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1 Introduction and main result

Let dy(z) = e~ 1"Pdz be the Gaussian measure in R, d > 1. Then the operator
L = —3A + 1 -V, defined on the space of test functions (i.e., the space C§°(R?) of
smooth functions with compact support on R?), has a self-adjoint extension to L?(7), also
denoted L. The spectral properties of L are well known: L is positive semi-definite with
discrete spectrum {0, 1,...}. For d = 1, the eigenfunctions are the Hermite polynomials,
given by H,(z) = (—1)"ew2d‘fv—"ne_‘”2, n = 0,1,.... The eigenfunctions for arbitrary d are
tensor products H, = QL ,H,,, where « is a multiindex.

The Ornstein-Uhlenbeck semi-group (e~*);5¢ is thus well defined on L?(y). It is given

by the Mehler kernel

1 e —yf?
My(z,y) = Ti2(1 — ¢ 2t)d/2 eXp <_1—7€2t ’

in the sense that et f(z) = [ My(z,y)f(y)dy for f € L?(y). This makes it possible to
define powers of L and compute their kernels. A negative power L~ will be defined on
the subspace Hy of L?(7y) consisting of functions having vanishing integral against . We
denote by Iy : L?(y) — Hy" the orthogonal projection.

Letting D = (01, ...,04) be the differentiation operator in R?, one can form products
DL °II, with o a multiindex and b > 0. When |a| = 2b, this is a Riesz operator. These
Riesz operators have been studied by several authors. They are bounded on LP(v), 1 <
p < oco. This was first proved by P. A. Meyer [8] and by Gundy [4], who used probabilistic
methods. See also [2] for a simpler proof of P. A. Meyer’s theorem. Analytic proofs were
then found by Urbina [15], Pisier [11], Gutierrez [5] and Gutierrez, Segovia and Torrea
[6]. We refer to Fabes, Gutierrez and Scotto [1] for further bibliographical information.
These boundedness properties of course imply a priori inequalities of the type || D*u ||,<||
Lou ||, -

To prove the weak type (1,1) inequality when it holds, the methods of these papers
do not seem adequate. In dimension d = 1, Muckenhoupt [9] obtained this inequality for
first-order Riesz operators, i.e. || = 1,b = 1/2. The extension to arbitrary dimension was
done by Fabes, Gutiérrez and Scotto [1], still for first order operators. But for third-order
operators and d = 1, a counterexample to the weak type (1,1) boundedness is given in
Forzani and Scotto [3]. In the present paper, we prove the weak type (1,1) estimate for
second-order Riesz operators and arbitrary finite d. Here is the precise statement of our
main result

Theorem 1.1 For any multiinder o with |a| = 2, the operator D*L™'Tl is of weak type
(1,1) with respect to .

This result has been obtained independently also by Mendrguez, Pérez, and Soria [7],
see also [10].



We also determine the distributional kernel of a Riesz operator of any order (see
(3.20)).

The proof of Theorem 1.1 consists of two parts, corresponding to the local and the
global parts of the operator and to be found in Sections 3 and 4, respectively. We define
the local part in Section 2, before Theorem 2.7, by restricting the kernel to pairs of points
(xz,y) whose mutual distance is no larger than m The reason for this is that z
and y are then contained in a small ball where ~ is essentially proportional to Lebesgue
measure. Locally, our Riesz operators behave like Euclidean Riesz operators; they are
given by principal value singular integrals plus, in some cases, a constant multiple of
the identity. Our proof for this part, given in Section 3, is based on comparison with
a Calderén-Zygmund convolution kernel. The ordinary L? or L' — weak L' estimates
for the operator given by this latter kernel can be transferred from Lebesgue measure to
Gaussian measure 7y, via a summation over balls of the type mentioned above. The details
of this transference are given in Section 2 (see Lemma 2.4 and Theorem 2.7). This local
argument holds for Riesz operators of any order.

The proof for the remaining, global part of the operator, to be found in Section 4, is
based on a technical lemma giving estimates of the absolute value of the kernel (Lemma
4.3). These estimates make it possible to apply the so called “method of forbidden re-
gions”, which was previously used in Sjogren [13] to get the weak type (1, 1) inequality for
the maximal operator of the Ornstein-Uhlenbeck semigroup. No cancellation is involved
here.

Finally, in Section 5, we present a counterexample, valid in arbitrary dimension, to
show that the Riesz transforms of order at least three are not of weak type (1,1) with
respect to the Gaussian measure.



2  Some auxiliary results

In the following, we shall always be working in the euclidean space R? for d > 1. Instead of
using the heat semigroup e~**, we shall find it more convenient to work with the operators
r’, 0 < r < 1, whose integral kernel M, can be obtained from the Mehler kernel by the
change of variables t = —logr. Thus

1 lrz — y|?
Td2(1 — 72)d/2 P\ T 2 )

Lemma 2.1 Let p be a function in L*((0,1), &). If

M, (z,y) =

then
m(L)f() = [ K@y) f)dy.  fe€L(),

where

K(ay) = [ Mila,0) o) 2

The proof follows immediately from the spectral analysis in terms of the semigroup.

For every nonnegative integer n we shall denote by P, the orthogonal projection onto
the space spanned by the Hermite polynomials of degree n.

Remark. Since m(L)Ily = m(L) — m(0)Fy, the kernel of the operator m(L)II; can be
obtained from that of m(L) by subtracting the kernel of m(0)F,, which is

m(0) 2o~ u = /1 p(r) ar 2P,
0 r

For each b > 0, let

1 dr

Ky(z,y) = () /01 (Mr(x,y) - ﬁ*d/Qe*IyP) (—logr)*! =

Lemma 2.2 For each b > 0, the kernel of the operator L=°11, is K, in the sense that for
all test functions ¢ and ¢ on R%, the following identity holds

(LTo6,¥) = [[ Ky, ) 6(y) (z) dy () dy.



Proof. We begin by proving that the kernel K} defines a distribution on R? x R?. Let ¢
and 1 be two test functions on R?. We claim that the integral

(2.3) // /01 (MT(JE, y) — W_d/Qe_‘yP) (—logr)"™ ¢(y) ¥(x) % dvy(z) dy

is absolutely convergent and that its absolute value is bounded by C max |¢| max |1/,
where C' is a constant that depends on the supports of ¢ and . Indeed, we write

// /01 ‘(Mr(ac, y) — 7T*d/2e*|y\2) (—logr)" L o(y) 1/}(11;)‘ % dvy(z) dy

i 1
[ I
0 2
and we estimate the two integrals separately. Since

M, (2,y) — 72 V| < r(r,z,y)

where 6 is a function locally bounded in (z,y) uniformly for 0 < r < 1/2, the first integral
is convergent and is bounded by C max |¢| max |¢)|. To obtain the desired estimate of the
second integral, we integrate first with respect to y and then we use the fact that the
function (—logr)®~'r~! is integrable on [1/2, 1].
By applying Lemma 2.1 and the remark following it to p(r) = r¢(—logr)®~', € > 0,
b > 0, we obtain that the integral kernel of the operator (e + L)™°Il is
1

Jep(@,y) = =~ /1 (M (x,y) — W‘d/ze_“"Q) (=logr)o~'r<=tar
C,b Y F(b) 0 T 9 .

Thus
(el + L) "*Tlo, ) = [[ Jea () 6() () dy (@),

As € tends to 0, the left hand side tends to (L=°¢, ) by the spectral theorem. Thus we
only need to show that

lim / / Jeo(z,y) o(y) ¥(x) dy(x) dy = / Ky(z,y) ¢(y) ¥(z) dy(z) dy

for all test functions ¢ and 1. This is immediate in view of the absolute convergence of
(2.3). n

We present now a simple covering lemma, which will be basic in passing from estimates
with respect to Lebesgue measure for the local part to estimates with respect to the
Gaussian measure. The action will take place in the local region, which we define here,
once and for all, as

N={(z,y) eR* x R* : |x—y|<7}.
{ 1+ [z] + [yl
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Also, for z € R¢, we shall denote
N,={yer : (z,y) € N}.

We shall use the notation E¢ for the complement of a set F in R? or R x R¢, as the case
might be. Besides, |F| will stand for the Lebesgue measure of E. We shall freely use the
letters C' < oo or ¢ > 0 to denote constants, not necessarily equal at different occurrences.

Lemma 2.4 Let B(z;, m) be a mazimal family of disjoint balls, where k = 1/20.

Denote
K

B; :B(%‘,m
J

).
Then

1. The collection {B;}jen covers R and if 4B; stands for a ball centered at x; with
radius 4 times that of Bj, the balls {4B;};en have bounded overlap, i.e., there is
a constant Cy such that no point can belong to more than Cy balls of the family

{4Bj}j€N
2. x € Bjandy € 4B; = (z,y) € N.

3. x € Bj = B(.’L‘, %m) C 4BJ

Proof. We start with the simple observation that

1 1+ ||
2.5 r—yl <l = =< < 2.
To prove 3., we notice that z € B(x, ﬁ\zl) implies

K 4k
<
+ a1+ [y

I

K
|z —zj| < |z —z|+ |z —z;] < 1+\x|+1

where we used (2.5). Similarly 2. follows from

DK 1
< <
L+ |z = 14 |z| + |y

z—y| < |z —x;] + |z; —y|

7

which holds because

1+ |z
Lt o] +lyl <1+ ol + 1+ Jyl < 401+ ) = — ==




Finally we come to the proof of 1. Assume z ¢ B;. We want to prove that B(z, m)
and B(z;, 4(1+|%D) are disjoint. This will be guaranteed once we prove that

K + K
(T+lzl) A0+ [a))

(2.6) |z — x| > 1
assuming |z — z;| > 7% If [2] > |z;[/2, we have 1/(1 + |2[) < 2/(1 + |z;|) and so

K > K n K
Lt o] = 201+ |z50) - 41+ [2])°

|z — 25 >

which implies (2.6). If instead |z| < |z;|/2, then |z — z;| > |z;|/2. It follows that

: u> LRl el | s
_2’

1
Z—x;| > = +
| i 2<1+|xj| 2 )72 14|z

which again implies (2.6)

It only remains to prove the bounded overlap of the balls 4B;. Suppose z € 4B; for
J values of j. Then B(z, 11f|2|) contains B(z;, m) for these J values of j because of
(2.5). Since the latter balls are pairwise disjoint and the Lebesgue measures of all these

balls are comparable, this gives clearly an upper bound for J.

We shall use this lemma to get a way of passing from an estimate for an operator with
respect to Lebesgue measure to an estimate for the local part of the operator with respect
to Gaussian measure.

Let T be a linear operator mapping C°(R?) into the space of measurable functions in
R?. Suppose that for f € C{°(R?) and x ¢ supp (f), one has

Tf@) = [, K@) @)y

for a kernel K(z,y), which we for simplicity assume continuous off the diagonal. Then
we can define the global part of T by

Tuonf (@) = [ K (@y)(1 = xo(, )/ () dy,

and the local part of T' by Tjocf =T f — Tyiosf-

Theorem 2.7 Let T and K be as just described, and assume that T is of weak type (1,1)
with respect to Lebesque measure and that the kernel satisfies the inequality |K(z,y)| <
Clz —y| ¢ for x #y. Then Ty, is of weak type (1,1) with respect to 7.



Proof. Assume that x is in the ball B; from the covering in Lemma 2.4. Then

(2.8) Tlocf( )
= Tf(z /K T, Y)X(4B;)e (Y )f(y)dy+/K(m,y)(xmB,-)c(y) — xne(z,9)) f(y)dy

= T(fxa;)(® +/K T, y)xn\48; (Y) f (y)dy.

For the last integral here, we observe that ¢/(1 + |y|) < |y — 2| < C/(1 + |y|) when the
integrand does not vanish, and then |K(z,y)| < C(1 + |y|)% Thus

Tof @) < S @TPran) @I+ [0 b))y
= Tlf( )+ T°f(x).

The weak type property of T implies that for A > 0,
(2.9) o€ By < IT(fxan)@) > M < OX [ |7(a)lda.

Notice that the Gaussian density e 1*” is of constant order of magnitude in each 4B;.
Hence we can replace Lebesgue measure by + in both sides of (2.9). By summing in j
and using the bounded overlap of the balls 4B, from Lemma 2.4, we conclude that T" is
of weak type (1,1) for . Further, since the Gaussian density is also essentially constant
in the ball {z : |y —z| < C/(1+|y|)}, uniformly in y, we have

—ly/?
L@@ < [l [ @ )y <O [ 1fle " dy,

Thus T2 is of strong type (1,1) with respect to the Gaussian measure, and the theorem
follows.
[ |



3 The local part

The aim of this section is to estimate the local part of the Riesz operators. After some

estimates for the kernel of such an operator, we introduce a convolution kernel which

turns out to be homogeneous and of Calderéon-Zygmund type. The corresponding operator

approximates the Riesz operator near the diagonal. This allows us to see that the Riesz

operator is given by a principal value integral plus a constant multiple of the identity.
As we showed in Lemma 2.2, the kernel of L~°II; is for b > 0

| 2

1 1 b—-1 Jra— )
Kb(xay) = Cb/ (lOg _) ((1 - 7"2)7%@ 17792 — 67|y‘ ) @
0 r

T

Fix a multiindex « with 0 < a = |a|. We shall need the formula

N _ lsz—y|? _ (—s)a ST — _ lsz—y)?

which is a consequence of the definition of the Hermite polynomials. Then one verifies

T —y ) _lrz=y1? dr
[ 1-7

s =a [ (me!) 0 4 (22

We shall consider this kernel near the diagonal. Since

r

||

(3.3) |Hy(z)|e " < ce= 7,

where C' may depend on «, we get, for (z,y) € N and 0 < r < 1,

o ()

where the last inequality is a consequence of the following estimate, valid in N :

lrz—y|? le—y|2

x
e 1-r2 S 06_ A(1—r) S 06_ 4(1—7‘)’

(3-5) re —yP =[x —y) - 1 -r)zf =l -y’ + (1 -r)*z]” = 2(1 - r){z,2 — y)
> |z =y’ + (1 —r)’z* —2(1 - 7).

Lemma 3.6 For |a]=a >0, b>0 and (z,y) € N, we have

Clr —y/®-a=d4  2b—a-d<0,
|DeKy(z,y)] < ¢ Clog |w€y‘, 2b—a—d=0,
C, 2b—a—d>0.




Proof. We split the integral in (3.2) into two parts. It is easy to see from (3.4) that

1/2
\

<C ' (1- r)b’a/Q’d/%leffﬂ_—fgdr,
1/2

<C.

Similarly

1
/1/2...

and, after the change of variables u = (1 — r)!|z — y|?/4, the last quantity becomes

Clz — y|2r—ot /°° y—(b—a/2-d/2)=1 ~u g,
lz—y|?/2

From here, the estimates of the lemma readily follow .
|

For a < 2b, this lemma implies that the singularity of D2 K}, on the diagonal is in-
tegrable in y. One can then differentiate under the integral sign when Kj is integrated
against a test function f € C§°, to obtain

D2 [ Ky(w,9)fw)dy = [ DIKy(z,y)f(y)dy, a <20,

A derivative DK, of order || = 2b has a nonintegrable singularity on the diagonal,
and we shall compare it with a convolution kernel. Let

- 1 1\ o1 _lel® d
Ko@) =c [ (log)  (1=r?)Hre T
0 T T

Then, for any «,

- 1 1\ o (=1)ar? x _ 1= dr
. DK, = log — 1— 2 QR N S v 12
B0 DR =a [ (logy) (-7 0 (m)e ;
Assume now that a = 2b. Write for a test function f
(38) D [ K, W)y
= D7 [ Koo —y)f)dy+ Ds [ (Kolw,y) - Koz =) f ()dy
=1+1I

We shall see that one can differentiate under the integral sign in I/. This will be
a consequence of the following lemma, which says that the differentiated kernel has an
integrable singularity on the diagonal.

10



Lemma 3.9 For |a|=2b> 0 and (z,y) € N, we have

. c-1tzl d>1
D2Ky(z,y) — D*Ky(z — y)| < E yl ’ ’
| (@) C(1+ [z[) log \IHI E d=1

Proof. We shall estimate the difference between the integrals in (3.2) and (3.7), with x
replaced by x — y in the integrand of (3.7). For either of these integrands, we easily see

that
1/2
/ ‘ <0
0

exactly as in the proof of Lemma 3.6. Let us define r(z) = max(%,1 — [z|7?).
Consider now the integrals between 1/2 and r(x) of the same integrands. By using
(3.4) and a simpler version of it in which rz is replaced by x, we obtain, in both cases

/T(w)
1/2

The same change of variables as in Lemma 3.6 transforms the last integral into

|z[?|z—y|?/4
Clz — y|_d/ u* e v du.
z—y|?/2

Observing that the upper limit of integration here is small, we conclude that

/T(w)
1/2

We finally consider the difference between the integrals from r(z) to 1. This difference
can be estimated by

(3.10) C/ ) /2

<o [ i
1/2

< Clz|

dr.

rT — Yy _lra—y/? T—y a—yl?
H 1—1r2 p— H e — 1—r2
‘“(ﬂ—r?)e a<\/1—7‘2)6

For fixed r, let us define

The derivative will be

2(x, 57 —y) _lse—y? ST —y
! I N )

_lsz—y? y|2 d -y T
1—r2 0;H, J
S (=) 2

_le=y® ) 2z, sz — ) ST —y 5T —y zj
= 1—r2 — ! H +2§ a'Hf‘ s ’
i { 1—r2 TU\VT—72 = A N A

11




so that, by using (3.3), we see that

|z|  _lsz—u®
e 4(-r) .
1—1r2

(3.11) ¢'(s)| < C

Applying the mean value theorem together with (3.11), we can estimate (3.10) by

1 ‘x| 7|swfy|2
3.12 0/ 1 —p2y-d2-1 0= 4 (1 = r)dr.
@12 e t T L
From (3.5) we see that
lsz—y|? z—y|
(3.13) sup 674(1_22) < Ce_‘s(l—y‘”.

r<s<1

By applying (3.13) to (3.12), we finally see that (3.10) is bounded by

1 lz—y|?
(3.14) Clz| (1 —r) 4212~ S dr,

1—|z|=2

which, after the change of variables u = (1 —r) !z — y|?/8, becomes

o0

C\xHx _ y|—d+1ﬁ ud/273/267udu.

z2|o—y|2
8

When d > 1, this is at most C|z||z —y| ¢*!. For the case d = 1, we split the last integral
at the point 1 and get the bound

C|z|log 7|x||x I

The estimates we have obtained for the different parts lead us immediately to the conclu-
sion of the lemma.
[ |

To deal with I in (3.8), we study the singularities of some derivatives of K.

Lemma 3.15 Let o be a multiindez of length a = 2b — 1 or 2b, b > 0. Then there exists
a function h, homogeneous of degree 2b — a — d and smooth in ®R¢ \ {0}, such that

DKy(z) = h(zx) + O(|z|?*> ¢ 4 as 2 — 0,
except when d =1 and a = 2b — 1. In this exceptional case, we have instead

D®Ky(z) = ¢, log || + cosign(z) + 3 + o(1) as z — 0.

12



Proof. Write the integral in (3.7) as Jo/* + f11/2_ Clearly
1/2

(3.16) / —co+o(l) as z— 0,
0

so that this part of D®K, verifies the conclusion of the lemma.
In f11/2 we observe that

(1o 1/r) =24 = o1 — %)L (1 + (1 = r)g(r),

with ¢ a bounded function in [1/2,1], and expand the Hermite polynomial. Then f11/2 is
seen to be a sum of terms

1 _l=l®
(3.17) Cs // (1 — r2)b=1=4/2=0/2=81/200 =353 1 (1 4 (1 — 7)g(r))dr,

1/2
taken over multiindices § between 0 and «. The factor r here is introduced to facilitate
the change of variables s = (1 —r2)/|z|%. If we neglect the term (1 — r)g(r)for a moment,
the expression (3.17) is transformed to

(3.18) CI5|x|2b—a—d—|5| /3/(4Iz| ) Sb-1-d/2—a/2[3|/2 /s g
0

In the main case 2b — a — d — |§| < 0, the integral in (3.18) converges even if extended to
+00, and for small |z| its value is then ¢+ O(|z|), for some ¢ > 0. Then the expression in
(3.18) is clearly

cx®|z|?7e 0 L O (x|, asz — 0.

The remaining, exceptional case 2b—a—d — |0| = 0 occurs precisely when a = 2b—1, d =
1, 6 = 0. Then (3.18) is instead
c1log|z| + co + o(1).

The contribution from the term (1 — r)g(r) can be transformed similarly, and is seen
to be no larger than

.’.82
Q = O|g|?—aa+2 /3/(4I | )sb_d/Q_a/Z_M'/Qe_l/st.
0

If 2b — a < d + |§| — 2, the integral here converges at oo, and Q = O(|z|?*7*=4+2) 1 — (.
If 20 — a = d + |6| — 2, we similarly find that Q = O(|z|**"%"4*21log 1/|z|). In these two
cases, we thus have Q = O(|z|?~*~4t1). If finally 2b—a > d+|6| — 2, we get Q@ = O(|z|1?).
Then @Q = O(|z[*~%4*1) again, provided |§| > 2b—a—d+ 1. This last inequality is easily
seen to be satisfied as soon as we are not in the exceptional case defined above. With

13



this sole exception, we thus have Q = O(|z|?*=2~%*1). In the exceptional case, we observe

instead directly that the contribution to (3.17) coming from the term (1 — r)g(r) is

L _=?
/ e =2 h(r)rdr,
1/2
for some bounded function A which does not depend on x. This expression is ¢ + o(1) as
x — 0. From this the lemma follows.

n

Consider now term [ in (3.8), with |a| = 2b and f € Cg°. Let D* = 9; D%, for some
j and some o' with |o/| = 2b — 1, and write P = D K, for short. Then

D(Rys N)e) = 5o [ P)fe =)y

0
= | Ply)fi(r—y)dy = —lim P(y)=—f(xz — y)dy.
/ W) fi(x — y)dy i f o, P o, (x —y)dy
We integrate by parts with respect to y; in the last integral. Let p; denote the projection
R? — R¢! obtained by deleting the jth coordinate. If ¢/ € R?"! satisfies |¢/| < p, the line
p; ' (y') has two intersections with the sphere |y| = p denoted y,(y') and y_(y’), where
the subscript indicates the sign of the jth coordinate. We get

(3.19) Da(f(b* f(z)
=% </|y'|<,,(P(y+(y’))f (r =y (v) = Ply-(y") f(x —y-(¢)))dy’

p—0

v [ oPwia- ).
lyl>p
From Lemma 3.15 it follows that the integral in ' in the last expression tends to a, f(x)
as p — 0. Here a, is a constant which is nonzero for instance when D = 8]2. Thus the
last integral converges, and its limit is a principal value.
Combining I and 71, we finally get

620) D2 ( [ Kalon)f0)dy) = auf @)+ py. [ DIEKi(e,0) )y

for |o| =20 > 0.
Off the diagonal, the operator R, = D*L°Il; is thus given by the smooth kernel

D*Ky. In particular, we have a decomposition Ry, = R, joc + R gi0b, as defined in Section
2.

Theorem 3.21 Let « be a multiinder with |o| = 2b > 0. Then Ra o is of weak type
(1,1) with respect to the Gaussian measure 7.

14



Proof. Let h be the homogeneous function obtained in Lemma 3.15. It then follows from
Lemmas 3.9 and 3.15 that

U(z,y) = D*Ky(x,y) — h(z —y)

satisfies
[ e ylds < C,
(z,y)eN

where C' is independent of y. Thus the kernel ¥(z,y)xn(x,y) defines a strong type (1,1)
operator both for Lebesgue measure and for ~.

The function h must have mean value 0 on the unit sphere, since the last integral in
(3.19) has a limit for every test function f. Thus h is a Calderén-Zygmund kernel and
convolution by p.v. h defines an operator T of weak type (1,1) for Lebesgue measure in
R?. Hence, Theorem 2.7 implies that T}, is of weak type (1,1) for 7. It now follows that
the operator Ry, joc, defined by the kernel

p.v. DKy(z,y)xn(z,y)

is of weak type (1, 1) for ~.
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4 'The global part of the second-order operators

The major part of this section consists of the technical Lemma 4.3, giving size estimates for
Riesz kernels of order 2. Then this lemma is applied, via the “forbidden regions” method,
to obtain the weak type (1, 1) estimate of the corresponding Riesz operators.

Off the diagonal, the kernel of the second order Riesz operator R;, = 0;0, L 11, is

1 e re —y|?\ dr
401/0 (1 —r2)~42 ’r?(ra; — ;) (rop — yg) exp (—7| . 7“2‘ )7

1 lrz — y|?\ dr
—95. / 1 — p2)—4/2-1,2 e IV
jk C1 0( %) - €exp 1_ 2 r

The absolute value of this kernel can be estimated by the positive kernel

1
(4.1) K(@,y) = [ w(riz,y)e = dr
0
where
2 2
_d/o— TC — Y TC — Y
(4.2) o(r;z,y)=r(1—r") 1 (1 jre=yl - r2| > and  @(r;z,y) = Ire = y" T r2| :

In this section we shall prove that the global part T, of the integral operator with kernel
K, i.e.

Tyosf (2) = [ K(2,9) xve(, ) f(v) dy,

is of weak type (1,1). This clearly implies that the global part of any second order Riesz
operator is of weak type (1,1).

We cover the set {z : |z| > 1} with nonoverlapping cubes @;,i = 1,2, ..., centred at
points z;, |z;| > 1 and of diameters d; such that ¢/|z;| < d; < 1/(10|z;|), for some ¢ > 0.
This can clearly be done. We number the cubes in such a way that |z;| is nondecreasing.
Let

K*(z,y) = sup{K(z',y) : 2’ in the same Q; as z, or ' = z}.

For |y| > 1 we let n = |y| and write x = {y/n+ v, where £ € R and v L y. Define for
such a y regions D; = D;(y) by

D, = {z:€&£ <0}

D, = {z:0<&<n, |z —y[> pn}
Dy= {z:(z,y) €N, 0<E<n, [z—y| < pBn}
Dy= A{z:(v,y) € N% >, [z -yl < Bn}
Dy = {z:&>n, [z —y[> pn},

where 3 > 0 is sufficiently small.
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Lemma 4.3 Let (z,y) € N¢. For every 3 > 0 sufficiently small there exists a constant
C depending only on 8 and d such that the following estimates hold for |y| > 1:

(a) if x € Dy, then K(z,y) < Ce™™;
(b) if z € Dy, then K(z,y) < C(1+ &)t

Cln" + [v]) ™= + Cy/n(n — &) (=5 + [v]) ==,

(=" =+ [v]) =%

(c) if © € Dy, then K(z,y

IN

(,9)
(z,y) <
(d) if x € Ds, then K(z,y) < C
(z,y) < C.

(e) if © € Dy, then K(z,y

IN

Moreover if |y| < 1 or |z| <1, then
(f) K(z,y) < Ce™™.
These estimates remain valid with K* instead of K.

Proof. Since the kernel K is defined by the integral (4.1), to prove the lemma we shall
need to estimate the function 1 from above and the function ¢ from below over the various
regions D;. Clearly this requires that we estimate the function r — |rz — y| both from
above and from below in each region. In the following we shall often use the observation
that, if |[y| > 1 and (z,y) € N then |z — y||y| > 1/4.

Case (a). Assume that |y| > 1 and = € Dy. Since £ < 0,

re —y? _ r?la” + Iyl2 r’
2V TRV g L el + ).
Therefore ) ,
(4.4) e R e G Tl
Thus to estimate K (z,y) we write
1/2 1
(45) Ky)= [t [ o= Kany) + Kooy,

Then by (4.4)
Ky (*T y) < Ce_|y| / 1 —+ |33|2 + |y| ) —r2(|z]?+|y[? )dT < Ce~ n?
On the other hand

1 2 2 |22 4y |2
Ko(z,y) <e W [ (1—¢%)~71 (1 ( M) eIty
1/2 —r
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Here the exponential can be estimated by

__a 1z +1yl?
e 8(1—7‘2)6 8 12

and these factors take care of the first two factors in the integrand. Thus Ky(z,y) < Ce™,
which completes the proof of case (a).
Case (b). We shall use the identity

re—yl? |z —ryl

_ ) (€ =) + 120l
1 —17r2 1—7r2

(4.6) jz? + |y = T &+n

to factor out €&’ in the estimate. Since 0 < & < n, we also have the estimates

(4.7) rz—y2 = (rE—n)? 4120 < o417
(4.8) < 2

Next we write

K(z,y) = </01—ﬁ/2+ :ﬁﬂ) = Ks(z,y) + K4(z,9).

In estimating K3 we may bound the negative powers of 1 — 72 by a constant. Thus by
(4.6) and (4.7) we get

1
K3($ay) < C e§2_n2/ 7-(1 +772 +T’2|’U|2) e_c[(f—Tﬂ)2+T2\v|2] dr
0
< e {14 [T e ary [l e ay
0 0

Performing the change of variables £ — rnp = ¢ in the first integral and r|v| = t in the
second, we get

+00 1l
Ksy(z,y) < 7 {1 +/ (|t| + &) e~ dt + W/ et dt}
o v|2 Jo

< CeTT(149).
To estimate K4(z,y) we remark that |z — ry| > |z — y| for every r > 1 — 3/2. Indeed,
if r > 1— /2 and ¥ € Ds, one has that (1 —7)|y| < &|y| < 3|z — y|. Thus |z —ry| >
|z —y| — (1 = 7)|y| > |z — y|. Therefore
2 2
(& —m)?+ 2] > Pl —ry|* > Z\x —y* > - max (,82772, |v|2)
(4.9) > C(” + |v]).
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Thus, by (4.6), (4.8) and (4.9)

1 9 )
Ky(z,y) < 0652*"2/ r(1— r2) 421 (1 N 7]1%-7\v2|> .
0 —T

Performing the change of variables % =t, we get

“+o0o

Ki(w,y) < Ce&7 02 +[of)™2 [ 427 (144 e di
0

< 066277]2’

since > 1. This completes the proof of (b).
Case (c). For |y| > 1 and z € D, denote by ¢y = €y(z,y) and ¢; = €;(z,y) the two
positive numbers defined by

1
60:2<1—§>+M, 61:—<1—§>+2M,
n n 2 n n

and let 7o = 1 — €, 71 =1 — €. Since 1 — &/n < f and |v| < (7, one can choose § so
small that ro, 71 € [1/2,1]. Thus

v < ([ [ )

= K5(:r,y) +/ dT+K6($7y)a
o

where the middle integral is taken as 0 when ry > r;. To estimate Kj(z,y) we let
r € [0,7q]. Since (1 —7)n > eon = 2(n — &) + |v|, one has that

(110) €~ > (== (-8 > 30—y

and

(4.11) re —yl < [ré&E—n|+rvl
< (A=rn+rn—E£)+rvl
< (T=rn+2(n—¢&)+ vl
< 2(1—=7)n.

Thus by (4.6), (4.10) and (4.11)

. T 1— 2,2 __(1—7“)2
Ks(z,y) < C o2 / 0 r(1— T2)—d/2—1 (1 + (177')277) e P’ dr
0 -r

1—e¢
< Ce T [T (14 (1= )P)e 507 d
0
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Performing the change of variables (1 — r)n? = t, we get

(4.12) Ks(z,y) < C e d/ N1+ t) e dt
But s
(4.13) eon’ = (2(n—&) +vhn> 5 (\x —yl+lvhn =g (5 + Iv\) n

because (z,y) ¢ N; and, in particular en? > 1/8. Since the integral in (4.12) decays
exponentially in en?, we get

—d
1
Ks(z,y) < Ce& T d(en?) ™ < Cet™ 7 (5 + |v|>

by virtue of (4.13). This is the desired estimate for K5. Next we estimate Kg. We claim
that there exist two constants 0 < Cy < C such that

(4.14) lz—ry|>>Colz —y? and |rz—y> <Ol -yl

Indeed, since 7 > 71, one has (1 — 7)n < 3(n — &) + 2|v|. Thus

lz—ryl > [§—rn|
> [E—=nl—QQ—=r)n
> (n—¢&)/2 -2y

and clearly |z — ry| > |v|. We conclude that

1(n—-¢ 3
_ > —[1=5 9 hd
o=l 2 g (%5 -2l + 3l

> Lo—et )

8
> 1|x -yl
- 8
This yields the first estimate in (4.14). The second estimate follows from
re—y[<(@=r)§+n—-¢ < (L-r)n+n—¢
< Clnp—&+v))
< Clz -yl

Therefore, by (4.14), one has

2 2 1 12 2
KG(may) < 065 -n / (1_7-)*(1/2*1 <1+|$171U‘> e_%Qll_yTI dr

1 —-T

IN

+oo
C e | — y‘—d/ $4/271(1 4 f) e~Cot gt
0

< Ce T r -y
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Since |z — y| > 1/2(|z — y| + |v]) > C(n~ + |v]) for (x,y) € N°¢ and |y| > 1, the last
estimate implies that

—d
1
Kola,y) < C e (5 ; |v\) .

Finally, if 7y < 1, we have to estimate also the integral over the interval [rq, r1]. Notice
that ro < r < r; implies that ¢, <1 —1r < €. Thus

3
(4.15) lv| <

1m— —
—(n—¢&) and _77_§<1_T<477_§’
2 n n

2

whence we get the estimates

(4.16) re—y|[<n—ré+|vf=1—-r)n+r(n—§ +|v| < C(n—¢)
and ooy (€= P _ 1gE—rg? Lo
(4.17) 1—r2  1-12 +1—r22§ n—¢& +§77—§'

Define the new variable s by & —rn = ns. Then by (4.15), (4.16) and (4.17)

71 s s _ —d/2—1
/ ¢€*¢d7“ < C 66 -1 <U_§> (1+ n— g 2) 6_§_§|v‘2/@ élin s ds
" n n R

_ —d/2+1/2 —n
S Cn €£2_"2 (77 g) ( 1 +n> (1 + 77 |’U‘2>
n n—=¢§ n—=¢&

for each n > 0. By choosing n = d/2 we get

1 o\ 1/2 —d/2
/ Ye Pdr <C e (—i + 77) (_77 5) (77 § + |v |2> :
o n—¢§ n U

To obtain the desired estimate we only need to observe that by the first estimate in (4.15)
n—&>Mm—8&/2+ |v|/3> |z —y|/3>Cn! for some C > 0. This completes the proof
of case (c).

Case (d). Since

—yl? _lre—y|? lre—y|?
(4.18) <1+u> e it < (O i ,

1—1r2

we have that

1 re—
Koy < [loto o A
0

= K7($, y) + KS(‘I: y) + K9(xa y)a
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where E = {r : r>1/2, [ré —n| < (6 —n)/2} and F = [1/2,1] \ E. The integral
over [0,1/2] is clearly bounded by a constant. Now we claim that there exists a positive
constant C' such that for x in Ds

(4.19) L oP 2 O + o).

If [v] > Cyp~? this is obvious. Otherwise £ — n + |[v| > |z — y| > (4n)~! implies that
£ —n > (8n)~!. Since in this region £ ~ 1 we have that (£ —n)/¢é > C(§ —n)/n > C/n?
and (4.19) follows again. To estimate Kg we observe that if » € E then

1 &—n 38—
B/ S Y
R <l-r<g :
Therefore there exist two positive constants C' and Cy such that Kg(x,y) is bounded by
—d/2—-1
(4.20) (5 g ) ¢~ Cogt ol / ~Cogiglre=nl” 4.
R

. . £ 12
By making the change of variables (ﬁ) (r€ —n) =t, we see that (4.20) equals

—d/2—1 -1/2
() oot () e

f_—n i i 2\—n ¢#—1
< cn( . ) (4 )

for every positive n. By choosing n = (d + 1)/2 and using (4.19) and the fact that & ~ 7,

we get
—(d+1)/2
£ — _
Kra) < 0S40 £

IN

3
<O+ o) 20+ o)
< O+ fol)

Thus Ky satisfies the desired estimate. To estimate Kg we remark that for » in F'

re — y|? = (ré = n)? + rJuf? > ((6—77)2+|v|2)-

Thus
1 (€= +|v|?
Ko(z,y) < C /(1—r>d/“‘“?3 dr
1/2
< C(lg—nl+)™*
< Cly '+ )™
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The last inequality follows from the estimates
N7+ v < Clo =yl + v < C(E—n+Jv]).

This completes the proof of case (d).
Case (e). We shall actually prove that the desired estimate holds for |z — y| > fAy|.
By (4.18) we have that

1 ra—y|?

1
Kew 20 [ome ety
0

1-8/2 1
0 1-8/2

= KIO(xay)+K11(xay)'

The kernel K, is clearly bounded by a constant. To estimate K;; we remark that, since
|z —y| > 0Bn,if r >1— /2 then

re —y| >rlz —y[ - (1 —7r)|y| > Con,

where Cyp = $3(1 — 3) > 0. Thus

1 1 Cn?
Kll('fl": y) < C 1_5/2 1 — 7,2)—(1/2—16 21—p2 dr
< Cn?
< C.

This completes the proof of case (e).
Case (f). Assume first that |y| < 1. Since now |z — y| > 1/4 there exists an o < 1
such that [rez —y| > C > 0 for a < r < 1. From (4.18) we get

a 1 C
K(z,y) < C/ dr + C/ (1- 7‘2)7d/271671_—2§ dr.
0 @

The desired estimate follows, since the last two integrals are clearly bounded. The re-
maining case |y| > 1, |z| < 1, is contained in (a) and (b).

It remains to prove that the kernel K* satisfies the same estimates. If we replace the
point x by a point 2’ which is in the same cube @; and in the same region D; as z, the
order of magnitude of the right hand sides in the estimates (a)-(e) does not change. Thus
we must examine only the cases when xz and z’ are in the same cube @; but in different
regions D;. Notice that in the proof of case (e) we have actually proved that the estimate
holds for all z outside the ball {z : |z — y| > B|y|}. This remark takes care of the case
when z and 2’ lie across the boundary between D; and D;. When z and 2’ lie on different
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sides of the sphere {z : |z — y| = (n}, we observe that the value of § can be modified
slightly in the above arguments. Thus we can make z and z’' belong to the same region
D;, which takes care of this case. It remains to consider z and z’ on different sides of the
common boundary of Dy and D; or that of Dy and Dj. In the first case (Dy and D),
we have [£| < 1/n. But this inequality implies that the right-hand sides of the estimates
in (a) and (b) are of the same order of magnitude, and so this case is settled. The other
case (D, and Ds) is similar and goes via the inequality |€ — n| < 1/n. This concludes the
proof of estimates (a)-(e) for the kernel K*. The proof of the estimate (f) is easy. u

We shall now use Lemma 4.3 to prove the main result of this section, namely

Theorem 4.21 For every j,k € {1,2,---,d}, Rjk, gob s of weak type (1,1) with respect
to the Gaussian measure 7.

Proof. Let 0 < f € L'(y).
For |z| < 1, case (f) of the lemma implies that

[ K (@w) xve(@,v) F0)dy < C 1| £ o,

which gives a strong type (1,1) estimate for this part of the operator. The same argument
applies to arbitrary z but with the integral taken only over |y| < 1.

We can thus restrict ourselves to that part of the kernel with |z| and |y| > 1, and start
with Kx{jy/>1, zeDo(y)}- Observe that Lemma 4.3 implies that

(4.22) /Do(y) K(z,y)dy(z) < Ce "

Write D°(z) = {y : |y| > 1, x € Dy(y)}. We conclude by changing the order of integration
that

J ) [, Kl nfwdy < [ e fw)ay,

so that this part of the operator is of strong type (1,1).
We split D; into two disjoint parts D} and D] with

Dy ={z € D;:|v]>¢&/2}.
For D] we have
/ K(z,y)dy(z) < C// (1+ &)™ " e & dedy
Di(v) 1(9)

< C’/"(l + &)d¢ e Pdy e < e,
0 o] >€/2
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The estimate thus obtained is similar to (4.22), and we can argue as above to take care
of Dj.

When x € Dy, we observe that |y|/|z| < A for some A < 1, so that |z|*> > |y|> + €|z|?
where € > 0 depends only on 3. Together with Lemma 4.3, this implies that

/ ( )K(x,y)dv(x) < Ce v’ /e_emzdfc < Ce v,
Dy(y

Thus we also control the D, part of the operator.

For the remaining regions DY, Dy, and D3, we shall deduce the weak-type estimate.
Fix y with |y| > 1, and let x, be the characteristic function of the union of those cubes
@ which intersect DY (y) U Ds(y) U D5(y). Define K, (z,y) = K*(z,y)xy(z). Notice that
K. (z,y) stays constant as  moves within a ;. Our task is to estimate the level set

L={o: [ K.(w,)f(y)dy > a}
for a > 0. We first observe that it would be enough to prove the inequality
(4.23) / K, (z,y)dvy(z) < Ce“y|2, y € RY,

L

Indeed, (4.23) implies

(1.24) W) < [ dy@) [ Kuww)f)dy
= 21wy [ Klayin) < S [ 1)),

which is the desired estimate.
However, (4.23) is false in general. We shall therefore construct a smaller set £ C L
for which (4.23) holds, i.e., such that

(4.25) / K, (z,y)dy(z) < Ce ¥’ yer™
E

Still £ must be large enough so that

(4.26) Y(E) > ¢y(L)

for some ¢ > 0. Given such a set E, we can carry through the argument (4.24) with E
instead of L and finish the proof.

We remark that our construction of E follows a method from Sjégren [12], also used
in [13].

Notice that L is a union of cubes ();. We shall construct £ as the union of some of
these cubes. Roughly speaking, the reason why (4.23) fails is that L contains too many
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cubes near each other. If we decide to include a cube in E, we should therefore not
include its close neighbours. Still, (4.26) must be respected. To achieve this, we associate
with each cube (); a forbidden region Fj, which is essentially a cone with vertex in @);
and directed away from 0. More precisely, let C; be the cone of vectors forming an angle
of at most 7/4 with the centre z; of Q);. We define F; as the union of those cubes Q;
intersecting ); + C;. The inequality

(4.27) v(F) < Cv(Q:)

is then rather easy to verify. One integrates first in each affine hyperplane orthogonal to
x;, see [13, proof of formula (3.1)].

The procedure to construct E goes as follows. We consider the @);,7 = 1,2, ..., in this
order. For each @);, we decide in the following way whether to select it, i.e., include it in
FE. The cube Q); is selected if and only if it is contained in L and is not contained in the
forbidden region F; of any @); already selected. Then E is defined as the union of the
selected @);. Since L is covered by the selected cubes and their forbidden regions, (4.26)
follows from (4.27).

Now it only remains to verify that the selected cubes are so sparse that (4.25) holds.
We fix y with n = |y| > 1. An elementary geometric argument shows that K,(z,y) can be
nonzero only when z is in the cone C, of vectors forming an angle of at most 7 /4 with y.
Consider a line £ parallel to y. We claim that the intersection of £ and Cy N E is contained
in at most one ();. Indeed, any @); intersecting this intersection is contained in F, and its
forbidden region contains the half-line of £ in the y direction starting at Q);.

We parametrise the lines ¢ by

by ={z =¢y/n+v:{ER}

where v L y. The observation we just made means that ¢, N C, N E is contained in a
segment corresponding to an interval in the parameter £ given by &, < £ < &, + &', for
some &, > 1/2. Now we apply Fubini’s theorem to the integral in (4.25), getting

2 ‘gv 611_1 2
[ Ko@) < [ea [T e € R Ey/lyl +v,u)de
&v

The integration in v is with respect to (d — 1)-dimensional Lebesgue measure in the
hyperplane orthogonal to y. To estimate the right-hand side here, we insert the inequalities
from Lemma 4.3 in the three regions we are considering.

For D, we get at most

5 Et& ! 5 21 v
C[ean [T et fehe e <O [ +5 148 gy o < e,
&v

’U
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Using the estimates valid in Ds, we get two terms. The first term is

2 fv+fv_1 2 2 2 2 2
¢ [etan [ et o) g < [t ol o e < 0

v v

where we used the fact that n < C&, here. The second term is
Eoteo ! Iy ¢
C/e“”'de/ e € \/n(n = &) ( U |v|> e g
3 n
If n — &, < 2/n, this is like the first term. If not, we can estimate this expression by

—d
C/e_|v|2§l /77(77_&1)< 77:7611 + ‘U|> d,Ue—n2 < 06_772’

almost as the first term.
Using finally the estimates in D3, we get at most

9 &t& ! 5 1 2
C e an [ e €+ u]) e < 0/5—65“(771 + [o]) “dv
v v

2]. 2
< Qe 5/(77—1 + [v])"4dv < Ce

These estimates together imply (4.25) and thus complete the proof of the theorem.

By putting together Theorems 3.21 and 4.21, we have finally proved Theorem 1.1.
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5 A counterexample for operators of order at least
three

Theorem 5.1 Let a = |a| > 3 and b > 0. Then the operator D*L~"Tly is not of weak
type (1,1) with respect to the Gaussian measure 7.

Letting b = |a|/2 here, we clearly obtain Riesz operators of order at least 3.

Proof. We estimate the kernel D?Ky(z,y), as given in (3.2), for n = |y| large and
y; >cn, i=1,---,dand ¢ > 0. Write x = {y/n + v as before, with £ € R and v L y. We
let z be in the tube J defined by 1/2 < £ < 3n/4 and |v| < 1. Then for each i = 1,---,d,

TTi — Yi cn
— > > on.
V1—r2 7 1—7r2 g

(—1)°H, (&%) > el

In particular, the integrand in (3.2) is positive for 0 < r < 1. We observe that

It follows that

o _ le=rn24r2jv)2

2
[ 1-r2 = eg -n [ 1—72

so that for 1/4 <r < 3/4and z € J

lre—y|2
e 12 > 6662—n2€—0|£—rn|2_

These estimates imply that
3/

4 .
e CET dr > ettt
/4

DKy(x,y) > ene€ ™™ /
1

Now let 0 < f € L'(v) be a close approximation of a point mass at y, with norm 1 in
L'(7). Then

D* Lo f(x) = [ | D" Ky(,y)f(y)dy
will be close to €” DK, (z,y) when x € J. We conclude that
DaL_bH()f(x) 2 Cna—lefz 2 Cna—le(n/Q)z

for x € J.
Since v(J) > en te~ (/27 as is easily verified, the L1 () quasi-norm of D*L =TI, f is
at least cn® 2 — oo as 1 — oo when a > 3. This violates the weak type (1,1) property.
n
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