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Abstract

The cover time, C, for simple random walk on a realization, Gy, of G(N, p),
the random graph of N vertices where all two vertices have an edge between
them with probability p independently, is studied. The parameter p is allowed
to decrease with N and p is written on the form f(N)/N. It is shown that
if f(N) is of higher order than log N, then with probability 1 — o(1), (1 —
e)Nlog N < E[C|Gn] < (14+¢€)N log N for any fixed € > 0 whereas if f(N) =
O(log N) there exists a constant a > 0 such that with probability 1 — o(1),
E[C|GNn] > (1 +a)NlogN. It is furthermore shown that if f(N) is of higher
order than (log N)3 then Var(C|Gx) = o((N log N)?) so that with probability
1 — o(1) the stronger statement that (1 —e)NlogN < C < (1+ €)NlogN
holds.

1 Introduction

Let G = (V, E) be a simple connected graph on N vertices and consider a simple
random walk on G. Let C' denote the cover time, i.e. the time taken to visit all
vertices of G and let E,C' denote the expectation of C' for a walk starting from
v. Much work has been done on finding this quantity for different graphs and on
finding bounds for it. The interested reader is urged to look into the reference list.

It is today known that (1 — o(1))N log N is a general lower bound for min, E,C
and that a general upper bound for max, E,C is given by (1 4 0(1))3N®. These
bounds were until quite recently just conjectures but were proved by Feige ([8] and
[7]). It is fairly easy to come up with examples to show that these bounds are also
tight. In both cases one can use a so called lollipop graph where a path of suitable
length extends from a clique. By starting at the end of the path, the cover time
becomes extremely low, whereas starting from the clique produces an extremely high
cover time.

The lollipop graph is clearly an example of a graph which seems “artificial” in
the sense that it looks constructed by a human mind rather than something that
would apper just by chance. As a matter of fact most of the common special cases
of graphs are artificial in this sense. This is of course quite natural since such graphs
are much simpler to think of. However, the mere fact that a graph is constructed
in this way of course affects its properties. Among other things, as for the lollipop
graph, the cover time might be affected. Heuristically the usually “simple” structure
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of a constructed graph often tends to make some vertices harder to reach so that the
cover time becomes high (at least if the walk starts from a suitably chosen vertex).
Examples are the graph Z mod N for which E,C = %N 2 for any v and the binary
tree for which E,.,,;C = N(log N)? (see [16]). Therefore a natural question, which
is the principal question of this paper, is

How long does it take to cover a typical graph?

One natural interpretation of the term “typical graph” is a graph which is likely
to be produced from a random mechanism. In short, we might replace the word
“typical” by the word “random”. To make the question more precise we need to
decide on what kind of random graphs we wish to consider. We will work with the
well known random graph model G(NV, p), i.e. the graph one gets by letting the edges
of a complete graph be present with probability p independently. Thus the question
above becomes

How long does it take to cover a random graph with distribution G(N, p)?

We need to introduce a mathematical framework, so let (2, F, P) be a probability
space and on this space define the random graph Gy with distribution G(NV, p) and,
given Gy, a simple random walk on it. The construction of such a probability space
is just straightforward standard construction.

For the trivial case p = 1, Gy becomes the complete graph and it is well known
that for this graph E,C = Nlog N and Var,(C) = O(N?) for any v so that

P((1—€¢NlogN <C<(1+€NlogN)=1-0(1)
for any fixed € > 0. Is this threshold at Nlog N still there if p = p(N) < 1?7 What
if p(N) - 0 as N — oo? We shall see that if we write p(N) on the form f(N)/N

we get the following result.

THEOREM 1.1 Let p(N) = ﬂNﬁl and consider a simple random walk on Gy.

(i) If f(N) is of higher order than log N then, for any fized ¢ > 0,
P((1—¢€)NlogN < mvinEv[C\GN] < mélev[C\GN] <(1+4+¢€NlogN)
=1-o0(1).

Moreover, if f(N) is of higher order than (log N)* then
P(mEXVar,,(C|GN) =o((NlogN)?)) =1—o0(1)

so that
P((1—¢)NlogN <C < (14+¢NlogN)=1-0(1)

regardless of the choice of the starting verterz, i.e. there is indeed a threshold
at Nlog N.
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(i) If f(N) = (¢ + o(1))log N for some constant ¢ > 1, then there is a constant
a > 0 such that

P(minE,[C|Gn] = (1+a)NlogN) =1—o(1).

The reason for restricting to ¢ > 1 in part (ii) of the above theorem is that it
is known that in this case P(Gy is connected ) — 1 as N — oo, whereas if ¢ < 1
this probability tends to 0 (see e.g. [3, Theorem VIL.3]). As a matter of fact the
result at (i) also applies for f(N) of smaller order if we consider a random walk on
the giant component of Gy; it can be proved that if f(IN) > 1+ § for some § > 0,
then with a probability tending to 1 there will be a unique giant component of order
O(N). For details we refer to [3, Chapter VI]. The validity of this extension will be
obvious later on as it is easily seen that the same techniques as those used to prove
Theorem 1.1 apply to this case as well. In Section 2 (ii) is proved. Part (i), being
the longer part, is saved for Section 3.

Random walks on various kinds of random graphs have been studied earlier.
Grimmett, Kesten and Zhang [9] look at random walk on the infinite cluster of a
supercritical bond percolation model on Z¢ for d > 3 and prove that the walk is
a.s. transient. Lyons, Pemantle and Peres study random walk on a supercritical
Galton-Watson tree. In [11] the simple random walk case is studied and in [12] they
consider random walks biased towards or away from the root. Their results concern
the speed of the random walk and its harmonic measure.

Before going into the main section we need some technical beckground.

DEFINITIONS. Let G be a finite connected graph and let (u,v) be a pair of
vertices of G. We define T'(u, v) as the random time taken for a simple random walk
starting from u to reach v. The hitting time is defined as the expectation ET (u, v)
and is denoted H(u,v). The commute time, C(u,v), is defined as H (u,v) + H (v, u)
and the difference time, D(u,v), is given by H(u,v) — H (v, u). The total number of
edges of GG is denoted by m.

LEMMA 1.2 The difference time is additive, i.e. for any three vertices, u, v and w,
D(u,w) = D(u,v) + D(v,w).

A proof can be found in [5].

A useful technique in the analysis of random walks on graphs is to regard the
graph as an electrical network (see e.g. [6] and [15]). The edges are then regarded
as resistors with unit resistance and it can be shown that the effective resistances,
R(u,v), between vertices relate to the corresponding hitting times. Tetali [15] shows

LEMMA 1.3 For any two vertices, u and v,

H(u,v) = % S du(R(u,v) + R(u, w) — R(v, w))

weV

where d,, is the degree of the verter w.
By adding H(u,v) and H(v,u) and using Lemma 1.3 we get
LEMMA 1.4 For any two vertices, u and v,

C(u,v) = 2mR(u,v).
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The following lower bound on the effective resistance between two vertices, u and
v, follows from the monotonicity property of electrical resistance by shortcutting
all other vertices and, if v and v are neighbours, regard the adjoining edge as two
parallel two ohm resitors.
S 1
S R

An important technique for bounding the cover time was introduced by Matthews
[13]. Tt is given by the lemma below. For later purposes we supply a proof.

LEMMA 1.5 R(u,v)

LEMMA 1.6 Let p and py be real numbers and asssume that - < H(u,v) < py
for every pair, (u,v), of vertices. Then

Y1 Y1
,U_Z—. SECSM-q-Z—.
=1t i1

for any starting vertex.

Proof. Let o be a uniformly chosen random permutation, {v;,vs,...,vx} of
the vertices, defined on the same probability space as the random walk. Let, for
i =1,...,N, T; be the first time all the vertices 1,...,7 have been visited. (As a
convention we do not regard the starting vertex as having been visited at time 0.)
Then, with R; =T, — T; 1, where of course T = 0,

N
C=Ty= R

i=1

so that, since P(R; > 0) =1/,

N N 1
i=1 i=1
Under the condition R; > 0, let S; be the vertex u € {vy,...,v;_1} which is the last
one of these vertices to be reached by the random walk. Then

E[RZ|RZ > 0] = ZE[T(U,’U,”RZ > O,SZ =U,V; = UI]P(SZ =U,V; = UI|RZ > O)
and since the walk from u to v; above is independent of the event {R; > 0,S; =
u,v; = u'}, we get

p- < E[R[R; > 0] < py

and the result follows on summation. O

Since the starting vertex for the random walk will not make any difference in the
sequel, it will be omitted from the notation.

Much of our interest is focused on making highly probable statements about
conditional expectations and variances given GG . For convenience such conditional
entities will be denoted E* and Var*. Consequently H*(u,v), C*(u,v) and D*(u,v)
will denote the corresponding conditional entities. For example H*(u,v) is the
random variable E*T (u,v) = E[T(u,v)|G y].

Also for convenience, we make the following definition.

DEFINITION. An event, Ay, depending on N, is said to occur with high proba-
bility, abbrievated “whp”, if P(Ay) — 1 as N — oo.

4

Consequently the phrase “with probability” is sometimes abbrievated “wp”.
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2 The case f(N) = (c+o(1))log N

Before proving the main theorem of this section, we prove the following elementary
lemma.

LEMMA 2.1 Let B(m, ) denote the law of a binomially distributed random variable
with parameters m and «. Let X have law B(n,p) and let X' have law B(n — 1,p)
for some p € (0,1). Then

Pr(X' <k)—Pr(X <k)< %PT(X < k).
—-Dp
Proof. 'This is just straightforward calculation for
k

PrX'<k)—Pr(X<k)=Y [("; 1)p"(1 —p)" - (?)pj(l —p)"]

=0

n—7 1 1

:jgo[ - E—l]Pr(X:j) < (E —1)Pr(X <k)
=2 _prx <k).

1-p

THEOREM 2.2 Let Gy be a random graph with distribution G(N, f(N)/N) with
f(N) = (1+40(1))clogN for some ¢ > 1 and let C be the cover time for a simple
random walk on G. Then there is a constant a > 0 such that whp

E*C > (1+a)NlogN.

Proof. The idea is to show that there whp will be a large number of vertices with
substantially lower degree than clog N. (This can also be derived as a consequence
of [2, Theorem 5.E].) Using Lemma 1.4 we will then show that the commute times
for pairs of such vertices are high and by using the additivity of difference times we
will show that this necessarily means that a large number of the hitting times are
also high. Finally Lemma 1.6 will yield the result.

Fix a small o > 0. Since d, is a random variable with law B(N — 1, W),
it follows from noticing that

P(d, < c(1 —€)log N) > P(dy = [c(1 — €) log N])

_ N (C1O8 N yic1-g10g M), o=(he ol eol) og ¥
[c(1 —¢€)log N] N

that
P(d, — clog N < —eclog N) > e~ 3¢2(cto(1)) log N

B 1 o1
= NZelero(D)) T Na
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for large N as soon as

Now, letting X = 3=, Itq,<(1—e)clog N} = 2w Lo for such an €, we have that
EX > N'™@
and

l1—a
Var(X) < N'7*+>° Zu#Cov(Iu, L).

Since I,, and I, only depend through the absence or presence of the edge between u
and v, Lemma 2.1, with p = P([, = 1) yields

(c+o(1))log N W —
N —(c+o(1)logN’?

<9 (c+0(1))log Np2

<
Cov(I,,I,) < (1 + < ~

for large N. If € is chosen to be larger than \/%, then p < N~%/2 5o that
Cov(I,,I,) < 2(c+o(1))N~'"*log N.

This means that
Var(X) < N'"® + N'"%*(c+o(1)) log N

and since this is clearly o(V 2(1’0‘)), Chebyshev’s inequality yields that whp we have
that X > N' 722 For these at least N'~2¢ vertices
1 1 2

> >
R(u,v) > d,+1 +dv+1 ~ (1—¢€)clogN

by Lemma 1.5. Order these vertices in an order {u;,us,...,ux} such that if i < j
then D*(u;,u;) > 0. That this is possible is a consequence of Lemma 1.2, which
also says that

X—
D*(uy, ux) Z *(wiy tip1) < C*(ug,ux).

It is safe to assume that C*(uj,ux) < 3NlogN, for if not, there is nothing to
prove. We can then find, for any fixed K < oo, indices i and j such that |i — j| >
N'=22/(K log N) and

3
D*(u;,u;) < —=N
(wi, uyj) e

which for K > 9/e is smaller than eN/3. However, since the Central Limit Theorem
implies that whp

e N%2clogN L€ cNlog N

1— ) T
>(1- 9% Tt = (1- 8
Lemma 1.4 implies that whp

1— ¢
C* (us,u;) 2 322N 2 2(1+ g)N
— €
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for all ¢+ and j, so that we must whp have for a set of vertices of size at least
N'722/(Klog N) that

€ €
* >1+-)N—=-N=(1+=)N.
H'(u,0) 2 (1+ 5N = SN = (1+5)

36a

Using Lemma 1.6 and setting, for instance, € = /5%,

we get

0> 1+ YY) N og( N
> (1457 Og(KlogN)

=(1+ z/c)(1 —2a)Nlog N — (1+ @)(loglf + loglog N)

aflc

> (1+

)(1 — 3a)Nlog N

whp for large N. Since

aflc
)

for a suitably chosen « close to 0, the proof is complete on letting a be the value of
this expression for such a choice of a. O

1+

)(1—3a) >1

3 The case f(N)= Q(log N)

We start by observing the elementary fact that, as opposed to in Section 2, the
graph will in this case become “almost regular”, i.e. all vertices will have about the
same degree.

LEMMA 3.1 Let the random graph Gy have distribution G(N, f(N)/N) with f(N)
being of higher order than log N and fix € > 0. Then, wp 1 — o(1/N¥), all vertices,
u, of Gy, will satisfy

(1—-e)f(N) <dy, < (1+¢€)f(N)
for any fixed k > 0.

Proof. 'This is a matter of upper bounding the tail in the binomial distribution
as

D f(N)
4, 2BV -1, 520,

Use e.g. [3, Theorem 1.7] for such a bound. Since f(N) is of higher order than log N,
we have for large N that

B “tegy L 1
P(dy = [(N)| > €f(N)) < ¢ Nirmiy = o)

for any fixed k. O
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The following Proposition and its proof provide, along with Lemma 1.6, the
main tools of this section. The proof is, for later purposes, made in more detail
than necessary. Note that the fact that for all two vertices there whp are not too
long paths between them is an immediate consequence of [3, Theorem X.10]. Note
also that the first part of the proof is very similar to the proof of [3, Lemma X.7].
Since our problem, however, does not require as much care with the details, we can
without too much effort make the proof selfcontained.

PROPOSITION 3.2 Fiz an e > 0. If f(N) = o(N'/?), then Gy will whp satisfy

2

R(U, U) S m

for all (u,v).

Proof. The idea is to look at the random graph as being built out from u like
a branching process originating from u. We will thereby show that there is whp
a quite tight lower bound on the number of paths of length [log N/log f(N)] + 3
between u and v. This will be done in such a way that the resulting paths between
the second neighbours of v and the second neighbours of v become disjoint. Using
this we give a bound for the effective resistance.

Fix § > 0. By Lemma 3.1, whp all vertices have degree between (1 —4)f(N) and
(1+0)f(N), so we can safely condition on this being the case. (Strictly speaking
this means that most of the probabilities below are rather conditional probabilities.)
Let ¢(N) = (1 —0)f(IN) — 1. For each vertex of our branching process we will only
consider ¢(N) edges. Since this waste only serves to decrease the number of paths
between u and v it is no restriction. It is now clear that ¢(N)+1 vertices are reached
in generation 1. Now, suppose we are given that x vertices (z > ¢(N)) are reached
by only one edge in generation k£ and assume that z¢(N) < O(N/f(N)). (Since
f(N) = o(1/N?) this is always at least true for £ = 1.) Letting X be the number
of edges stemming out from these x vertices towards the next generation reaching a
vertex which has already been reached or is reached by another one of these edges,
we have that

D
X<Y

where Y has law

Bzo(V), ﬁ)

for some constant b < co. By bounding the tail in this distribution using [3, Theorem
1.7] we get, since x > ¢(N) and ¢(N) is of higher order than log N,

1

i
P(X > 2br) < €73 = o(m).

This means that wp 1 — o(1/N?) the number of vertices reached by only one edge
at generation k + 1 will be at least

2b 3b
sy 70 = (1= 5

zp(N) —2bz = (1 — )zp(N).
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Using induction we thus have that in generation r = [log N/log f(N)] — 1 at least

3b T T
(1= ) o)
vertices are wp 1 —ro(1/N3) = 1 — 0o(1/N?) reached by only one edge. For the next
step, assume that ¢(N)"*! = o(N). Then the number X’ of edges reaching towards
the next generation which fail to reach a vertex which is not reached by another one
and which has not been reached earlier is for large N stochastically dominated by a
random variable with law

B(¢(N)™*, )

for an arbitrarily chosen but fixed 6’ > 0. Repeating the same argument as above
yields

1

P(X' > 95 9(N)"™) = of 5)

so that after r + 1 generations at least

! 3b r r+1
(1= 26)(1 = 75V (V)
vertices are wp 1 — o(1/N?) reached by only one edge. For the last steps we go
backwards from v assuming that v has not been reached yet. By the same arguments
as above, v will wp 1 — o(1/N?) have at least (1 — 28’)¢(N)? second neighbours.
Here we use the assumption that f(N) = o(N'/2). Of these second neighbours a
hypergeometric number will be one of the r+1’th neighbours of u and the expectation
of this number is no less than

3b )mb(N )
f(N)” N

(1—28)%(1 -

Again by bounding the tail of the distribution noting that this tail is dominated
by the tail of the corresponding binomial distribution we find, since ¢(N)™+3 >
O(¢(N)), that wp 1 — o(1/N?) this number will be at least

3b )r¢(N )
f(N)” N

(1—26")3(1—

If the condition ¢(N)"*! = o(N) fails, then ¢(N)"t* = O(NN) and we go backwards
from v one step earlier and find analogously that there will wp 1 — o(1/N?) be at
least

3b )rcﬁ(N )+
f(N)” N

(1—28)2(1 -

paths of length r+2 between v and v. Since this procedure consists of a finite number
of steps all having probability 1 — o(1/N?) the whole procedure has probability
1 — 0(1/N?) and therefore holds wp 1 — o(1) for all pairs (u,v) of vertices. By the
definition of ¢(N) and the fact that ¢ is arbitrary, we can arrange things so that
r+ 3 < [log N/log f(N)] + 3. (This means in particular that there are whp paths
of length [log N/log f(N)] + 3 between u and v for all (u,v).)
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Now, in the above construction u and v had wp 1 — o(1/N?) both at least
(1—¢/4)f(N) neighbours. By a now familiar tail bounding argument it follows that
wp 1 — 0(1/N?) no more than ¢f(N)/4 of these neighbours coincide or equal v or u
respectively. This means that u as well as v have (1 —¢/2) f(N) neighbours of which
none are in common. Let us only consider the edges going to these neighbours and
note that this waste can only serve to increase the effective resistance between u
and v. Now, all these neighbours reached at least (1 — ¢/2)(1 — €/4)f(NN)? second
neighbours and by another tail bounding argument using that f(N) = o(N/2) it
follows that wp 1 — o(1/N?) both u and v have at least (1 — ¢/2)%f(N)? second
neighbours of which none are in common in the sense that none of the second
neigbours of u is a first or second neighbour of v or v itself or vice versa. By
what we proved above, these second neighbours are pairwise connected by disjoint
paths of length [log N/log f(IN)] — 1 < log N. Since these last steps had probability
1 — o(1/N?) for the particular pair (u,v) they hold whp for all (u, v). Therefore we
have whp that

log N+2
24 ey 2
Q-5 /) — 1—ef(N)

for N large enough for all (u,v). O

R(u,v) <

THEOREM 3.3 Let Gy be a random graph with distribution G(N, f(N)/N) and let
C' be the cover time for a simple random walk on Gy. If f(N) is of higher order
than log N but of lower order than N'/2, then whp

(1—€)NlogN <E*C < (1+¢)NlogN
for any fixed ¢ > 0.
Proof. The lower bound on E*C follows immediately from Feige’s [8] general

lower bound of (1 —o(1))N log N on the expected cover time, so let us focus on the
upper bound part. By Proposition 3.2, for any fixed ¢ > 0,

2

(1 =€) f(N)

whp for all (u,v) and by Lemma 3.1 combined with Lemma 1.5
2

(L +€e)f(N)

whp for all (u,v). Therefore Lemma 1.3 implies that

R(u,v) <
R(u,v) >

H*(u,v) = % Y dy(R(u,) + R(v, w) — R, w))

wekE

4 2
N +€)f(N —
U ~ arar
whp for all (u,v) and for € small enough this is smaller than (1 4 €)N. Thus, using
Lemma 1.6, we have

<

NN

E'C < (1+4+¢€)Nlog N
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whp. O

In the introduction we promised to prove that if f(/NV) is of higher order than
(log N)? then whp Var*(C) = o((N log N)?) so that Nlog N is in fact a threshold
for C. The way in which this will be done is by noting that with f(NV) of such high
order, the time T'(u,v) given G will with overwhelming probability be dominated
by a random variable with expactation (1 4+ o(1))N and variance (1 + o(1))N2. By

a modification of the proof of Lemma 1.6 it can then be shown that this will imply
that Var*(C) = o((N log N)?).

PROPOSITION 3.4 Let Gn have distribution G(N, f(N)/N) and assume that f(N)
is of higher order than (log N)3. Then, whp given Gy,

D
T(v,u) <Y

where Y is a random variable with expectation (14+0(1))N and variance (14+0(1)) N2,
for all (u,v).

Proof.  Since f(N) is of higher order than (log N)® we can strengthen the
statement of Lemma 3.1 to

1 1

(1_W)f( ) f(N)

whp for all (u,v). The argument is completely analogous. Therefore we can, if
f(N) = o(N'/?), replace the function ¢(NN) of the proof of Proposition 3.2 by
1
N)=(01—- —== :
6(N) = (1~ 5 (V)

The conclusion of the first part of that proof then becomes that if ¢(N)™! = o(N)
then, whp for all (u,v), at least

b v L SV
o TN W

(1—28)3(1 -

of the second neighbours of v are r4+1’th neighbours of u. Note that by the nature of
the proof of Proposition 3.2 the paths of length r + 1 joining the second neighbours
of v to u are disjoint. If #(N)"™! = O(N) then, whp for all (u,v), at least

3—b r _ 1 r42 f(N)T+2
o r ) TN ?

(1—26)2(1 -

of the second neighbours of v are r’th neighbours of u. Since f(NV) is of higher order
than (log N)3 and r + 3 < log N, the factors in front of f(N)""3/N and f(N)"*2/N
converge to (1 — 26')® and (1 — 24")? respectively as N — oo so that, since ¢’ is
arbitrary, the above numbers are

(1= o1y L

and
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respectively. This means for the former case that at each time, &, the conditional
probability given G that the random walk reaches u in r + 3 steps is at least

(L —o(W)J(N)"*N I
A+ 1y Ry sfays — Wy

whp for all u. A completely analogous argument yields the same result for the latter
case. Thus

E'T(v,u) <(1+0(1))N+r+2=(1+0(1))N

and
E*T(v,u)* <2(1 + o(1))N?

whp for all (u,v) and the proof is complete for the case f(N) = o(N'/2).

Assume next that f(N) is of higher order than (NlogN)Y/? and fix € > 0.
Then the number of vertices which are neighbours to both u and v is binomial with
expectation f(N)?2/N. Since f(N)%?/N is of higher order than log N it is by [3,
Theorem 1.7] therefore whp true that this number deviates from its mean by no
more than e¢f(N)?/N for any (u,v). Therefore the conditional probability given Gy
that a simple random walk starting from v reaches v in two steps is by Lemma 3.1
always at least

(1-— 26)%

whp for all (u,v) and the desired result follows.

Finally, in the case where f(N) < O((Nlog N)*/2) but f(N) is not of lower
order than N'/2 note that wp 1 — o(1/N?) both u and v have at least (1 — ¢)f(N)
neighbours. If none of these coincide and if u and v are not neighbours themselves,
then the number of the (1 — €)2f(IN)? possible edges connecting neighbours of u to
neighbours of v which are actually present in the graph is binomial with expectation

f(N)?
1—e)?2i—L
=5
so that whp this number is no less than
f(N)?
1—e)d——
1-9"=g

for any (u,v). The rest of the proof is analogous to the previous cases. O

Now, let us take another look at the proof of Lemma 1.6. If we try to adjust this
to give a bound for the variance of C' in our special case, we observe that

Var*(C) = )_ Var*(R;) +2)_ ZK]_COV* (Ri, Rj).
By the same arguments as before

1
Var*(R;) < E*R? < 22(1 +0(1))N?

whp for all 7 so that
> Var*(R;) < N’log N = o((Nlog N)?).
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whp. Also, if i < j,

11

as the events {R; > 0} and {R; > 0} are independent. Now, we can write
= Y E(T(u,v)T(w,w)|R;R; > 0,5 =u,S; =w,v; =u,v; =]

P*(SZ =u, Sj =w,v; = u', V; = ’U)I|RiRj > 0)
= Y ET(uw,u)|RR; >0,5 =u,S;=w,v=1u,v; =wET(w,uw')

w,u! yw,w’

as the walk from u to v’ is independent of the walk from w to w’ and as the conditions
do not contain any information on the latter. The walk from u to u', however, is
not independent of the conditions as they tell us that it will not pass w’ and, unless
w = o', it will not pass w. This restriction might in certain cases seriously affect the
distribution of T'(u, v;), but in our case, however, this cannot happen. To see this,
observe that conditioning on that the walk avoids w and w’ only serves to exclude
paths passing these vertices from the sample space and does not affect the relation
between probabilities for other paths. In particular, the conditional probability that
the walk chooses a certain path for the say n next steps is always larger than the
corresponding unconditional probability. Therefore the proof of Proposition 3.4 goes
through for this conditional case noting that we have to reduce the expressions in
(1) and (2) by 2. This, however, will clearly not upset things. (Remember that the
paths of length r + 1 between v’ and it’s second neighbours are disjoint so that no
more than two of them can pass w or w'.) Thus the above conditional expectation is
also whp at most (1 +0(1))N. The cases f(N) > O(N'/2) are carried out similarly.
Thus, whp

11
E*R;R; < ;;(1 + 0(1))N?

so that, since E*Ry, > (1 — o(1))N whp by Lemma 1.5,
11
COV*(RZ',RJ') < T—.O(l)NZ.
ij
whp. Therefore

2> ZK]‘COV*(Ria Rj) < o(1)(N log N)?
whp so that
Var*(C) < o((Nlog N)?)
whp as desired. We have proved the following theorem.

THEOREM 3.5 Let Gy be a random graph with distribution G(N, f(N)/N) and as-
sume that f(N) is of higher order than (log N)* and let C be the cover time for a
simple random walk on Gr. Then

(1—€)NlogN <C < (1+4+¢€NlogN
whp for any fized ¢ > 0.
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Combining Theorem 2.2, Theorem 3.3 and Theorem 3.5 yields Theorem 1.1.

Remarks. For the cases where f(IV) is between log N and (log N)? it is an
open question whether or not there is actually a threshold for the cover time. By
being a little more careful with the details of the proof of Proposition 3.2 or by
using [3, Lemma X.7] it is possible to show that the number of paths of length r + 3
between u and v is (1 —o(1)) f(N)""3/N for these cases as well. However, the graph
is not completely regular, not even asymptotically in the sense that all paths are
not asymptotically equally probable for the random walk. This is what makes these
cases different. It is therefore not clear that the result of Proposition 3.4 holds for
these cases.

For the case where f(N) is of order log N it would be interesting to come up
with an exact expression for the expected cover time and to find out if this is also
a threshold.

I have in this paper chosen to work with the G(V, p) model where the presence or
absence of different edges are independent. Another standard random graph model
is the G(N, M) model where exactly M uniformly chosen edges will be present in
the graph. Letting M = N f(IV)/2, the degrees of the individual vertices will be
hypergeometric random variables with expectation f(/V) whereas they are binomial
in the G(N, p) case. However, as N gets large this difference will be of no importance
and all the arguments will go through virtually unchanged. Therefore the results of
this paper are valid also for the G(NN, M) model.
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idea to work with this problem and who also pointed out some references for me. I
am also grateful to the referee for valuable comments.
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