundary, and suppose that o > 1. If f and Pf are in L2, then
there are f; € &, such that fj — f and Pf; — Pf in L2.

_ To prove this lemma one first approximates f by a form defined in a neighborhood of
D and then makes a standard regularization of this form. We omit the details. In general
the lemma fails if o < 1; cf. the remark below.

For further reference we need
Lemma 3.5. For any a > 0, we have that (0.¢,9)a =0 if ¢ € &, and g € K,.

Proof. If g € L2 then g € L%, if o > «. Since 0}, ¢ is in &,, it follows from Theorem 3.3 that
(0% b, g)ar = 0 for o/ > 1. The desired conclusion then follows by analytic continuation. [

The argument above breaks down if one only assumes that ¢, O%¢ € L2, since this does
not imply that 9%,¢ € L2 for o > a.

Now let o > 0 be arbitrary. As usual we can consider O, = 097 + 9%0. Moreover, let
K&m*: [2 — L2 be the L2-adjoint of K&" and F&" = K K¢n* 4 KGn* [can By simple
arguments it follows that

(3.4) DK™ f + LK™ f = f — peanf
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and

(3.5) OB f = f— P& f
for any f € L. Moreover, we have

(36) BT, = f - PO f

provided f € Dom O,, where f € Dom [, means that f € DomdNDom d?, 0f € Dom ox
and 9% f € Domd. For instance, let us verify (3.4). For any f € L2 and g € Domd we
have (using (2.5) and for simplicity assuming that ¢ > 0) that

(K;aﬂ,*f’ gg)a = (fa K;angg)a = (fa g— gKgang)a = (f - gKga,nf, g)aa
since 0K is self-adjoint. This shows that KS* f € Dom 07 and 9 K% f = f—0KS" f.
Thus (3.4) follows.
Finally, let us take a look at the boundary complex. Since (, ), is the limit of (, )o When
a — 0, Proposition 3.1 provides a formula for the adjoint d;. Moreover, the analogue of

Proposition 3.3 holds, since it holds for smooth forms which are dense in the graph norms.
In the obvious way K,*™*, O, and E;*™" are defined, and we have that

DK™ [ + iK™ f = f — ™ f - 5.

Furthermore,

(3.7) OB f = f — PP f — S0 f
for f € L? and

(3.8) EPOf = f — PP f — Sgn f

for f € Dom ;.

Remark 2. Theorem 3.3 is not true for 0 < « < 1; at least not for (0, n)-forms. To see this,
let D be the unit disk. Since 0: Li,o — Lil is surjective, the statement would imply that
f € L2, vanishes if 97 f = 0. However, the latter equation means that 0(1 — [z[?)*f =0
and hence the kernel of 0);: L2 ; — L2 ; consists of all forms f = (1 — [2[*)~*h, where h is
holomorphic and [(1 — |z/|?)~®|h* < co. For ¢ < n the corresponding result is true in the
“limit case” when o — 0; therefore, one could guess that it is true even in the intermediate

cases 0 < a < 1. In particular we would then have that
(3.9) feL2and 9 f =0 implies fe€ K+

for (0, ¢)-forms, 1 < g < n—1. Let us relate this statement to the norms || ||,,. In view of
(2.3) we have that 8, f = 0 if and only if 3, f = 0, where £ = a+n—q. Since |0log(—1/p)|.
is bounded, w is a complete metric, see [4], and therefore the compactly supported forms
are dense in the graph norms with respect to the norms || ||¢,. In particular, this means
that the formal adjoint 5zw coincides with the corresponding von Neumann adjoint. Hence
(3.9) holds if and only if the image of 0: L7, — L, is dense in K (as it follows that f
is orthogonal to this image if d; ,f = 0). In view of Theorem 3.3, the image is dense if
a > 1. For a > 1, it is in fact e(,lual to ICy; this is the content of Theorem 2.1. However,
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9: L, — L%, is not surjective if 0 < a < 1. To see this, let D be the ball and let f = 0h,
where h is some holomorphic function with A(0) = 0 that is C* up to the boundary. Then
certainly f € K1, but it is not in the image of @ unless h = 0. In fact, if du = f and
(1= 1¢[**%|ul®> < oo, then since g = u — h is holomorphic, (and g and h are orthogonal
with respect to radial measures) we would have that [(1—|¢[*)*%(|h|? + |g|*) < co which
implies that h = 0.

4. UP AND DOWN IN DIMENSION

Given our domain D and defining function p in C*, let p(z,w) = p(z) + |w|? for (z,w) €
C™*L1. Then p is a strictly plurisubharmonic defining funct10n for the strictly pseudoconvex
domain D = {p < 0} in C*™'. Hence, anything done so far applies equally well to D. For

a (0,q)-form f in D, we put f(z,w) = f(2).

Proposition 4.1. Let D and D be as above. Then for (0, q)-forms we have
0) f =0 in D if and only if f|l, =0 on 8D.
i) (f,9)a = (f,§)az1 for > 1. In particular, f € L2(D) if and only if f € L2_,(D) for
a>1 and f € Li(D) if and only if fls € L2(8D)
i) 0f = g in D if and only if Of = § in D if and only if O, f|y = glb-
iii) (05 f)~ = O 1ff0rf€5( ) fora>1, and (:f)~]y = O} fs-
w) f € KL if and only if f e KL |, and f € Ki if and only if f|b € Ky
v) If | € La, a > 1, then f = fi + fo is the decomposition in K, and K= if and only if
f = fi+ fo is the decomposition in K1 and Ks |, and if a =1, then f = fi + fo is the
decomposition in K1 and Ki if and only if f\b = fl\b + f2|b is the decomposition in K and
K-

Let ¢ be a complex tangential form on dD. We say that ¢ is invariant if 7*¢ = ¢ for

all 7(z,w) = (z,e®w). Notice that 7*¢ is well defined since 7*dp = dp and 7*d°p = d°p.
(From [2] we recall the following result.

Proposition 4.2. There is a one-to-one correspondence between forms f € L*(D) and
invariant complez tangential forms ¢ € L2(dD). Moreover, f is smooth on D if and only
if ¢ s smooth.

The hard direction is to show that any invariant complex tangential form ¢ on 8[) is f
for some f in D. The idea is the following. If ¢ also denotes a (0, ¢)-form over dD that
represents ¢, then it can be written uniquely as

¢ =a+wd Ab,
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where a and b contain no occurrences of dw. The invariance condition implies that the
coefficients in @ and b are invariant in the last variable, and since wdw = —0p as complex
tangential forms, one get f as

f=a—0pAb.
For the complete proof of Proposition 4.2, see [2], which also contains a generalization
where D is a domain m dimensions higher.

Notice that any invariant (0,n)-form ¢ € Lj (61:)) is orthogonal to Ker d;; in fact, this
is equivalent to the solvability of dyu = ¢ in LZ(0D), which in turn follows from Proposi-
tions 4.1 and 4.2.

Let K an denote the canonica} homotopy operator in D with respect to p, and ~let K B
be the canonical operator on 0D (corresponding to o = 0), and similarily with P$*" and
Fg#t. (From Propositions 4.1 and 4.2 we get the following basic result.

Theorem 4.3. With the notation above we have that
(K [y = Rgnf,  (Penfy = Ben
if a>1 and
(KE™ )= K™ Flor (P )y = Bl
Thus K& f (and P f) can be reconstructed from the complex tangential boundary values

K fly (and P fly). In particular, K& f is smooth if (and only if) K& fly is.

Proof. First suppose that f € K,. Then u = K f solves ou = fand u € K. By
Proposition 4.1, therefore, 0t = f and @ € K} |, so that & = K% f. On the other

a—1»
hand, if f € K., then f € K. | and therefore, K" f as well as K", f vanish. The other
statements follow in the same way. 0J

Proof of Proposition 4.1. Part o) follows since 0 = fls if and only if 0 = (dp + d|w[?) A f
on 0D, which holds if and only of f =0 in D.
Since

(4.1) B = iddp + idw A dw

we find that, at each point, dw is orthogonal to all dz; with respect to B, and moreover dw
has norm one. In other words, if a,a’, b, b’ contain no differentials of w, then

{a+bAOw|*d +b A 3\w|2>ﬂ~ = (a,a’); + [w|* (b,') 4.
It follows that |5,5|% = |0p|% + |w|* and therefore B = B. In view of (2.1) we also get

(4.2) (f,97 =(f,9)-
Moreover, cf. (2.1),

(=p)dV = Bfni1 = B, Aidw A div = (—p)dV Aidw A d,
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and therefore,

/f)(_ﬁ)a_l (F.3) av= /ﬁ(—ﬁ)“‘z (7.3)" (=p)av =
B /D/w|2<—p(z)(_p = [w*)* Fidw A dw (f,9) (=p)dV = 2 /D(—p)a (f,g9)dVv.

a—1

This proves part i) for & > 1. The case o = 1 follows by continuity. Part i) is obvious in
view of 0), just noting that 8,f|, = (0f)[s = (8f)™ 5.

To see part #ii), first notice that if ¢ is a form that only contains differentials of w, then
¢—f = 0. Moreover, (0f) = df. Therefore, iii) follows from Proposition 3.1.

Let us now consider part 7v). The nontrivial direction is that f € KL | if f € KL
(we assume « > 1, the case @ = 1 is similar). It follows from Theorem 4.1 that the
operator ~: L2 (D) — L2_,(D) is bounded. Let M: L2_ (D) — L2 (D) be its adjoint.
We claim that 0Mg = 0 if g = 0. Clearly, 9Mg = 0 in the distribution sense means
that (056, Mg), = 0 for all compactly supported smooth forms ¢. However, for any such
¢ we have (056, Mg)o = ((056) ,9)a1 = (D% 1#,9)a 1, and the last term vanishes by
Lemma 3.5. Now take f € K& and g € Ko—1. Then (f,9)a—1 = (f, Mg)a = 0 by the
assumption on f since 0Mg = 0. Thus part iv) is proved. The last statement is an
immediate consequence of 7), #) and iv). O

With the same argument it follows that OMg = Mg if Og € Lz_l(D). It is possible to
compute Mg and verify this directly; see Proposition 6.5.

5. EXPLICIT HOMOTOPY OPERATORS

In [11] Kerzman and Stein proved that there is an explicitly given projection operator
b, Lg,o — K, i.e. a projection onto the holomorphic functions with boundary values in
L?, which is approximatively equal to the Szegd projection Pf" in the sense that P*" — P,
is compact on L?. There are two main steps in their construction. The first difficulty is
to prove that the projection operator, obtained from the Cauchy-Fantappie-Leray formula
with a holomorphic support function, which a priori is just defined on say smooth functions,
actually extends to a bounded operator on L?. A nice proof of this fact can be found in
[13]. The next step is to show that, roughly speaking, the support function can be chosen
in such a way that the resulting operator has the extra property that P, — P} is compact.
(This means that P, is close to be self-adjoint, i.e. the orthogonal projection.) It is then
quite easy to conclude that P{*" — P, is compact, see Section 7. Following the same lines,
Ligocka, [12], obtained the analogous result for the Bergman projection, i.e. she constructed
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an operator P, such that Pf*" — P, is compact on Lio. However, this case is simpler since
the L?%-boundedness follows from a brutal estimate of the kernel (this works for any P, to
be defined below ablabla) if a > 1/2). In the following sections we present generalizations
of these results to higher order forms (for « = b and a > 1); i.e. we show that there are
explicit operators K, which are close to the canonical operators K" in a certain sense.
For the precise statements, see Section 7. For instance, we then show in Section 8 that one
can derive regularity properties for K" from the corresponding properties for the explicit
operators K,. The boundary values of our operators K, coincide with the boundary values
of some wellknown homotopy operators for 0, and the interior values will be connected to
the boundary values of the corresponding operators in D (using the notation from the
previous section).
Our basic result for K, is that

(5.1) K, = H,0: + R,,

where H, is self-adjoint and R, and R, are compact on L2. In particular, this implies
that K, approximately vanishes on KJ. ;From (5.1) it is quite easy to see that 0K,
is L2-bounded, and that 0K, — (0K,)* is compact. Following [11] one then gets that
0K — 0K, is compact; recall that 0K is the orthogonal projection L2 — K,. It
should be noted that the kernel for 0K, is genuinely singular, so the L2 boundedness of
0K, cannot be obtained by a brutal estimate.

We have an analogous result for the boundary complex. However, the explicit operator
Sy corresponding to Sy*" will approximate the latter in the sense that I — 5, is a projection
onto Kj- and S5* — S, is compact. That is, the image of S, will not be exactly Kp 1.

Recall that D = {p < 0} and p is a smooth strictly plurisubharmonic defining function.
Define the function v((, z) near the diagonal A = {¢ = z} by

(5.2 oG 2) = p+ 3 piles = G) + 5 D k(e = ) ok = G

(p = p(C), pj = Op/d¢; and so on). Then certainly v((, z) is holomorphic in z near A and
we have

(5.3) v(2,() =v((,2) + O(|¢C — 2|*) and dv(¢,2) = O(|¢ — 2]?).

Since we assume that p is smooth in this paper we can add higher order terms in (5.2) and
get (5.3) with any integer k instead of 3 (and 2). In particular, if p is real analytic we can
take

(5.4 )= Y palz - 0"

|a|=0
near A. Then v((, 2z) is the unique function that is holomorphic in z, satisfies v((,() =
—p(¢) and v(z,() = v((, 2), i.e., the polarization of p. If p is real analytic and v is
defined by (5.4) then (5.3) is easily verified. If p is just smooth one can obtain (5.3) by
approximation. In what follows it is convenient to think of p as real analytic and v((, 2)
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being its polarization, even though the property (5.3) is enough. Moreover, since p is
strictly plurisubharmonic it follows that

(5.5) 2Rev(C,2) 2 —p(C) — p(2) + 9]¢ — 2|

near the diagonal. We then define v({, 2) globally by patching essentially with [ — z|? (to
be precise, with | — 2|2 — p((), see Section 6) so that (5.5) (essentially) holds globally.
Let 0(¢, z) be defined on D x D by

(¢, 2)* = (¢, 2)[* = (=p(O) (—p(2))-

Since (p = p(())
(5.6) o = v — pp(2) = [v+ p|* + (=p) (v + p + T+ p(2)),

it follows from (5.5) that ¢ is nonnegative (?como ?)
For a fixed a > 0 we let an integral operator H, and its kernel h,((, z) be connected by
the relation

Hof(z) = (f,h(:,2))a-
Notice that H, is self-adjoint with respect to ( , ), if and only if A, is hermitean, i.e.
hag (C,2) = (—1)? hayg (2,C) for the (0,q) part hq g of hy).
Let &, denote the space of (0, ¢)-forms that are smooth up to the boundary and let 83
denote the space of smooth complex tangential (0, ¢)-forms. We also let H, = £, N Ker 0

and Hb = £2 N Ker §,. Thus #, is the space of holomorphic functions that are smooth up
to the boundary.

Theorem 5.1. Let o > 1. There are explicit operators K, : E.11 — &, and P,: & — Hy
such that

(5'7) 5Kaf + Kaéf =f—-P.f,
with the following additional properties. The kernels satisfy the estimates
< 1 |U| 2n—1
(5.8) ka(C,2) S e o ;
and
(5.9) Pa(C,2)] S 1/[v[™Fe
Moreover,
1
(5.10) Pa((;2) = W+Qa(<7z)a

where

1 _
2a(C,2)| < CW; G zeD,
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and if z € 0D, then

(5.11)
n—1 a
B 0:0(¢, 2) A (0,0.0(¢, 2))? B _1_qF(oz +n—q-—1)
ka(C, 2) = ; Cang v((, z)nte—a-15((, z) ! +7a(C, 2). Camg = ['(n+ «) ,
where
1 = 1
(5.12) ra(C, 2)| < CWa |0:1a(C, 2)| < CW-

Notice that |v|/o is equal to 1 if z (or ¢) is on dD.

??Notice that the

Thus the leading terms of k, (for z on the boundary) and p, have quite simple expres-
sions.

Remark 3. If the domain is D for some D and if any of these operators is applied to a form
that is independent of the last variable then the resulting form is (rotation) invariant in the
last variable. By construction it will be the case that K, is connected to the boundary
vakues of K,_;f in the same way as for the canonical operators, cf. Theorem 4.3.

Although the kernels for the interior values of these operators can be computed explicitly,
for many purposes it is anyway most convenient to use this representation as the boundary
values of the corrseponding operators in D.

Using analytic continuation it is possible to define the interior values of the operators
K, et cetera even for 0 < o < 1 (actually for o > —n ).

Furthermore we have

Theorem 5.2. There is a hermitean kernel hy, ((, 2) and a kernel ro(C, z) such that

(5'13) ka (C, Z) = a(,aha (Ca Z) + Ta (Ca Z) s
and such that both h, and r, are
2n—2
6514 < L |1ogol) + log(o/ o) (10|
|,U|n—|—a71 o

whereas 0,14(C, z) satisfies (5.8). The adjoint operators K and P} map smooth forms
onto smooth forms, as well as corresponding operators H, and R, and their adjoints.

The proofs of Theorems 5.1 and 5.2 are postponed to the next section. ;From these two
theorems we obtain

Theorem 5.3.

i) The operators P, and K, extend to bounded operators on L%, K, is even compact, and
the homotopy relation (5.7) holds for f such that f,0f € L2,

i) The operators Hy, R, and OR, are compact on L% and

(5.15) Ko.f = H0.f + Rof if f,0:f € L2.

iii) The operator H, is self-adjoint.
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iv) The operator 0K, is bounded on L2.
v) The operators P, — PF and 0K, — (0K,)* are compact on L?.
Proof. jFrom (5.6) we have that v+ p = 9p- (( — 2) + O(|¢ — z|?), and therefore |v + p| is
approximately the length of the projection of ( — z onto the normal space to the complex
hyperplane {z; dp - (z — () = 0}. Moreover, since

20 = —p(C) = p(2) +6(¢, 2)[¢ — 2[* +14a(C, 2) + O(|C = 2[*)
(which in fact proves (5.5)), where a is real and ¢ strictly positive, we have that v + 7 +
p+p(z) =25(¢,2)[¢ — 2 + O(|¢ — 2|®). For fixed z € D therefore {o < t} has extension

~t/y/—p(2) in 2n — 2 directions and ~ ¢ in the last two ones (for ¢ < c|v|), and therefore

we have
t2n

¢ a(C,2) <t} SCW

If (¢, 2) < 1/v2Ju(C, 2)| we get (by (5.5)

S10l” < (=) (=(2)) < (=020
implying that |v| < (—p) and hence we have
—p(2) ~ (¢, 2)] ~ —p(C)-
(From (5.5) and the fact that
dev|e=y = d,0|,=¢ = —0pl¢e, (=2€ 0D,

we get the usual estimates

do(¢) 1 a
/aD wc e < () @0

ﬁ

dA(¢) - ( 1
|v C z |"+1+a+ﬂ ~ \—p(2)

By standard technlques it now follows from (5.8) and (5.9) that that

(5.16) [Kaflla < Cllflla and [[Paflla < Clf]la

for all @ > 1. If xn is 1 where |k,| < N and 0 elsewhere, then xyk, is a Hilbert-Schmidt
kernel, and hence its corresponding operator K, y is compact. It is readily verified that
K, n — K, in operator norm, and hence K, is compact. Since (5.7) holds for smooth f,
the general case now follows from Proposition 3.4. Thus i) is proved. Part ii) follows in
the same way, and part iii) is obvious.

If f € Kq, then it follows from (5.7) that 0K,f = f. On the other hand, if f € K2,
then 9% f = 0 and, by (5.15), then 0K, f = OR,f € L2. Hence K, is bounded on L2.

It remains to prove part v). {From (5.10), (5.9), (5.3) and (5.5) it follows that the kernel
for P, — P* is < |v|~™~%/2) and as before the compactness then follows. Since H, is
self-adjoint, at least for smooth f it follows that

(gKa - (gKa)*)f = (5Ra - (5Ra)*)f

and

a, a>0, [g>-1.
)
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It is then true for general f by the approximation lemma, and hence 0K, — (0K,)* is
compact since 0R, and its adjoint are, because of the estimates of the kernels r, and
0,Tq- O

In the same way it follows that

[1Keflla < Cllfllats

if 2¢ > oo+ 1. Since K, f is a solution to du = f if Of = 0, we obtain Theorem 2.1.
For the boundary complex we have analogous results.

Theorem 5.4. There are operators Ky: .| — &, Py: ) — HY and I-Sy: €| — Ho
with the following properties. To begin with,
(517) gbe + Kbgb = I - Pb - Sb:

where the kernels satisfy

1 1 1
[Ks(C, 2)] < C|v|n—1/2’ pp(C, 2)| < CW: 155(C, 2)| < CW-
Moreover,
n—1 _ a3 _
— 1—q (n —q— 2)' 8{”(47 Z) A (828CU(C: Z))q
Bl6 A = 2T G e TG
where
1 = 1
(5.18) Ire(¢, 2)| < CW’ 10.676(¢, 2)| < CW
and (0.8.5)
1 )k ,
po(C, 2) = o(C.2)" +o(C,2),  s(C,2) = W + 0,
where
105(C,2)| < CWa los(C, 2)| < CW, ¢€dD,zeD.

Both P, f and S, f are defined by first evaluating for z € D and then taking the boundary
values.

i From the estimates of the kernels it follows that K extends to a bounded (in fact
compact) operator on L?. It is also true but nontrivial that the singular integral operators
Sy and Py are L2-bounded, see [13] for a nice proof. Since £Y is dense in the graph norms
it follows that the homotopy relation (5.17) holds for all f € Dom 0.

We claim that
(5.19) ky (¢, 2) = Ocphi (¢, 2) + 14, (¢, 2),

where hy (€, z) is hermitean (i.e., hpq (¢, 2) = (—1)?hpq (2,¢) holds for the (0,q) part of
hy), which means that the corresponding operator Hy is self-adjoint, and where 7} (, )
fulfills the same estimates, (5.18), as 7, (¢, 2z) but with an extra logarithm. When p is real
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analytic the leading term in the expression for ky ((, z) is (modulo a smooth kernel arising
from the fact that v only is z-holomorphic near the diagonal) 0¢ 31 (, z), where

n—q—2)! (3.09(2) i log(C,2)
g — D! o(,2m ¢ 15(G ) n—Lu(C o)L

which gives (5.19). In the general case, the right-hand expression ¢ of (5.20) is not her-

mitean, since v ((,z) # v (z,(). However, if we choose (??? ¢, denotes the ??part of ¢
777)

(5.20) hy(C,2) = — iil—q(

B = (84(6,2) + (=), (2. 0)) /2
then anyway (5.19) will hold with the estimate
1 + [log|v]|

‘/U|n71

of the remainder term. This follows from (5.3) and (5.5). Moreover, (QSQ ((,2) = (—1)9¢, (2, C)) /2

fulfills (5.21).

It is also true that all these operators as well as their adjoints map smooth forms onto
smooth forms.

Summing up we have

(5.21) ry (¢, 2)| < C

Corollary 5.5. The operators Sy and B, are bounded on L2. The operators Ky, Hy, Ry
and OyHy, are even compact. Furthermore, (5.17) holds on f € Dom 0y, and

Kyf = Hy0, f + Ry f
for f € Dom d;, where Hy is self-adjoint. Finally 0K, is bounded on L? and
Ky — (0pKp)*

18 compact.

6. CONSTRUCTION OF THE KERNELS.
In order to prove Theorems 5.1 and 5.2 our first step is the following result.

Proposition 6.1. For each a > 0 we have an operator K2: €,.1 — E° and a projection
P,: & — Ho such that
(6.1) WKL+ KLO =1 — P,|s,

given by
K f(2) = (f,kg(-,z)> , 2z€ 0D and P,f(z)= (f,pa(-,z)) , 2z €D,

a o7



18

where
(6.2)
n—1 3
0c0(¢, 2) A (9:0,9(¢,2)) | g Jatn—g-1)
an .9 C Z n+a q— IU(C Z)q+1 Ta(Ca Z)a Camn,g =1 F(n + Oz) ’
1 = b 1
(6.3) |r (Ca z)| < W, |0,7(¢; 2)| < CW
and
1 1 —
R — <C— - ,

Moreover, if the domain is D for some D and if any of these operators is applied to a form
that is independent of the last variable then the resulting form is (rotation) invariant in
the last variable.

The kernels here are essentially wellknown, the very point of the proposition is formula
(6.2), and that the leading term is essentially J; of a hermitean kernel; cf. the discussion
preceding Corollary 5.5.

Proof. Let oo > 0 be fixed. To begin with we let 7; = z; —(; and let x = x(|n|) be a smooth
function supported and identically 1 near A and set

(¢, 2) = x (pj + %ZijUk) — (L =x)n

k

(or possibly with some more terms if p is real analytic, cf. Section 5). Then we define v
globally by

_U(Ca Z) = Q(C’ Z) "N+ p(C),
and if we let s((, z) = —q(z, () we also get, cf. (5.3),

(6.4) —5(¢,2) - n = p(2) = v(2,¢) = v(¢, 2) + O(Inl).
Using the notation s ~ ) s;d(; and ¢ ~ Y ¢;d(;, we define the operators
(6.5) Kf(z ) =

/ Z )* "' f A5 A (05)*(=p(0g)" " = (n— k= 1)g A dp A (99)" )
D ‘””“ (—q-n— p)etn=h=l(=s - m)k+!

k=0
for z € 0D, where

C

(i T(e+tn-—Fk-1)
ank = \or ) (n—k—1)T(a)
and

Pf(z) = ca,n,l/D (_p)alf(_?(_aqq);__rgﬁr/: an (5q)n71), z€D.
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If f is smooth, then oK f is continuous, P f has continuous boundary values and, see [5],
the relation

(6.6) 0K f +KOf = fl, — Pfls.

holds. It is well-known that in fact K f is smooth and Pf has smooth boundary values if
f is smooth.

Let Kq and 13(1 denote the components that are (0, ¢) in dz. Since ¢((, z) is holomorphic
in z near the diagonal, all components Pq but Py are smooth since the singularities are
cancelled. Notice that the leading term in f(q is the one corresponding to £ = ¢ in the
sum, since in all the other ones the singularity is cancelled; the leading term is in fact the
desired one, but since ]5,1 does not vanish identically for ¢ > 0, the operator IA{q f is just
(the boundary values of) an approximate solution if f = 0. To get rid of this flaw, let
L be a C* homotopy for 0 and Q the corresponding holomorphic projection, i.e. both of
them map &, into itself (£ decreasing the degree one unit) and

(6.7) OL+LO=1-Q.

Such a homotopy can e.g. be obtained by the formula above, choosing s and ¢ in an
appropriate way in D x D so that ¢ is holomorphic in z, see e.g. [1] for details.

It is unknown, at least for us, if there is a v({, z) that is globally holomorphic in z and
that furthermore satisfies the first equality in (5.3).

So far we have only used s(¢, z) when z is on the boundary. It can be extended inwards
so that the relation (6.6) holds in D; see [5]. Applying 0 both from the left and from the
right of the equality (6.6) we get the additional relation

(6.8) ap = Po.

Let us now define
K'=K+ P, P=QP.

It is readily verified that (Ef’)q takes smooth forms to smooth forms for all ¢ > 0, and
therefore

(6.9) K® = K + smooth operator.
Moreover,
QP = p() - Lgp(),
WherAe Py defined as above just is the component acting on (0, 0)-forms. Since the kernel
for P, is holomorphic near the diagonal, 0F, has no singularity, and hence

P = P + smooth operator.
i From (6.6) and (6.8) we get
(6.10) K"+ K*0 =1 — PJ,
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where P is holomorphic and only acts on (0,0)-forms, and so K° is an exact homotopy
operator for 0 whose leading term is K, and P, is the leading term of the corresponding
projection.

We are now going to rewrite the leading terms and to this end we need

Proposition 6.2. If p is C® and v, s,q are defined as above, then

(6.11) 00 = —s+ O([n[) = ¢+ O(In|) = =9p + O(|nl)
(6.12) sAg=0(n]), 9p A0 =0O(n])
(6.13) deq = 09p + O(In)

(6.14) Op A Ocv=sAqg+O(n)

and

(6.15) 0.5 — 0,0,0 = O(|n)).

The estimates in the lemma is with respect to the Euclidean metric. The crucial part
is (6.14) which first occurred in [3]. The other ones are more or less direct consequences
of the definitions. All of them but (6.15) can be found in [1] so let us restrict ourselves to
this one.

Proof of (6.15). ;From (6.4) we get
0cv(C,2) + O(Inf) = 5id¢ = (Ocsi)(z— G) = s = Y _(0csi) (2 — §),

and so

0.0:0(C,2) + O(Inl) = Bzs = Y _(8:0;57) (2 — ;) + O(In]) = 8.5 + O(|n]).

By repeated use of Proposition 6.2 we can rewrite IA(qf and (by (6.9)) obtain

(6.16) )
Kb f = canyg /D (=p)* 1 f A Ocv A (9.0,0)*

Ua+n717q,qu+1

A=pB+(n—q-1)y)AB" T2+ Rf
where

011 B = [ 970 (52 ) £ A OO + O(n) 7 p).

Now we need the following simple observations.
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Lemma 6.3. Suppose that the kernels K((,z) and k(C, z) are connected by the relation

(6.18) /f/\K /<f,k>dV

(f being a (0,q) form and thus K being (n,n — q) in (). Then

K =ckNQ_g=coh AN(=pBug+7ABuqg1)/(=p), k=+xK and |K|= |k,
where x is the Hodge star with respect to 2, and c; =1 if g is even and ¢, = —1 if q is odd.

Proof. For any forms, f and g,
(f,9)dV = [ Nxg.
Moreover, if they are (0, ¢) forms, then

(f,9)Qn = Caf NGA Qg

Now, the lemma follows since ** = +1 and * is an isometry. O

Notice that (2.1) and (6.11) imply that [9p| ~ /—p and [0,v((, 2)| ~ V/—p+[( — z|. In
view of the lemma, (6.16) and (6.17) therefore imply (6.2) and the first estimate in (6.3).
The second estimate in (6.3) follows in the same way, just noting that the operator J at
most increases the singularity half a unit. In the same way one can rewrite the expression
for P J and obtain the desired properties of Pf.

Finally, if the domain is D for some D then © = v((,2) — (uy12ns1 and so on. If
7o (z,w) = (z,€w), then by an easy calculation one can check that 7 *Kf = Kf and
similarily for the other operators. If we then use £ and Q with the same invariance
property, then K and P will have this property as well. This concludes the proof of
Proposition 6.1. O

To have K, defined even for & = 1 we need the the corresponding result for the boundary
complex, but this is nothing but Theorem 5.4, with the additional observation that the
corresponding operators on D preserve rotational invariance in the last variable.

Proof of Theorem 5.4. The proof is performed along the same lines as the previous one.
Let K3 f be the limit when a — 0 of the n — 2 first terms in the expression for K f above.

Then
n—2 . A A
. i \" fASA(0S) AqgA (Og)" k2
i = Z<2W> f (0s)* A g A (9q)

Unfkfluk+1

if u(¢,2z) = v(z,¢). In the same way we let & — 0 in the expression for P and get
Pb=(L> fAan(9a)"
2T oD (A

Let F' = T f be some reasonable (linear) extension of the tangential form f into D, and
let VF be the limit of the term corresponding to £k = n — 1 (with F instead of f) when
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a — 0. Then

P\ " Jeo\n—1
VF:(L) /F/\s/\(as) .
27 D u™
If we let S,f = VOF + 9,V F, then the relation
5bkb+Kb5b:I_pb_gb
holds for tangential forms. If F'is (0, ¢) and ¢ < n — 1, then the expression for V' F has no
singularity and hence it can be considered as a smoothing operator V1" acting on f. Now,

(6.19) var < (2N [ fAsn@s)" L0
' 27 oD un

where R has no singularity since u is holomorphic in ¢ near the diagonal. Thus S, f has the
integral in (6.19) as its leading term and is smoothing on all but (0,7 — 1)-forms. Notice
that if we had used a v that is globally holomorphic in z then we would have obtained an
exact homotopy formula. Let £, Q, i/ be the operators in such a formula, cf. the proof of
Proposition 6.1, where I/ is an operator acting on (0,n — 1)-forms. If we define

Kb:Kb—E(Pb-i-S’b), P, = Q(Pb-i-gb), SbZZ/{(pb-f‘gb),

it follows that K, P, and S, satisfy the exact homotopy formula and that their leading
terms are the desired ones, after rewriting. O

We now want to extend the definition of K? to the interior values, so that the homotopy
relation holds. In view of Section 4, Proposition 6.1 and Theorem 5.4, the following
definition is natural.

Definition 1. With the notation from §3 we define the operators K, and P, by
(Kafﬂb = f{gflfﬁ
and analogously for P,. If & =1 we use instead the operators K, and P,. O

The definition of our operators in D depends on some choices, e.g., there is a cut-off
function involved, but in the construction of P, and K? there is a further choice involved
when going from K to K b cf. the proof of Theorem 6.1. Let us assume that we define
¥ = v — (pt12n41, i.6. without making any unnecessary cutoff in the last variable.

Proof of Theorem 5.1. Let us assume that a > 1; the case a = 1 is similar. To begin with
it follows from Proposition 6.1 and Section 4 that K, and P, map smooth forms onto
smooth forms and that (5.7) holds.

Let now K denote the KNin the proof of Proposition 6.1 but on D and for o — 1 instead
of a.. Since it differs from K?_, only with an operator with smooth kernel, it follows that

K, is obtained fromf{ on D (modulo operator with smooth kernel). Let ((,&;z,w) be
coordinates on D x D and define the kernel ¥ ((,&; z,w) in D by

(6.20) Kf(zw) = /D (= =€) F(¢,6) AW ((, & 2,w) A dE A dE.



23

Modulo an operator with smooth kernel, following Section 4, then K, f(z) is obtained
from Kf(z,w) by replacing w by 1/—p(z) and wdiw by —0p(z). By a straight-forward
computation one verifies that this latter object is equal to K f(z) in D when z € dD. This
proves that (modulo operator with smooth kernel), the boundary values of K, f are equal
to K? from Proposition 6.1, and hence (5.11) follows.

In the same way one can check that (the boundary values of) P, coincides with P? from
Proposition 6.1, modulo a smoothing operator. Hence (5.10) and the estimate (5.9) follow
from Proposition 6.1.

Let us now verify the proposed estimate (5.8) of the kernel k,((, z). Rather than first
computing a formula for the kernel in the interior (which in quite possible, see [2] where
the corresponding computation in the ball is made) we make a direct estimate. Here d\
stands for the Lebesgue measure. Notice that

(¢, & 2,w) = v((, 2) — vV =p(2)€

since w is to be replaced by y/—p(z), cf. Section 4. By (4.2),

Kaf (9] = (K f ()" = \Kz_lf (-v=0@) | =| (77 (s2v=01) )|
a—1
< [ o=ty |F] [ (c.6 V=) | aric 0 <
_ A (¢,
5/ (—,0— €] ) 2| | €9 nta—1/2
g v(¢2) —&V/=p <z>
/ / €f) ar @ '
lel><—p —&/— (2) /v nta-1/2 |,U|n+a71/2
By the substitution £ = \/—p ({)7 in the inner integral we get
oA [ Q)T ) 1
< A ACA— < —
~ /; ‘U|n+a—1/2 i< ‘1 B al7__|n+a—1/2 ~ /; ( p) |f| (1 _ |a|2)n_1/2 |U|n+a_1/2a
where a = \/—p (2)y/—p (¢)/v ({, ), and therefore
|U| 2n—1 1
(6:21) koo (D) e
This completes the proof of Theorem 5.1. O

It remains to prove Theorem 5.2. To do this we need an auxiliary result. Let ((,¢; 2, w)
be coordinates on D x D. Suppose that ¢ = (¢, & z,w) is a form on D x D that is
(0,q) in (z,w), (p,0) in (¢,€) and that only depends on ¢, z and &w. In particular this
implies that the corresponding operator, defined via ( , )1 on D, maps invariant forms
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to invariant forms. By going up and down in dimension, as in Section 4, we then get an
induced operator in D. The following proposition relates the adjoints of their kernels.

Proposition 6.4. Let (C,&;z,w) be coordinates on D x D. Suppose that ¢ = ¢(C,&; z,w)
is a form on D x D that is (0,q) in (z,w), (p,0) in ((,€) and that only depends on
¢, z and &w. If ®((, z) denotes the induced kernel on D (with respect to ( , )o), then
O*((,2) = ®(2,() is induced by ¢*.

For the proof of Proposition 6.4 we need the following result.

Proposition 6.5. Let M: L2 (D) — L%(D) be the adjoint of ~: L%(D) — L%_,(D).
Suppose that g(¢,€) = a((, &) +dE A (C,E). Then
,7_—

my(0 == | e (a<c, Ve - o=

;From this formula for M one can check directly that M0 = OM, cf. the proof of
Proposition 4.1.

dp Ab(C, \/—_pT)) dA(T).

™

Proof. We need the following slightly more general version of (4.2),

(6.22) <f,a+d§/\b>N=(f,a)—_ip<f,ap/\b>,

which is obtained in the same way. If ¢ = a + d€ A b,
_a-—1 3

_N\—(a=1)¢ 2\ya—2 a _ S 5
wot) =2+ [ - P (atc.61= £ a0 noc.6)) axte

and after the change of variables £ = \/—p7 we get the desired expression. O

Notice, by the way, that since the right-hand side of (6.22) equals <f, a—(—p) "t Edp A b>N

this means that the mapping a + dE Ab+— a — (—,0)_1 £0p A b is the orthogonal projection
onto the image of .

Proof of Proposition 6.4. Either ¢((,&; z,w) has the form V(C, 2, Ew), (¢, 2z, Ew) A Ed,
W(C, 2, Ew) A dE N dw or Y((, z,Ew) A wdE, where ¢ has no occurrences of d€ or di.

Now, (®f)(2)~ = (f,0)x , = (f, M@), and hence ®((,z) = M@, where each occur-
rence of w is replaced by /—p(z) and wdw by —dp(z). It is now readily checked by
Proposition 6.5 that (Ma)* = M¢*. O

Proof of Theorem 5.2. Let us now define H, and R,. The idea is to copy the argument
for the boundary operators preceding Corollary 5.5. 5
The leading term in the expression for k2 (¢, &; 2, w) in D from Proposition 6.1 though

a priori only defined for (z,w) € dD, has a natural meaning for any (z,w) € D, since
(¢, & z,w) = v((, 2) + &w has. (In fact, if a((,&; 2, w) is any kernel that is defined for

(¢,& z,w) € D x D and only depends on (z,¢) and &w, then one easily checks that there
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is a unique extension to D x 5, that only depends on (z,() and w.) Moreover, it is of
the type in Proposition 6.4. We find that this leading term is approximately O, ¢¢?, where

n

Q;b:_zilfqr(wra—q—n (0,0c0 + d& A dw)? L i log(u—¢w)

=1 T (nta) (v—Ew)tete 1@ —€m)T  n(y— go) "

Also this kernel is defined for all (z,w) € D, and it is of the type in Proposition 6.4.
Therefore, we can consider its adjoint ¢** = ¢°  (z,w,(,§), (z,w) € 0D as well.

a—1

Analogously to the boundary case (cf. the discussion preceding Corollary 5.5) we define
H, as the operator in D induced by the kernel (¢° + (—1)9¢**)/2. Since this kernel is
< 5|71 + | log |3]|), the estimate (5.14) for ho(C, 2) follows in the same way as the
estimate of k,((, z) in the proof of Theorem 5.1. As before, H, preserves regularity. We
then define R, so that (5.15) holds for smooth forms. The proposed estimates follow as
before.

Notice that in the real analytic case, ¢® = ¢**, hence H, is simply the operator induced
by ¢°.

In view of Proposition 6.4 it follows that the kernel h,((, z) is hermitean, and that H,
is self-adjoint.

Finally we prove that K maps smooth forms to smooth forms. Recall from the proof of

Theorem 5.1 that, modulo an operator with smooth kernel, K f is obtained from K f (z, w)
in (6.20). We claim that if * denotes the Hodge star with respect to ©(¢), i.e. ignoring the
variable &, then

KF ) = [ (o 1ef) (F(6.0 09/ V=0(0)) T

In fact,

f A dE N OE = (f, %) AV A dg N OE = (—p— [¢[%) (F+¥/v/=p(() ) dV
and since neither f nor *W¥ have any differentials d¢, the inner product is the same as the
one in D. Therefore, the kernel *¥/y/—p(¢) induces K, (modulo smooth). Furhermore,
it is readily checked that ¥ only depends on (, z and € w; we omit that computation.
Therefore *¥/1/—p(() satisfies the condition in Proposition 6.4 and therefore (modulo
smooth), K is induced by the adjoint of *¥/y/—p(¢). But this kernel is of the standard

7?7?77 form and therefore it induces an operator that maps smooth forms onto smooth
forms. This concludes the proof of Theorem 5.2. O
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7. APPROXIMATE FORMULAS FOR THE CANONICAL OPERATORS

Let F, denote any of the operators from Theorem 5.3 that satisfies (5.8). Then we know
that F, maps &, into itself and is compact on L2. In fact, it is regularizing one half unit
in a certain sense, but for our purposes it is enough to notice the following proposition, see

[1].

Proposition 7.1. The kernel of Fﬁ =F,0...0F, is less then

(7.1) oL (B
) ‘U|n+a—£/2 o

if ¢ < 2n. For any r > 0, there is a k such that Ft: L2 — C"(D) if £ > k.

We will say that an operator as in Proposition 7.1 is of type F¢. Following the ideas in
Kerzman-Stein [11] we can use Theorem 5.3 and Proposition 7.1 to derive an asymptotic
expansion of the canonical operators K and 11" = GK%" in terms of our explicit
operators. Let II, = 0K,. Fix o > 1, and let us suppress the subscripts on the operators
for the remainder of the section.

Since IT and I1°*® are both projections L2 — K, (and since IT°" is self-adjoint) we get
HHCaH — HC&H H*HC&H — H*.
By Theorem 5.3, IT — IT* = F' and therefore we get I1¢" — I1* = FTI®®". By iteration we
get
[Ieen — I7* +FH* +F2H* 4.+ Fk—ll—[* _+_FkHcan
The same argument works for the orthogonal projection P®" as well as for the corre-
sponding projection Il on the boundary and the orthogonal projections F*" and S;*".

For the latter statement, apply the argument to I — S, and I — S552".
We conclude

Theorem 7.2. Suppose that o > 1. The orthogonal projections II&": L2 — K, and P&"
can be written

(7.2) M =T, + Lo+ Gy and P =P, + Lo+ G,

where Lo 1s explicit, compact on L? and preserves C* regularity, and G, maps L? into
C"™ (D). Correspondingly for the boundary complex we have

I =1L+ Ly + Gy, PBP*™=PF+Ly+ Gy

and
Sy = Sp+ Ly + Gb.

The principal meaning of this theorem is that the canonical projection II°" is approx-
imately equal to the explicitly given operator II, and questions about regularity for 1"
can be reduced to the corresponding questions for explicitly given operators. In particular,
it follows immediately that II°®® maps smooth forms on D to smooth forms.
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So far we have said nothing about in what sense K approximates K". Since they both
are of type F'! it is reasonable to expect that K — K is regularizing one half unit more.
More precisely, we have the following theorem.

Theorem 7.3. Given r > 0 and oo > 1 we have
K& = Ko+ L2 + G,
where G maps L2 into C"(D) and L2 is an explicitly given operator that preserves regu-

larity, with a kernel satisfying the estimate (7.1) for £ =2, and such that OL% as well as
0:L2 are compact. Analogously,

(7.3) K™ = Ky + L} + G,
Proof. In this proof we will let IT equal K on forms and equal P on functions. It follows
from the definition of K" that
KO = (] — TI*) KT,
Using (7.2) we get
K@ = (I KT — LK(II + £ + G) — GKII® = (I — KT — A
where A = LK(II+ L+ G) + GKTI®®. ;From the homotopy formula for K it follows that
(I —II)K = KII and hence we get
K = KIII*®*" — A = KII®" — A.
Writing K11 = K — K (I —II°®) and using that K = H9* + R (see Theorem 5.3) we get
K=K -R(I-T)—A=K—-R(I-T—L—-G)— A.
Now R(I —II) = RKO is of type L£? as well as RL (which is even of type F3). Moreover,

RG is clearly of type G. In the same way one verifies that the terms in A are either £? or

G. O

8. REGULARITY PROPERTIES

In view of Theorem 7.2, questions about regularity for our canonical operators are re-
duced to the corresponding questions for (leading terms of) the explicit approximate op-
erators. This works perfectly well for various norms such as I”, Holder etc, but here we
restrict to the C'*° regularity.

Recall that &, denotes the set of (0, ¢)-forms that are smooth up to the boundary and
that H, = & N Kerd. In particular, Hy = & N O. It turns out that we have regularity
for the orthogonal decomposition for each oo > 1. Let HqLa be the orthogonal complement
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with respect to || |[o of H, in &;. In the same way, let £ be the space of smooth complex
tangential forms and let ’HZ = Kerd, N 5;’.

Theorem 8.1. Suppose that o > 1. The canonical homotopy operator K" as well as
the Bergman projection PJ*" preserve regularity. In particular the orthogonal projections
P and 1150 = gKff;‘ preserve reqularity, and therefore we have a smooth orthogonal
decomposition
Eq=H; D ’HqL".
can can

The boundary complex operators Kg*", P2" and S;*" also preserve regularity and hence we
have the smooth decompositions

E=H,dH, qg<n—1

and ) )
E  =Kerdyn& | @ (Kerd}) né& .

Proof of Theorem 8.1. The theorem follows immediately from Theorem 5.3 and Theo-
rem 7.2. O

The regularity result for the boundary operators was proved by Kohn, see [8]. From
this result one immediately gets the regularity result for II$" for all integer values of a by
using Theorem 4.3.

Recall the definitions and discussion of the operators [, and E*" in Section 3. ;From
(3.6) (and the definitions) it follows that the [J,-harmonic forms in &, are precisely H,.
Furthermore, from (3.5), we obtain regularity for the [J,-problem, i.e. we have smooth
solutions to O,u = f whenever f is smooth (and, in the case of functions, f is orthogonal
to Ho). In the same way, from (3.7) and (3.8) we get that the 0,-harmonic forms in £°

collect these facts in:

Corollary 8.2. Suppose that o > 1. The space of smooth harmonic forms with respect to

Uy 2s Ho and we have the Hodge decomposition
E.=0.& ®Ho= 0, ® 0E, D Ho.

The space of smooth harmonic forms with respect to Oy on 0D is HE @ Hf;il and we have
the orthogal decomposition

=T aH 0N, =0 dTE dH N,

Remark 4. In the ball, Theorem 8.1 is true for all & > 0 and therefore it is probably true
even in this case but our proof fails for 0 < a < 1. O
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