ADAPTIVE FINITE ELEMENT METHODS FOR PARABOLIC
PROBLEMS. VI. ANALYTIC SEMIGROUPS

KENNETH ERIKSSON, CLAES JOHNSON, AND STIG LARSSON

ABSTRACT. We continue our work on adaptive finite element methods with
a study of time discretization of analytic semigroups. We prove optimal a
priori and a posteriori error estimates for the discontinuous Galerkin method
showing, in particular, that analytic semigroups allow long-time integration
without error accumulation.

1. INTRODUCTION

This paper is a continuation of the series of papers [1], [2], [3], [4], [5] on adap-
tive finite element methods for parabolic problems. The method considered is the
discontinuous Galerkin method (the dG-method) based on a space-time finite ele-
ment discretization with piecewise polynomial basis functions that are continuous
in space and discontinuous in time. In [1], [2], [3], [4], [5] we proved optimal a
priori and a posteriori error estimates for the dG-method for parabolic problems,
typically of the form: find u : [0,00) — H such that

(1.1) u(t) + Au(t) = f(t), t >0; u(0) = uo,

where H = Ly(2) with Q a bounded domain in R", Av = —Av with domain of
definition H2(Q)NHL(Q), @ = Ou/dt, and f € L1((0,00); H). The proofs are based
on a combination of the orthogonality inherent in Galerkin’s method and what we
call “strong stability,” which is essentially the same as the “smoothing property”
characteristic of parabolic problems.

In the semidiscrete case, with discretization only in time, using piecewise poly-
nomials of degree ¢ > 0 on a mesh 0 =ty < t; < --- <ty =T, the a priori and a
posteriori error estimates of [1], [2], [3], [4], [5] essentially take the form

(1.2) lv = Ullp.;m) < CiC;LN”kQ+1U(q+1)”LOO(J;H)a
(1.3)  lu=Ullpe(rm < CiCsLN(H[U]HLm(J;H) + ||kq+2f(q+l)”L°o(J;H))a

respectively, where U is the piecewise polynomial approximate solution, J = (0,T)
is the time interval under consideration, k¥ = k(t) is the local time step defined by
k(t) = kyp = tn—tn_1 fort € I, = (tn—1,tn), u(” = 8™u/0t", [U] = [U](t) = U, —
U,_, fort € I,, U =lim, g+ U(t, + s), and U, = ug. Further, C* is a stability
constant related to the continuous problem (1.1) and Cj is a stability constant
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related to the dG-discretization, both independent of T, u, k, and U. Finally, C? is
an interpolation constant depending only on ¢, and Ly = (1 + log(tn/kn))'/2.

It should be remarked that the results of [1], [2], [3], [4], [5] are formulated for
the special cases ¢ = 0 and ¢ = 1 only, and that they include also the effect of
discretization with respect to the spatial variables. Moreover, it is shown that the
error at the mesh points ¢, is of order O(k??+1).

An important feature of (1.2)—(1.3) is their optimality compared to the error in
interpolation, for which we have

lu = 7ulln (g;my < CHIET | L gy

In particular, the stability constants C* and C; are independent of the length 7" of
the time interval, which shows that long-time integration without error accumula-
tion (modulo the logarithmic factor L) is possible for the class of problems under
consideration. (The optimality of (1.3) follows from (1.2), since ||[U]||z..(s;m) =
U — ulllpe ;i) < 21U — ullp (s;1)-) Moreover, k%t is combined with the time
derivative {7t and not with «(?7? as in classical error estimates for parabolic
problems. The possibility of obtaining the optimal error estimates (1.2)—(1.3) is
directly connected to the strong stability expressing the parabolic nature of the
problem considered.

It is now natural to ask: what is the largest class of linear problems of the
form (1.1) for which optimal error estimates of the form (1.2)—(1.3) are valid for
time discretization by the dG-method, including, in particular, the possibility to
integrate over long time without error accumulation? We shall see that an answer
to this question may be given as follows. If —A is the infinitesimal generator of a
bounded, analytic semigroup, then the dG-method for (1.1) admits optimal a priori
and a posteriori error estimates over arbitrarily long time intervals. Moreover,
analytic semigroups seem to be the largest class of linear evolution problems with
this property. The reason for this is, as we shall see, the connection between strong
stability and the defining property of analytic semigroups.

More precisely, in the proof of the a posteriori error estimate (Theorem 1) we use
the strong stability of the continuous evolution problem, which is directly connected
to the defining property of an analytic semigroup. On the other hand, for the
a priori error estimate (Theorem 4) we use the strong stability of the discrete
problem with a less obvious connection to the analyticity of the semigroup. The
technical novelty of this paper is a proof of the fact that the dG-method for an
analytic semigroup satisfies strong stability estimates leading to optimal a priori
error estimates (Theorem 2).

The magnitudes of the stability constants C'* and C7 in the error estimates is ob-
viously crucial. We consider here situations where these constants are of moderate
size. When the constants increase, the strong stability (or analyticity) degenerates,
and the underlying evolution problem essentially becomes “hyperbolic.” For hy-
perbolic problems we expect (see [7]) that the a priori estimate (1.2) is replaced
by

lu = Ul sy < CTCIR Ul iy < COOTIR Wl DL (g

so that CJ = CT'. The error may thus grow linearly with time, and k2t is combined

with ©(972) instead of w(9t1). The error estimate of the classical analysis of time
discretization has this form also for parabolic problems, thus missing the possible
improvement in this case.
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To sum up, we may thus roughly classify initial-value problems as “parabolic” if
long-time integration without error accumulation is possible, and “hyperbolic” if the
error estimates contain constants growing linearly in time. “Parabolic problems”
would then correspond to analytic semigroups.

2. ANALYTIC SEMIGROUPS

We consider the initial value problem (1.1) in the following more general setting.
Let H be a Hilbert space with inner product (+,-) and norm ||-||, and let A : D(A) C
H — H be a densely defined, closed, linear operator. We recall (see, e.g., [8], [10])
that —A is the infinitesimal generator of an analytic semigroup E(t) = exp(—tA),
t > 0, if and only if it is sectorial, i.e., if there are constants M > 0, 8 € (7/2,n)
w € R, such that

)

M
(2.1) AT+ A4)7H < o] VA # w, |arg(A —w)| <.
The analytic semigroup E(t) is uniformly bounded with respect to ¢ if and only if
w < 0. In this case there is a constant C® such that

(2.2) IE#)uoll < Clluoll, NAE®)uoll < C°t~luoll, Vuo € H, t > 0.

Throughout this paper we assume that — A is the generator of a bounded analytic
semigroup E(t), i.e., we assume (2.2) or, equivalently, (2.1) with w < 0. It is well-
known that v(t) = E(t)¢ is the solution of the homogeneous initial value problem

(2.3) o(t) + Av(t) =0, > 0;  v(0) = ¢,
and the solution of (1.1) is then given by

u(t) = E(t)uo + /Ot E(t —s)f(s)ds,

under appropriate smoothness assumptions on f. The first inequality in (2.2) re-
flects the stability of the evolution problem. The second inequality is what we refer
to as strong stability, which is thus equivalent to the bounded analyticity of the
semigroup E(t).

For future reference we note that the adjoint A* of A is the infinitesimal generator
of the dual semigroup E(t)* = exp(—tA*), t > 0, which satisfies bounds analogous
to (2.2) with the same constant C°. The constant C'* will appear as the stability
constant in the a posteriori error estimate that we shall prove below. As already
remarked, we assume that this constant is of moderate size.

Remark. We do not assume that w < 0 in (2.1), in which case the bounds in
(2.2) would decay exponentially with ¢. Thus, A may have spectrum at A = 0 or
arbitrarily close to A = 0. Our results hold, e.g., for A = —A (the Laplacian)
with homogeneous Dirichlet boundary conditions (w < 0), and for A = —A with
homogeneous Neumann boundary conditions (w = 0).

3. THE DISCONTINUOUS (GARLERKIN METHOD

For the discretization of (1.1) we consider the dG(q)-method, which is a Galerkin
method with discontinuous piecewise polynomials of degree ¢ > 0 defined as fol-
lows. Let 0 =tg < --- <tp_1 <t, <--- be a mesh with corresponding time steps
k, = t, — t,—1 and time intervals I, = (t,_1,t,). Let Py(H) = {v : v(t) =
Yo vit!, v; € H} and define the function space V, = {v = v(t) : v|1, €
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P,(H), n = 1,2,...}. We note that the functions in V;, may be discontinuous
at the mesh points ¢,, and we define v = lim,_,+ v(t, + s).

The dG(q)-method for (1.1) defines an approximate solution U € V; recursively
on I, forn =1,2,..., by setting U; = uo, and then

(3.1) / (U + AU,0) dt + (U, 0t )

I,
= (U7 )+ / (f,0)dt, o€ Py(H).
I,

In Theorem 3 below we show that (3.1) has a unique solution U € P,(H) for any
U, 1€ Hand feL(I; H).
For the analysis of this method we introduce some more notation. Let [v], =

v — v, and define the bilinear form

N N—-1
(32)  Bn(v,w) = Z/I 6+ Av,w)dt + 3 (s w?) + (0w

N N-1
(3.3) =Y / (v, = + A"w) dt — 3 (07, [w]n) + (v wR),
n=1 I n=1

where the second line is obtained by integration by parts. By summation of (3.1)
it follows that U satisfies

tN
(3.4) BN(U,U):(ug,vJ)+/ (f,v)dt, YveV,, N=1,2,....
0

In view of (1.1) we then have, for the error e = u — U,
(3.5) By(e,v) =0, YveV, N=12,....

This “orthogonality relation” is a basic ingredient in our error analysis.

4. THE a posteriori ERROR ESTIMATE

We shall now prove an a posteriori error estimate of the form (1.3) for the
dG(q)-method (3.1) applied to (1.1), with the logarithmic factor modified to Ly =
1 + log(tn/kn). We recall that the piecewise constant functions k = k(t) and
[U] = [U](t) are defined by

k(t) =kp=tn —tn_1, [Ul(t)=[Uln-1=U},-U,_,, fortel,.

Theorem 1. Let u and U be the solutions of (1.1) and (3.4), respectively. Then
we have, for N =1,2,...,

lu(tn) = Uyll < CiCSLN(“[U]”Lw(JN;H) + ||kq+2f(q+1)”Loo(JN;H));

where Jy = (0,tx), the constant C* depends only on q, C° is the constant in (2.2),
and Ly =1+ log(tn/kN).

Proof. Let z(t) = E(ty — t)*ey for t < ty, where ey = u(ty) — Uy- In view of
(2.2) we have

(4.1) 2@ < Collexll, 142 < C*(tx — ) lexll, for ¢ < ta.
Since z is the solution of the backward evolution problem
(4.2) —2()+ A%2(t) =0, t<itn; 2(tn) =9,
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with data ¢ = ey, which is the dual of the problem (2.3), it is clear from (3.3) that
By (w,z) = (wy, ey),

for any piecewise smooth function w. In particular, with w = e = u — U, in view
of (3.5) and (3.2), we have, for any v € V,

llex|* = B (e,z) = Bn(e,z —v)

I,

N
— Z (/ (e + Ae,z —v) dt + ([e]n-1,(z — 0)1—1))

I”'L

N
- (/ (f = U = AU,z = v)dt — ([U]n 1.z =) 1)),

where we also used the facts that e; =uo — U, =0, &+ Au = f, and [u],—1 = 0.
Choosing v = Pz, where P : Ly(Jn; H) — Vj, is the orthogonal projection defined
by

(4.3) /In(Pz,w)dt = /In(z,w) dt, Ywe Py(H), n=12,...,
we get
N
lexl? =3 ([ (# = P12 = P2ydt = (Ulaor, (= P2

Estimating z — Pz here by

llz = Pzllr . (1,;m) < C*min (”éllLl(In;H): “z”Loo(In;H)):

and recalling (4.1), we get

N-1

lewl? < €% 37 (kallf = PAlbactustny + N0l 120t

n=1
+C* (knf = PFllpctimsmn + WUl 12l i
< C(Ik(f = PHlls i) + MUz ain )
% (el zacanssm + 12l iy )
< CC Ly (Ik(f = PH)lltiansmy + MUz s ) el

Finally, we use the fact that
(4.4) 1 = Pfllio(rusmy < CRE LD 15,

and the proof is complete. O

5. THE a priori ERROR ESTIMATE

We now prove an a priori error estimate of the form (1.2). We begin by showing
that the uniform-in-time strong stability (2.2) for the bounded analytic semigroup
E(t) carries over to the solution operator of the dG(q)-method.
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In order to formulate this, we let ¢ € H be given and let Z € V, be the solution
of the equation

(5.1) Bn(v,2) = (vy, ), VYveV,

which is the dG(q)-discretization of the backward problem (4.2) and the dual of
(3.4) with f = 0. The following result is the main technical innovation of the
present work. It provides the strong stability estimate needed in the a priori error
estimate. The corresponding result for the case when A is self-adjoint was proved
in [1] under the mesh condition &, < ckpy1, which we have removed here.

Theorem 2. There is a constant C; depending only on C° and q such that the
solution Z of (5.1) satisfies, for N = 1,2,..., with Jy = (0,tn) and Ly = 1 +
log(tn /kn),

(5.2) 1Z1| e w2y < Cglldll,
(5.3) 1A* Z|| b o (311 < Cq(tn = ta-1)HIgll, n=1,...,N,
(5.4) A" Z|| Ly (sns1r) < CqLn|loll-

Proof. We first note that (5.4) follows from (5.3). For the proofs of (5.2) and (5.3)
we note that, by the change of variable t — t5 — t, it is equivalent to estimate the
solution of the forward evolution problem (3.4) with A replaced by A*, f =0, and
a reversed mesh. Since ||E(t)|| = ||E@®)*|| and [|AE(t)|| = ||A*E(t)*||, we conclude
that A* is sectorial with the same constants as A; see (2.1). For convenience of
notation, we shall therefore estimate the solution U of (3.4) with f = 0 and show
that

(5.5) WU Lo (tnsiry + tnll AUl (151 < Clluoll, n=1,2,....

Here, and in the following, C' denotes various constants that depend only on ¢ and
on the constants in (2.1) or, equivalently, on the constant C*® in (2.2), but not on
t, or the mesh.

1. Estimates at the nodes. It is known, see [6], that the nodal values of U are
given by U, = [[;-, r(kiA)ug, where r(X) = pi1(N)/p2(}) is a rational function,
namely, the Padé approximation of e=* of order O(A\?¢*!), with p; and p, polyno-
mials of degrees q and ¢ + 1, respectively. For example, r(A\) =1/(1+ ) for g =0
(the implicit Euler method), and r()\) = (1 — X\/3)/(1 + 2)/3 + A\%/6) for ¢ = 1.

The estimate corresponding to (5.2) at the nodes, i.e.,

(56) 1071 = || T rtuAyuo] < Cllugll, n=1,2.....
=1

was proved in [9]. We shall show that
(5.7) IAUL || < Ctotfluoll, n=1,2,...,

corresponding to (5.3); for transparency, we begin with the special case ¢ = 0.
Let kmax = maxi<j<nk; and consider first the case kmax < tn/2. We use the
Dunford-Taylor formula

1 n
. N = kiA)AR(N A) dX
69 AU =5 [ TIAROA) dha

where R(\, A) = (M — A)~! is the resolvent operator, and T = {A € C : X\ =
clz|—iz, —oo < x < oo} with ¢ > 0 so small that I is contained in the resolvent set
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of A, so that (2.1) (with w = 0) can be applied with —A € I". Then ||AR(X, A)|| < C
on I' (see [10, Theorem 5.2]), and, using the fact that, since ¢ = 0, |r(kiA)| =
1/|11+ kAl < 1/(1 + cky|z|) for A = ¢|z| — iz, we obtain

lavz<c [ H1+k e |

Here, for > 0,

H(l-l—kl.’L') >1+4+ (Zkl)$+%< Z klkj).Z'Z,
=1 =1 l

=1, I#]

where Y ", ki = t,, and

= (k) = K + oy < st + 3 ik,
=1

I#] I#j

so that, under our present assumption kmax < t,,/2, we have Zl’jzl’l# kik; > t2/2.
Hence

n

H(l + k) > 1+t,x+ iti:ﬁ >C(1+ timz), for z >0,

=1
and consequently, with s = ct,x,

ds
1+ 82

oo
|mmﬂsm#/ luoll < Ct5uol.
0

We now consider the case when kpax > t,/2. For some m with 1 <m < n, we
have k,, = kmax- By application of (5.6) to the discrete counterpart of the equation
w+ Aw = 0 with w = Au, we also have

AU, || < C|IAU,,||-
The desired estimate (5.7) now follows at once from the fact that, since ¢ =0,
AU, =k (Upoy = Up)-
More precisely,
IAUL I < B2 (101 + 1T ) < CRZHIT - I,

since ||[r(knA)|| = kM| (k. +A) 7| < C according to the resolvent estimate (2.1).
This completes the proof of (5.7) in the special case ¢ = 0.

In the general case, ¢ > 0, we still have (5.8) but with r(A) = p;(A\)/p2(\) as
described above. Again, because |r(\)| < 1 in the right half-plane (see, e.g., [11]),
and po is of higher degree than p;, we have that |r(k\)| < 1/(1 + cki|z|) on T for
some ¢ > 0, and we thus obtain (5.7) when knax < t,/2 as before.

In the case kmax > tn/2 it suffices to verify that

IAUZII < Ch U ll-

To see that this estimate holds also for ¢ > 0 we write 7(A) = ri(A) + r2()\), where
r1(A) = ¢/(A+d), with —d being a root of p», so that d is in the right half-plane, and
r2(A) = p3(A)/p2(N) with ¢ chosen so that p3(A\) = p1(A) —cep2(A)/(A+d) is of degree
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< g — 1. Correspondingly, we write U,,, = U}, + U2, where U}, = r;(kn, A)U,._,,
j = 1,2. Similarly to the case ¢ = 0, we have

AU < Chp (10—l + 101D < CRRHIUS I,

where in the last step we used the fact that ||ri(kn A)|| = |c|k;t|(dk,, +A4)7| < C
according to the resolvent estimate (2.1). For the other part we write

L [ ps(kmA) -
AUZ = — | B2 AR, A
Un =521 | oot 0 ARA AV AUy,

again leading to the estimate, with s = ck, z,

vzl < oz [
o 1l+s

Uil < CELMIU L4,

because p2 has no roots on I" and is of degree q + 1, while p3 is of degree ¢ — 1.
2. Interior estimates. So far we have estimated U and AU at the discrete time
levels t,,. In order to obtain the desired estimates for all ¢ € I,,, we write

q
Ut) =Y Ungthi((t = ta1)/kn), forte Iy,
=0

where 1; are the polynomials of degree < g determined by

vi(G/9) =0, J4,1=0,...,q (d; is Kronecker’s delta).

With matrices L = (L) and K = (Kj;) defined by Lj; = fol Yy (8);(s) ds + 010050
and Kj; = fol Yi(s)1; (s) ds, and vectors U, = (U, ;) and F = (F}) with Fy = U,,_,,
F;=0,7=1,...,q, we can write (3.1) with f =0 as

(IL + k, AK)U, = F,
where I : H — H is the identity operator. Solving for the components of U,, using
Cramer’s rule, we find that

Un,j =rj(knA)U,.

n—1»

where 7;(A) = p1,;(A)/p2(N), p2 is the same polynomial of degree g + 1 as above,
with no roots in the right half-plane, and the p; ; are polynomials of degree g. Using
again the Dunford-Taylor formula, we have

A’Uw:i_/ ri(kn\) RN, A)dNA'U,_, 1=0,1, j=0,...,q,
271 To

where the contour I'y is obtained from I' by passing to the left of the origin on a
circular arc of radius ek, ! with € so small that the r;()\) have no poles inside the
circle of radius e. Recalling from (2.1) that [|[R(\, 4)|| < M|X|7! for X € Ty, we
obtain by a standard argument

1A' Unsll < CIA'U,_4ll, 1=0,1,j=0,...,q.

Hence, using also our previous estimate (5.6) for U, ,

(5.9) WU Lo (13m0 < ija'X”Un,j“ < COIUZI < Clluoll, n=1,2,...,

which is the desired estimate for U in (5.5).
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In order to estimate AU we first assume that k, < t,/2. We then obtain in a
similar way (note that n > 1 and ¢, < 2t,_1 in this case)

C C
< _
tn_1||uo|| t ||u0||

It remains to consider the case when kj, > t,/2. Then the identity

AU Lo (rs1) < Cmax [[AUn ]| < O AU, [l <

knAU, = K~Y(F — ILU,),

together with our previous estimate (5.6) for U, , gives
1AV 2 (2,5 < C'max [[AUn 5| < Chyy n Ul < = || Ll < —||uO||

This proves the estimate for AU in (5.5). O

The following existence result for equation (3.1) is proved by the techniques used
in the second step of the previous proof. We omit the details.

Theorem 3. Equation (3.1) has a a unique solution U € Py(H) for anyU,_, € H
and f € Li(I,; H). The solution satisfies U(t) € D(A) and

NN £ o sy + Enll AUz o 10y < C (10Ul + 1 f |z 20s))»
where C' depends only on q.
Finally we prove the a priori error estimate.

Theorem 4. Let u and U be the solutions of (1.1) and (3.4), respectively. Then
we have, for N =1,2,...,

lu = Ul (gn;m) < CiCS(IQIaSXNLn) [LRRTA R [PAE A
where Jy = (0,tx), the constant C* depends only on q, Cy is the constant in (5.4),
and L, =1+ log(tn/kn).

Proof. Let Q : C(Jn; H) — V5 be the interpolation operator defined by
(Qu), = ug; / (Qu)vds:/ uwvds, Yv € P;_i(H)
I, I,

(the second condition is not used when ¢ = 0). Choosing ¢ = ey, v =Qu —U in
(5.1), we get

lexll” = (Qu=U)y.ex) = Bn(Qu-TU, Z)
= Bn(Qu—wu,Z) + Bn(e,Z) = BN (Qu — u, Z)

—Z/ (Qu—u,~Z + A*Z) dt

- Z [Z]) + (Qu —uw)y, Z¥)

=1

N
_ Z/ (Qu —u, A*Z) dt,
n=1

I,
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where we used the orthogonality relation (3.5), (3.3), and the definition of (). The
interpolation error estimate

llu = QullL(r,imy < CRE WL 13m0y,
and (5.4) of Theorem 2 now yield
(5.10) len|l < CC LN IR DL gyimy, N =12,
In order to estimate ||e||7, (7. .y we writee = u—U = (u—Pu)+(Pu—U) = n+80,
oo (In;H) ]
where P is the orthogonal projection defined in (4.3). In view of (4.4) it suffices

to estimate ||0(|_(s,;m)- Substituting e = 7 + 6 in the local version of the error
equation (3.5), and integrating by parts on 7}, we arrive at

[ @ a0,0)de+ 6308 0) = i) — o) - [ (-5 AT
I, I

= (67:—171}:—1) - (77;;”;) Vo € Pq(H)
By the same argument as in the proof of (5.9) this leads to

101l e (2,5m) < Clllen—all + lInz )

Hence
llellz . (ry;m) < C(lénnaéXN llew Il + 10l Lo (gn; )5
and the required result follows by (5.10) and (4.4). O
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