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Abstract

The Fortuin—Kasteleyn random-cluster model has, during the last 10 years,
proved to be a highly useful probabilistic device for studying the phase transition
behaviour of Ising and Potts models. In this survey paper, a detailed description
is given of how this is accomplished. It is then shown how the same set of ideas
can be used to study phase transitions in various other systems: the Ising model
with random interactions, the Ashkin—Teller model, subshifts of finite type, and
certain point processes. The tools used include coupling, stochastic domination,
and percolation.

1 Introduction

There are several possible ways to extend the definition of a Markov chain to the case
where the index set Z is replaced by Z¢. Experience, however, indicates that the way of
generalization which is by far the most fruitful, both from an applied and a theoretical
point of view, is the Markov random field. The concept of a Markov random field
gives rise to an interesting dichotomy between one dimension and higher: On one hand,
an irreducible aperiodic finite state Markov chain (or, equivalently, an irreducible ape-
riodic finite state Markov random field indexed by Z) always has a unique stationary
distribution, and furthermore it is ergodic, has trivial tail, and so on. On the other
hand, a finite state Markov random field in 2 or more dimensions satisfying the corre-
sponding irreducibility and aperiodicity conditions may have more than one translation
invariant distribution, and consequently all the usual mixing properties may fail. Mea-
sures satisfying the conditional distributions prescribed by the Markov random field are
called Gibbs measures, and the nonuniqueness of such measures is referred to as a
phase transition. The most well-known example of a Markov random field exhibiting
a phase transition is the Ising model [61] [51] which was introduced in statistical me-
chanics as a microscopic model of a ferromagnet. The state space is {—1, 1}, and the
classical interpretation of the model is that each site of Z? is an atom, and that the
states +1 and —1 represent ‘spin up’ and ‘spin down’, respectively. If the large-scale
fraction of +1’s is %, then no magnetization has occurred, while if this fraction is differ-
% so that the majority of spins point in the same direction, then the material
is magnetized. It turns out that the latter scenario takes place if and only if the model
exhibits a phase transition, and whether or not this happens depends on the so called
reciprocal temperature parameter 3. This is stated in the following well known and
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fundamental theorem; the precise definitions needed to fully understand the statement
of the theorem will be given in Section 3.

Theorem 1.1: For the Ising model on Z% with d > 2, parameterized by the reciprocal
temperature [, there exists a critical value . = p.(d) € (0,00) such that for 8 < f3.
there is a unique Gibbs measure while for 3 > [3. there is more than one Gibbs measure.

The statement of this theorem can be broken down into three parts (each of which needs
specific attention in a proof), namely:

(i) For sufficiently small 3 > 0, there is no phase transition.
(ii) For sufficiently large 3, a phase transition occurs.

(iii) The occurrence of a phase transition is monotone increasing in 3, i.e. if ;1 < B
and a phase transition occurs when 3 = (3¢, then this is also the case when § = ;.

Perhaps the most striking part (and the part which gives rise to the dichotomy
between d = 1 and d > 2 referred to above) is (ii). The classical proof of this is a
contour argument due to Peierls [70], Griffiths [33] and Dobrushin [18]. The argument
is nice and physically intuitive, and appears in most textbooks on the subject (e.g. [22],
[62], [29] and [40]). Other methods are required for (i) and (iii); the most common way
is to use Dobrushin’s uniqueness condition [20] for (i), and the Griffiths inequalities [34]
for (iii).

Today, there exists a more or less unified approach to proving (i), (ii) and (iii). It
uses the so called random-cluster representation of the Ising model, which was in-
troduced by Fortuin and Kasteleyn [26] [24] [25] in the early 1970’s, and brought into
fashion some 15 years later through the papers by Swendsen and Wang [83], Edwards
and Sokal [21] and Aizenman et al. [3] (see [37] for some further historical dicussion).
The main point of this random-cluster representation is to translate apparently difficult
questions about correlations into easier questions about percolation, i.e. about certain
connectivity probabilities in a random graph. | believe that this may be the best ap-
proach to understanding Theorem 1.1, and that it will find its way into future textbooks
in the field. Apart from simplicity and intuitive appeal, it also has the advantage of
going through mutatis mutandis for the Potts model [76], i.e. for the generalization of
the Ising model where the set {—1, 1} of possible spins is replaced by {1, ..., ¢} for some
¢ > 2 (g =2 is equivalent to the Ising model).

The present survey paper has two main purposes. The first is to give a detailed
description of the random-cluster proof of Theorem 1.1 and the corresponding more
general result for the Potts model. This is done in Sections 2 and 3. After briefly
discussing the possibility of the random-cluster model itself exhibiting a phase transition
in Section 4, I come to the second main purpose of the paper in Sections 5-8, which is
to review some recent developments which show that the ideas of the random-cluster
proof of Theorem 1.1 can be adapted in order to study phase transitions in many other
models. I will focus on Ising models with random interactions (Section 5), the Ashkin—
Teller model (Section 6), certain subshifts of finite type (Section 7), and models where
the lattice structure Z? is abandoned in favour of the continuum R? (Section 8). For
all the models considered, analogues of (i) and (ii) can be proved using the random-
cluster approach, while (iii) appears to be feasible only for some of the models. Some
concluding remarks are made in Section 9. The only new material in this paper are the



random-cluster representations in Section 7. Sections 1-3 should be read first, whereas
the remaining sections can be read in any order.

I can think of at least two good reasons why a probabilist or a statistician without
any specialized interest in statistical mechanics might still want to consider taking the
trouble to read this paper. The first, and most obvious, reason is that Ising, Potts and
related models have found their way into an increasing number of applications outside
of physics, e.g. in spatial statistics [49] and image analysis [28]. It is probably safe to
conjecture that this trend will continue, and percolate into new fields. A question well
worth asking in this context is whether the study of phase transitions is as important
in these more recent fields of application as in statistical mechanics. A possible reason
for being skeptical about this is that the phase transition phenomenon, as we define
it here, only occurs for infinite systems, and that systems e.g. in image analysis are
much smaller (typically 512 x 512 interacting components) than those in statistical
mechanics (typically of the order 10%® components) and are thus less well approximated
by infinite systems. However, even a system of size 512 X 512 turns out to be easily
large enough for phase transition-like phenomena to be manifest. As a consequence of
this, an understanding of phase transitions in infinite systems is likely to be important
for a correct treatment of statistical and probabilistic aspects of such moderately sized
systems.

The second reason that | have in mind for reading this paper is that the coupling
and stochastic domination ideas, which will be used throughout, can facilitate the un-
derstanding of many other areas of probability theory. This | know from personal
experience.

Readers who are content with a brief introduction to the random-cluster model
may alternatively turn to Grimmett’s survey [36]. Another introduction with a more
combinatorial flavour is given by Welsh [86].

It should be pointed out that although I focus entirely on the most basic aspects of
phase transition in this paper, the random-cluster representation has proved to be useful
also for other problems concerning lIsing and Potts models. Examples include studies
of large deviation properties [75], correlation lengths [8], strong mixing properties [23],
and various stochastic monotonicities [14] [45]. Probably just as important is the use of
the random-cluster representation in the design of highly efficient Markov chain Monte
Carlo algorithms [83] [64] [78].

I have found it convenient to build my presentation around Holley’s Theorem [50]
for stochastic domination between probability measures (see Theorem 3.5). In several
instances where | have used Holley’s Theorem, other authors have instead chosen to
work with the FKG inequality [27]. This is mainly a matter of taste.

2 Ising, Potts, and random-cluster models

Ising and Potts models are easier to describe in a finite setting, i.e. when the lattice Z¢ is
replaced by a finite graph, so we begin with this case. Let G be a finite connected graph
with vertex set V' and edge set F, and let 8 > 0; 3 is called the reciprocal temperature
parameter. A good example to have in mind is G being the nearest neighbour graph of
a finite rectangular portion of Z2. For v,w € V, write v ~ w to denote the existence of
an edge in GG connecting v and w, and write e(v, w) to denote the edge between v and



w. A spin configuration w € {—1,1}V is said to have energy

H(w)=2 ) 1um)tuw) (1)

T~y
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where each pair {z,y} C V having an edge in common is counted only once in the sum.

Definition 2.1: The Gibbs measure I/g on {—1,1}V for the Ising model at reciprocal
temperature 3 is the measure for which

) = —5 exp{~AH ()}

for all w € {=1,1}V. Here Zg is a normalizing constant, making yg a probability
measure.

The g-state Potts model is defined similarly:

Definition 2.2: The Gibbs measure I/g;’ﬁ on {1,...,q}V for the g-state Potts model
at reciprocal temperature 3 is the probability measure for which

v @) = s exp{=BH ()}

9,
G

for all w € {1,...,q}V. Here H(w) is again given by (1), and Z?;’B is a normalizing
constant.

Identifying {—1, 1} with {1, 2}, we see that the Ising model and the 2-state Potts model
are the same. Gibbs measures for the Ising (resp. Potts) model will often simply be
called Ising (resp. Potts) measures.

For a subset W of the vertex set V, define the boundary 0W to be

OW ={veV\W:3we W such that v ~ w}.

Definition 2.3: For a finite graph G with vertex set V and a finite set S, a random
element X taking values in SV is said to be a Markov random field on G if for each
W C V, the conditional distribution of X (W) given X (V\W) depends on X (V\W) only
through its values on W . More precisely, if P is the underlying probability measure,
then X is a Markov random field if for all w € SV, w' € SV\W and " € S°V such that
W' is the restriction of w' to W and P(X(V \W) =w') > 0, we have

PX(W)=w|X(V\W) =w') = P(X(W) = w| X(0W) = ).

If Xisa{l,...,q}"-valued random element distributed according to the Potts measure
yg;’ﬁ, then we have, for w € S" and o’ € SV\W| that

v (X (W) =w| X(VAW) =)

1
= 7P| =28 X Lupmeen ~28 Y L) (2)
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where ij’,ﬁ is yet another normalizing constant (Z with various sub- and superscripts
will always denote normalizing constants). The right hand side of (2) depends on «’
only through its values on W, whence Ising and Potts measures define Markov random
fields on G.

Let us now define the random-cluster model, and see how it relates to lsing and
Potts models. The random-cluster model lives on the edges rather than on the vertices
of G. Each edge is randomly declared to be present (state 1) or absent (state 0), so that
a random element of {0,1}¥ is identified with a random subgraph of G.

Definition 2.4: The random-cluster measure yu}’ for G with parameters p € [0, 1]
and g > 0 is the probability measure on the set of subgraphs of G given by

1 € - €
ue (n) = ZTéq{ [1»790 - p)t=nt )}q’“(”)

=1

for all n € {0,1}7. Here k(n) is the number of connected components of 1.

Note first that ¢ = 1 corresponds to having the edges present or absent with probability
pand 1—p, independently of each other. All other values of ¢ give rise to dependence be-
tween edges (as long as G is not a tree). The cases ¢ = 2,3, ... correspond to the g-state
Potts model, in a sense which we will now explain. Consider the probability measure
PE%on {1,...,q}Y x {0, 1}¥ obtained through the following two-step procedure:

1. Assign each vertex a spin value chosen from {1,..., ¢} according to uniform dis-
tribution, assign each edge value 1 or 0 with respective probabilities p and 1 — p,
and do this independently for all vertices and edges.

2. Condition on the event that no two vertices with different spins have an edge with
value 1 connecting them.

More formally, P5? is the measure which, to each element (w,n) of {1,..., q}V x{0,1}7,
assigns probability

1 —n(e
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It turns out that the vertex and edge marginals of P5? are distributed according to
Potts and random-cluster measures, respectively, as stated in the following result:

Theorem 2.5: Write P5?_ . (resp. Pg’idge) for the probability measure obtained by

projecting P%% on {1,...,q}V (resp. {0,1}¥). Then

P1q — 0B
PG,'uertez‘ =V (3)

where 3 = —L1log(1 — p), and
Pg’gdge = ng (4)



Proof: Fixing w € {1,...,¢}" and summing over all € {0,1}" we get

Pg’%ertex (UJ) = Z Pg’q(“” 77)
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since Z must equal Z?;’ﬁ by normalization. Hence, (3) is proved. To prove (4) we proceed
similarly, fixing 7 € {0,1}¥ and summing over w € {1,...,¢}V. Note that, given 1,
there are exactly ¢*(7) spin configurations w that are allowed, i.e. in which each pair of
neighbouring vertices z ~ y with n(e(z,y)) = 1 have the same spin. We get

Potige) = 3. FPE'wm)
we{l,g}Y

= FOL TP 0

=¥
— P
= pg'(m)
again by normalization. O

Hence PZ? is a coupling of 1/?;’ and pg”. (By a coupling, we here simply mean the joint

construction of two random objects on the same probability space. Some authors reserve
the term for a more specialized meaning. See [63] or [84] for general introductions to
coupling methods in probability theory.) The coupling P%? is the key to the use of the
random-cluster model in studying Ising and Potts models. It was introduced implicitly
by Swendsen and Wang [83] and explicitly by Edwards and Sokal [21]. The following
two results are immediate consequences of Theorem 2.5 and the definition of P5?:

Corollary 2.6: Let p = 1 — e=%%, and suppose we pick a random spin configuration
X e{l,...,q4}V as follows:

1. Pick a random edge configuration Y € {0,1}" according to the random-cluster
Py

measure fig}’.

2. For each connected component C of Y, pick a spin at random (uniformly) from
{1,...,q}, assign this spin to every vertex of C, and do this independently for
different connected components.

Then X is distributed according to the Potts measure yg;’ﬁ.



Corollary 2.7: Let p = 1 — e=2%, and suppose we pick a random edge configuration
Y € {0,1}¥ as follows:

1. Pick a random spin configuration X € {1,...,¢}V according to the Potts measure
yg;’ﬁ.
2. Conditional on X, assign each edge e = e(z,y) independently value 1 with prob-
ability
{ p if X(z) = X(y)
0 if X(z) # X(y),

and value 0 otherwise.

Then'Y is distributed according to the random-cluster measure pg’ .
The next result is a typical application of the random-cluster representation.

Corollary 2.8: Let G be a finite graph, and pick a random spin configuration X €
{1,...,¢}V according to the Potts measure Z/g;’ﬁ. For i € {1,...,q} and two vertices
u,v € V, the two events {X (u) = i} and {X (v) =i} are positively correlated, i.e.

VB (X (w) = i, X (v) = i) > V3% (X (u) = i (X (v) = i).

Proof: The measure yqG’ﬁ is invariant under permutation of the spin set {1,...,¢}, so
that .
(X =) =g (X =) = .
It therefore suffices to show that
1
& (X (u) = i, X (v) = i) > .
q
Now let us think of X as being obtained as in Corollary 2.6, i.e. by first picking an

edge configuration Y € {0,1} according to the random-cluster measure p%:?, and then

assigning i.i.d. uniform spins to the connected components. Given Y, the conditional
probability that X (u) = X (v) =1 is % if u and v are in the same connected component

of Y, and q% if they are in different connected components. Hence, for some o € [0, 1],
1 1 1
V?;’E(X(u) = Z,X(U) = z) =a-+ (1 — 0‘)_2 > —.
q q q

O

Remark: The same idea shows that if G is connected and # > 0, then the correlation
between 1y (,)=;} and 1(y(,)=;) is strictly positive.

We end this section with a very simple, but still useful, lemma about the random-cluster

model.

Lemma 2.9: For any edge e € F, and any configuration 7 € {0, 1}E\{e}, we have that

P if the endvertices of e are connected in 7

P, 5 —
pg' (e is present | n) = { STy, Otherwise,

Proof: Immediate from the definition of pf’. O



3 Phase transition in Ising and Potts models

In this section we consider Ising and Potts models on the cubic lattice Z%; with a slight
abuse of notation we identify Z¢ with its nearest neighbour graph (i.e. the graph in
which two vertices z,y € Z% have an edge connecting them if and only if their Euclidean
distance is 1). The definitions of Ising and Potts models on finite graphs do not carry
over directly to infinite graphs, since e.g. the set of possible spin configurations becomes
uncountable. On the other hand, the concept of a Markov random field does carry over
in a straightforward manner:

Definition 3.1: Let X be a random element taking values in 5z (with S being a finite
set) and write P for the underlying probability measure. We say that X is a Markov
random field if P admits conditional probabilities such that for every finite W C Z°
and allw e SV, ' € SZNW and w" € S?W such that w" is the restriction of w' to OW

we have

P(X(W)=w|X(Z]\W) =)= P(X(W) =w| X(0W) = ").

Ising and Potts models for Z? can now be defined in terms of conditional probabilities
on finite sets — this is the so called Dobrushin—Lanford—Ruelle [19] [58] approach to
infinite-volume Gibbs measures:

Definition 3.2: A probability measure v on {—1, l}zd (resp. {1, .. .,q}zd) is called
an Ising (resp. Potts) measure at reciprocal temperature 3 if its corresponding random
element X is a Markov random field satisfying

v(X(W)=w| X(0W)=1u")

1
= P | =20 2 Lume 28 2 L@y (5)
w' Tvz"‘/’;:l{/v IGV;,’;Z@W

for every finite W C Z% and all spin configurations w and " on W and 0W.

A comparison with (2) suggests that this is a reasonable generalization of Definitions
2.1 and 2.2. The existence (for any ¢, § and d) of such measures can be deduced
either by considering the models on larger and larger finite portions of Z% and using
compactness of {—1, l}zd to deduce the existence of a subsequential weak limit, or via
the monotonicity arguments that we will give below. As indicated in the introduction,
the focus in this paper is on the question of (non-)uniqueness:

Given ¢, 8 and d, does there exist more than one Potts measure?

For d = 1, the answer is no, while in higher dimensions the answer depends on ¢ and
3. In the lsing case ¢ = 2, this was stated already in Theorem 1.1, but the same
phenomenon generalizes to arbitrary ¢:

Theorem 3.3: For the g-state Potts model on Z% with d > 2 and reciprocal temperature
8, there exists a critical value (. = (.(d,q) € (0,00) such that for § < 3. there is a
unique Potts measure while for > 3. there is more than one Potts measure.

We will prove this for the special case of the Ising model (Theorem 1.1) first; the reason
for this is that the Ising model posseses certain stochastic monotonicities which make



life a bit easier and which are not shared by the ¢ > 3 Potts model. Note that the
important and highly intricate question of what happens at the critical value g = f. is
completely ignored here. This issue has received much attention elsewhere; see e.g. [57].

Let A, denote the box {—n,...,n}¢ C Z%. Fix 3, and let I/f_’n denote the probability

measure on {—1, 1}Zd which corresponds to picking a random spin configuration on Z%
as follows. First assign spin +1 to all sites outide the box A,,, and then pick the spins
inside A, according to (5), with W = A,, and w” = 4+1. We call this the Ising measure
for A, with “plus” boundary condition. The significance of these measures is due to
the following result, where the mode of convergence is weak convergence in the product
topology for {—1, I}Zd (since the spin space is discrete, this means that the probabilities
of all cylinder events converge; a cylinder event is an event which depends on the spins
at finitely many vertices only).

Proposition 3.4: The limiting probability measure

B _ B
Vi = U Ve

d . . .
on {—1,1}2° exists and is an Ising measure.

In order to prove this result, we need to introduce the concept of stochastic domina-
tion and a result of Holley [50] which is central to more or less everything in this paper.
Let V be a finite or countable set, and let P and P’ be two probability measures on RV .
A function f:RY — R is said to be increasing if f(&) < f(n) whenever & < 5. Here <
is the usual (coordinatewise) partial order, i.e. £ < nif £(v) < n(v) for all v € V. We
say that P’ dominates P, writing P’ =4 P (or equivalently P <; P') if

/fdpg/fdp’

for every bounded increasing f. We also write X <; X’ for two RV-valued random
variables whose distributions are ordered in this way. By a well-known theorem of
Strassen [82], this is equivalent to the existence of a coupling of X and X’ such that
X < X' a.s.; see also [63].

Theorem 3.5: Holley’s Theorem. Let V be finite and let S be a finite subset of
R. Let P and P’ be two probability measures on SV, assume that P' assigns positive
probability to every element of SV, and write X and X' for the corresponding random
elements. Suppose that for every v € V, every s € S and every £,n € SV\} such that

& <nand P(X(V\{v})=¢) >0 we have
P(X(v) > s| X(V\{v}) =& < P/(X'(v) > s| X' (V\{v}) = 7). (6)
Then P <, P'.

Holley did in fact not state the result quite in this generality, but the following proof is
a trivial extension of Holley’s proof:

Proof of Theorem 3.5: Consider the Markov chain {X;}2°, with state space SV
and transition probabilities defined by the following procedure. At each integer time
k > 1, pick a site v € V' at random (according to uniform distribution), let Xj(w) =
Xg—1(w) for each w € V\ {v}, and select X;(v) according to the conditional distribution
prescribed by P. This is a so called Gibbs sampler for P, and it is immediate that if
the initial value Xy is chosen according to P, then X} has distribution P for each k.



Next define another Markov chain {X[}?2, with the same state space analogously,
but with P replaced by P’. By the assumption that P’ assigns positive probability to
cach element of SV it is easy to see that the {X!} chain is irreducible.

Finally, define a coupling of {X;}22, and {X]}22, as follows. First pick the initial
values (Xo, X{)) according to P x P’. Then, for each k, pick a site v € V at random
and let Uy be an independent random variable, uniformly distributed on the interval
[0,1]. Let Xi(w) = Xg—1(w) and X} (w) = X, _;(w) for each site w # v, and update
the values at site v by letting

Xi(v) =max{s € S: P(X(v) > s| X(V\{v})=&) > U}

and
Xi(v) =max{s € S: P (X'(v) >s| X' (V\{v}) =n) > U}

where { = X1 (V\{v}) and n = X[ _,(V\{v}). It is clear that this construction gives
the correct marginal distributions of {X;}72, and {X[}32,. Furthermore, (6) implies
that X3 < X; whenever Xj_y < X/_,. Since the {X}} chain is irreducible, it will a.s.
hit the maximal state (with respect to <) of SV after finite time, and from this time on
we will thus have X; < X;. Note furthermore that {X, X[ }2°, is itself a finite state
aperiodic Markov chain, so that (X, X}) has a limiting distribution as £ — oco. Picking
(X, X') according to this limiting distribution gives a coupling of X and X' such that
X < X" a.s., whence P <4 P'. O

A typical application of Holley’s Theorem is the following lemma, which will also serve us
in proving Proposition 3.4. For finite W C Z% and a spin configuration w” € {—1,1}°%W,
we define the Ising measure for W with boundary condition w” to be the probability
measure on {—1,1}W defined by the right hand side of (5).

Lemma 3.6: Let W C Z? be finite, and let W} and W} be two spin configurations on
OW satistying wi < wY. Furthermore, let 1/51,7&){, and 1/51,7%/ be the Ising measures on W
with boundary conditions w{ and wj. We then have

B

B
wwi 2av

1.
Wws,

Proof: The conditional probability of a plus spin at a single site v € W given everything
else equals (1 4 €2#(24=25))=1 where & is the number of nearest neighbours of v having
plus spin. This is an increasing function of the spin configuration off v, whence Holley’s
Theorem can be invoked to give the desired conclusion. O

Proof of Proposition 3.4: We first show existence of the limit. This follows (by
compactness of {—1,1}%%) if we can show that

Vo rail g, (™)

To see this implication, note that (7) implies that the probabilities of events of the type
“all sites in the (finite) set A C Z? have spin +1” decrease, whence they converge, and
by inclusion-exclusion the probabilities of all cylinder events converge. We proceed to
show (7), i.e. to show that

v o Vf,n+1 (8)

10



for any n. Consider the following way of picking a random element X, 1, € {-1, l}zd
according to Vﬁ,n+1' First let X,41 =41 on Z?\ A,;;. Then assign spins to A,4q \ Ay,
according to the projection of Vf—,n+1 on {—1, l}A"+1\A". Finally pick the spins on A,
according to the conditional distribution in A,, given the configuration on A, 41\ A,. By

Lemma 3.6, this conditional distribution is stochastically dominated by the projection
on {-1, 1}A" of me. Hence we can couple X,;; and X,, so that X,, > X, 4y a.s., so

we have (8), and existence of the limiting measure 1/_*?_ follows. To see that this is an
Ising measure, we need to check for any finite W C Z? and any w” € {—=1,1}?" that
1/_{ satisfies (5). This, however, is immediate from the fact that the same property holds

for I/f_’n for each n which is large enough for W U 0W to be contained in A,,. O

The measure yf plays a special role, in that
v v’ (9)

for any other Ising measure v? at the same reciprocal temperature; this follows from
the same use of Lemma 3.6 as in the proof of Proposition 3.4. By the £1 symmetry of
the model, we of course have a similar measure uf, obtained with “minus” boundary

conditions, for which
VP <y 0” (10)

B

for all Ising measures v?. One can check that vl and l/f are translation invariant. A key

to analyzing the phase transition behaviour of the Ising model is the following lemma.
Write 0 for the origin of Z? and write, as before, X for a {-1, 1}Zd—valued random
element.

Lemma 3.7: There is a unique Ising measure for Z% at reciprocal temperature (3 if and
only if

(11)

Proof: Suppose first that 1/_{ (X(0) = 1) # 1. Then, by (9), (10) and +1 symmetry,

we have 7 (X(0) = 1) < 1 < v (X(0) = 1), s0 v # v, and we have nonuniqueness

of Ising measures. For the other direction, suppose that Vf_ (X(0) = 1) = . Then

VP (X(0)=1)= 1, again by &1 symmetry. Translation invariance gives

VI(X(2)=1) = v{(X(z)=1) = 5
for each z € Z?. By (9) and Strassen’s coupling theorem, there exists a pair X, X’
of {—1, 1}Zd—valued random elements with distributions yf and v” such that X/ < X

P-a.s., where P is the underlying probability measure of the coupling. This means that
for each =z,

P(X'(2) # X(2) = P(X'(x) = -1, X(2) = 1)

so that X = X' P-a.s., whence yf = 1P . This, in conjunction with (9) and (10), implies
uniqueness of Ising measures. O
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We have thus reduced the question of uniqueness of Ising measures to that of whether
(11) holds. The latter question is particularly amenable to random-cluster methods.
For the remainder of this section, we shall stay within eyesight of the path staked out
by Aizenman et al. [3]. We shall consider a close variant of the coupling between the
random-cluster model and the Ising model in Section 2. Let G, be the graph with
vertexset V,, = Apy1 ={-n—-1,...,n+ l}d and edge set F,, consisting of all nearest
neighbour pairs in A, 4. Write E,, as the disjoint union E] U E!, where E! consists of
all edges that have at least one endvertex in A,, and £/ thus consists of those edges that
have both endvertices in A,y1 \ A,. For p € [0,1], let Pgn be the probability measure
on {—=1,1}"» x {0,1}"» defined by the following procedure:

1. Assign each vertex of A,41 \ A, value 1 and also each edge of E value 1 (this is
because we are interested in the Ising model on A,, with plus boundary conditions).

2. Assign each vertex of A, value 1 or —1 with probability % each, assign each edge of
E! value 1 or 0 with respective probabilities p and 1—p, and do this independently
for all edges and vertices.

3. Condition on the event that no two vertices with different spins have an edge
connecting them.

It is now a simple modification of the proof of Theorem 2.5 to check that the vertex
marginal of Pgn equals the projection on {—1,1}A» of the Ising measure Vﬁ’n, where
b = —%log(l — p), and that the edge marginal equals [Lgi which we define as the
random-cluster measure ,ug’i conditioned on the event that all edges of E! are present.
Write, as usual, X for a random spin configuration, and let 0 <+ JA, denote the event
that there exists a path of open edges connecting the origin to JA,. By a direct analogue
of Corollary 2.6, we have that

14+ 2% (0 < 9A,
A (X(0) = 1) = 02 %)

whence

X ©0)=1) = lim o} (X(0)=1) (12)
L limpse 52 (0 ¢ 9A,) (13)
- 2

(existence of the limit in (13) follows from existence of the limit in (12)). The question
of uniqueness of lIsing measures, which we previously translated into that of whether
(11) holds, can thus be further reduced to the question of whether or not for p = 1 —e 2
we have
M 7 72 —_
Jim figi” (0 ¢ 0A,) = 0. (14)

This question can be answered (partially) using Holley’s Theorem together with the fol-
lowing result, which could possibly be dubbed “the fundamental theorem of percolation
theory”. In standard bond percolation, each edge of the nearest-neighbour graph on Z¢
is independently present or absent with probability p resp. 1 — p. Let 6(p) denote the
probability that, under this model, 0 is in an infinite connected component of present
edges.

12



Theorem 3.8: For bond percolation on Z%, d > 2, there exists a critical value p. =

p.(d) € (0,1), such that
=0 ifp<pe
H(p){ >0 ifp> pe.

See e.g. the standard monograph by Grimmett [35] for a simple proof; the substantial
part is to show that p. is strictly between 0 and 1. The result dates back some 40
years to the advent of percolation theory [10] [47] [48]. Recall that taking ¢ = 1 in
the random-cluster model yields independent edges with probability p of being present.
Hence standard bond percolation can be seen as an instance of the random-cluster
model. It follows that

=0 if p<p,

1
>0 if p>p. (15)

hm,u (0(—)8/&){

(the limit exists by the observation that /Lg’i (0 <+ OA,) is decreasing in n). Analogously
to Lemma 2.9, we have for each e € I/, and each configuration 7 of edges off e that

P2, - ; o if the endvertices of € are connected in 7 16

i, (¢ is present | n) = 3=, otherwise. (16)
Hence, we can apply Holley’s Theorem to the projections on {0, 1}17’;1 of ,ugl and ﬂgz
We get that the former projection stochastically dominates the latter, so that in partic-
ular

HP(OHaA) (0<—>8A)
Similarly,
L0 ¢ 0A) > pZ7 (0 65 OA,).
By (15), we thus have that (14) holds for p < p. and fails for p > 2pc . Hence

=1 for B < —1log(l - p.)
8 - ? D oa(l— 2
Jim v{ (X (0) = 1){ > 5 for > —5log(1 - 75)

1+p it remains to show that
the occurrence of a phase transition is monotone in f. By the reduction of the phase
transition question to (14), it is sufficient to show that %’ “(0 <+ OA,) is increasing in
p for each n. A key observation now is that the right hand side of (16) is inc1easing

in p as well as in 5. Let 0 < p; < py < 1, and consider the measures ,upl’ and ,upz’ .
Holley’s Theorem applied to their projections on {0, I}En tells us that
2 < 1)

whence ,upl’ (0 < DA,) < a2? "?(0 <+ dA,). This completes the proof of Theorem 1.1.

Remark: The problem of ﬁnding an exact expression for the critical value 3. in Theo-
rem 1.1 is believed to be mathematically intractable, with the remarkable exception of
d = 2, where it is known [68] [1] that 3. = 1 log(1 +v/2). For the 2-dimensional ¢-state
Potts model, it is believed that 3.(¢) = 1 log(1+4,/9); see e.g. [85] for some non-rigorous
random-cluster arguments for this formula.
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The remaining task in this section is to go from the Ising model to the Potts model, i.e.
to extend the above proof of Theorem 1.1 into a proof of Theorem 3.3.

Consider the g-state Potts model on Z?, with ¢ > 3. For aspin i € {1,..., ¢}, we can
define 1/ ﬁ to be the Potts measure for the box A, with boundary condition consisting
of spin 1 everywhere on Z%\ A,. Let the probability measure ,up’q on {0,1}" be given

by the obvious generalization of i ,LLGH. The coupling of V+,n and ,an generalizes directly

~Psq

to a completely analogous coupling of V,z’ and fi;'. Applying Holley’s Theorem to the

pvq P

projections of 2! and g3 on {0, 1}% we get that the former projection dominates

+1

the latter stochastlcally ThlS implies that ,up’q (0 «» JA,,) is decreasing in n, and hence
has a limit as n — oo. Corollary 2.6 gives

1+ (¢ — 1%L (0 ¢ 9A,)
q

VX (0)= i) =

Z’)’L

so that

1 — 1) limp oo figy (0 5 DA,
lim v87 (X (0) = i) = T (0= Dlimnseo 5, (0 2 0An)

n—o0 q
Comparing with independent bond percolation as we did for the Ising case gives

for 8 < —% log(1 — p.)

for 8 > —%log(] - 71_'_(3711)%).

lim %7 (X (0) = 1){ N (18)

n—oo H7h >

= =

One more application of Holley’s Theorem tells us that g7’ "(0 ¢+ 0A,) is increasing in
p, whence the same thing holds for the limit as n — oco. In conjunction with (18), this
implies the following result:

Lemma 3.9: There exists a critical value * = 3*(q,d) € (0,00) such that

=1 forp<p*
9,8 — 9
meoovzn(x(o)—l){ >;— for 3 > p*.

Theorem 3.3 now follows, with 3, = *, once we can show:

Lemma 3.10: There is a unique g-state Potts measure for Z® at reciprocal temperature

§ if and only if
1
lim v2%(X(0) =) =

n—oo b 5

For the Ising case ¢ = 2, this result popped out rather easily (Lemma 3.7) due to the
monotonicity relations (9) and (10). For the ¢ > 3 Potts model some more work is
required, in particular for the ‘if” direction.

Proof of Lemma 3.10: By Lemma 3.9, we have that lim,_., v27(X(0) = i) > 1.

,n q

Suppose first that lim,,_, 1/ (X( )=1) >3 L and let v} 99 he some subsequential weak

limit of {Ilq’ﬁ}n 1- The measure I/q’ﬁ is then a Potts measure for Z¢ with the prescribed
parameters. Since v} ( (0 ) i) > l there must be some other spin j € {1,...,¢q}
such that l/f’ﬁ(X(O) j) < —-. Now construct another Potts measure v/ 5 by using the
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“all 77 boundary condition instead of “all ?” and taking a subsequential weak limit. We
then have yj’ﬁ(X(O) =j)> l whence I/q’ﬁ £ v?P . This proves the ‘only if’ direction.

For the “f” direction, suppose that lim,_ l/q’ﬁ(X(O) =1)= % We then have that
nli_}moo figil (0 ¢ OA,) = 0. (19)

Let v9% be any Potts measure for Z? with the given parameter values. Qur task is to

show that v98 = Vf’ﬁ, and for this it is sufficient to show that

v9(C) = v (C) (20)

for any cylinder event C'. Fix C, and let n; be large enough so that C' only depends
on the spins inside A,,,. For two sets A, B C Z?, write A ¢ B for the event that there
exists some x € A which is connected to some y € B via a path of present edges. Fix
€ > 0, and pick ng so large that

i, (A, ¢ 0An,) <, (21)

that this is possible follows from (19) and the observation that the conditional proba-
bility under ,up’q that all edges in A, are present given the edge configuration outside
of A, is bounded away from 0 uniformly in n > n; and the edge configuration off A, .
Similarly, we can pick n3 so large that

g (A712 < 0A,,) <e. (22)

A random spin configuration X € {1,...,q}zd distributed according to v?? can
be obtained as follows. First pick the configuration X (Z?\ A,,) of spins outside A,
according to the appropriate projection of v%” and then pick X(A,,) according to
the right conditional distribution. The choice of X (A,,) will be made by a special
procedure: First define 7, to be the graph with vertex set

Vi = Ay UOAL, U{AL, ..., A,
where Ay, ..., A, are ¢ auxiliary vertices, and edge set
B =En U{(z,y): v € 0An,,y € {A1,...,Al}}.

Write w € {1,...,¢}?"#s for the spin configuration on dA,, obtained as the restriction
to A, of X(Z%\ A,,). Recall the definitions of FE! and E!  and pick a random edge
configuration Y € {0, 1} na according to ,up’q defined as the random-cluster measure

,ug’f conditioned on the event that

(i) forall j=1,...,qand z € OA,,, the edge between 2 and A; is present if and only
if w(z) = J,

ii) no edge o is present, an

ii dge of K], is p , and

(iii) no two vertices 2,y € dA,, with w(z) # w(y) have a path of present edges in I},
connecting them.

Once the edge configuration Y has been chosen, pick X (A,,) by assigning spins to the
connected components of Y in such a way that
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(a) for j =1,...,q, the connected component containing A; gets spin j, and

(b) each connected component not containing any of the A;’s gets a spin chosen uni-
formly from {1,...,q}, with different connected components independent.

Again, it is just a simple modification of the proof of Theorem 2.5 to check that this
gives the right distribution of the spin configuration X (A,,;). For any e € F}_ and any
configuration n of edges off e, we see that

p, if the endvertices of e are connected in 7
0, if for two distinct j1, 72 € {1,..., ¢}, the endvertices
of e are connected in 7 to, respectively, A; and A;,

p-|-(+p)q7 otherwise.

Dgd (e is present | ) =

Applying Holley’s Theorem we get that the projection on {0, 1}E:13 of 7%? stochastically
n3

dominates the projection on {0, 1}%3 of 72! . We shall now describe a specific coupling
n3

of two {0, 1}E£13—Valued random elements Y and Y* with these distributions, and for
which Y > Y* a.s. This coupling involves a kind of sequential construction called
“disagreement percolation”, which is highly useful also in a number of other situations
(see [6]). Let ey, eq,...be some arbitrary enumeration of the edges of £ _. At each step
k of the sequential construction, select the edge with the smallest index 7 satisfying

(1) e; has not been selected in any previous step, and

(2) € is incident either to some vertex of dA,, or to some previously selected edge
which has been assigned value 1 for the Y realization.

Let Uy be a uniform [0, 1] random variable independent of everything else so far, and
let

Y (e;) = max{a € {0,1} : ﬁg’ss (Y(e; > a)|the Y values determined so far) > Uy}
and
Y*(e;) = max{a € {0,1}: 0% (Y*(e; > a) | the Y* values determined so far) > Uy}.

This guarantees that Y (e;) > Y*(e;). Usually, it will happen at some stage before
the construction is complete that no edge satisfying (1) and (2) can be found. Write
F for the (random) subset of EJ_ consisting of those edges whose Y and Y* values
are yet to be determined when this happens. Clearly, all edges of E] . \ I that are
incident to some edge of F/ have value 0 for both Y and Y*. Therefore, the conditional
distributions of Y (F) and Y*(E) coincide and are equal to the random-cluster measure
with parameters p and ¢ on a graph with edge set £ and the appropriate vertex set.
We end the sequential construction by taking Y (FE) and Y*(E) to be identical, the
realization chosen according to this random-cluster measure.

We can then obtain spin configurations distributed according to szs and the pro-

jection on A, of v?* by assigning spins to the connected components of Y (£,,) and
Y*(E],) as described above. Let A be the event that Y (£).) and Y*(E],) coincide
inside the box A,, and that furthermore all connected components which intersect A,
are contained in A,,. When A occurs, the spin choices can be made in such a way that
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the two spin configurations are identical on A,,. By (21) and (22), A has probability
at least 1 — 2e, whence
WP (C) = 2P (O] < 2.

,n3

Since ngz could be taken arbitrarily large, we have
P (C) = PP ()] < 2,

and since £ was arbitrary, we have (20) and the proof is complete. O

4 The infinite-volume random-cluster model

We saw in the previous section that Ising and Potts models could be generalized from
finite graphs to the infinite lattice Z¢, using the Dobrushin-Lanford-Ruelle equation (5).
Note that the use of random-cluster representations for studying these infinite systems
only involved random-cluster measures on finite graphs; the corresponding thing holds
for the various other systems that we will study in Sections 5-8. Nevertheless, it is
natural to ask whether the random-cluster model itself can be generalized from finite
to infinite graphs in the Dobrushin—-Lanford—Ruelle spirit. This was recently done by
Grimmett [39], and independently by Pfister and Vande Velde [73] and Borgs and Chayes
[8]. The definition of a random-cluster measure for Z¢ can be formulated as follows.

Write E? for the edge set of the nearest neighbour graph on Z?. Pick p and ¢
satisfying 0 < p < 1 and ¢ > 0. For a finite set S C E?, let S’ denote the set
{v € Z% : 3¢ € S such that e is incident to v}. For a configuration & € {0,1}E"\S of
edges off S, let the random-cluster measure p%? “on S with boundary condition &” be
given by

HSE(n) = %{ I 571 = p)'=71) g (23)
’S,E e€S

for all 7 € {0,1}°. Here k(,€) is the number of connected components which intersect
S’ in the configuration which agrees with 7 on S and with &€ on E?\ S. As before, we
denote a random edge-configuration by Y.

Definition 4.1: A probability measure y on {0, 1}Ed is called a random-cluster measure
with parameters p and ¢ if its conditional probabilities satisfy

p(Y (S)=n|Y(ET\S) =€) = pugi(n) (24)

for all finite S C E?, all € {0,1}* and p-a.e. & € {0, 1}Ed\s.

This gives rise to a consistent set of conditional probabilities. To argue that it is a
natural extension of the finite graph case, note that random-cluster measures on finite
graphs have conditional probabilities of the same form.

The existence of measures having the prescribed conditional probabilities is not quite
as easily proved for the random-cluster measures as for Ising and Potts models. The
difficulty in the random-cluster case is that, whereas in Ising and Potts models the
conditional distribution of the spin at a site given the spins at all other sites depends on
nearest neighbours only, for random-cluster measures the conditional probability that
an edge is present given everything else may depend on the status of edges arbitrarily
far away (see Lemma 2.9). Nevertheless, random-cluster measures for Z¢ do exist for
any choice of p and ¢, as stated in the following result due to Grimmett:
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Proposition 4.2: For any p € [0,1] and ¢ > 0, there exists at least one random-cluster
measure for Z% with parameters p and q.

Proof: We may assume that p € (0, 1), since otherwise the conclusion is trivial. Suppose
first that ¢ > 1. We saw in Section 3 that the measures up’q form a sequence of
probability measures which is stochastically decreasing (there we only considered integer
¢, but the arguments extend verbatim to noninteger ¢ > 1). Therefore, these measures
converge weakly to some probability measure p2? . on {0, 1}E (wecall it u?? _ because
it is a limit of random-cluster measures with “wired” boundary conditions; recall that
all edges in E!/ are present ,up’q -a.8.). This measure is our candidate for a random-
cluster measure, and what we eed to do is to check that it satisfies (24) for every

finite S C E4, every n € {0,1}° and p2! ae. & € {O,l}Ed\S. It is easy to see,
using monotonicity, that p? s translation invariant. Furthermore, the conditional

Pyq
wired

ﬁ,p] this follows from the observation that the same holds for fi
for each n. Hence p?? . satisfies the so called “finite energy condition” which is the
property that all conditional probabilities on finite sets are strictly positive. We can

thus apply the famous Burton—Keane Uniqueness Theorem [11], which states that if a

that an edge is present given everything else is always in the
~Dy1

probability under p
interval [

probability measure on {0, 1}Ed satisfies both translation invariance and finite energy,
then it is concentrated on the event that the edge configuration contains at most one
infinite connected component. For any finite S C Z%, we also get that ph? (Ag) =1,
where Ag is the event that we would have at most one infinite connected component if
all edges in S were switched to value 0. On the event Ag, we can always find, given the
configuration & of edges off S, a box A, large enough so that we can tell which vertices
of S’ are connected to each other via edges present in & by looking only at edges inside
A, . For all n > ny the conditional distribution under ,up’q of the configuration on S
given ¢ satisfies (24) and is independent of what happens outside Ay, . Hence the same
thing holds for the limiting measure p'? . This proves the result for ¢ > 1.

The proof for the ¢ < 1 case is similar, except that one has to be a bit less explicit
in the construction of a candidate measure (the monotonicity used for ¢ > 1 does not
work for ¢ < 1, due to the fact that the conditional probability that an edge e is present
given the configuration & of other edges fails to be increasing in &). As a candidate,
we consider some subsequential weak limit of random-cluster measures on finite boxes
increasing to Z?. Translation invariance of the limit can be ensured by using torus (wrap-
around) boundary conditions for the boxes. The Burton—-Keane Uniqueness Theorem

then finishes the proof as for the ¢ > 1 case. O

Now that the existence of random-cluster measures for Z is established, an obvious next
question (in analogy with phase transition considerations for Ising and Potts models)
is whether there is a unique random-cluster measure with given parameters. I will only
give a short introduction to this highly intricate issue here, and refer to Grimmett [39]
for a more thorough discussion. The following paragraph is a slight digression.

For ¢ = 2,3 ..., one might at first think that the question of uniqueness of random-
cluster measures would be intimately connected with uniqueness of Potts measures with
the corresponding parameter values. This, however, is the wrong intuition. Instead, we
have the following;:

Phase transition for the Potts model corresponds to the occurrence of infinite
clusters in the random-cluster model.
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More precisely, the g-state Potts model for Z? at reciprocal temperature 3 has more than
one Gibbs measure if and only if 7 (with p = 1 — e=27) assigns positive probability
to the existence of infinite clusters. This follows from arguments in Section 3.

Now, returning to the issue of uniqueness of random-cluster measures, let us first
restrict to the case ¢ > 1. We can define the probability measure u?fee on {0, 1}Ed as a
weak limit of the measures ,ug: as n — 00. In other words, ,uff’rqee is obtained as p2? .
except that we do not at the finite stages condition on the boundary being wired. Again,
existence of the limit follows by monotonicity (this time, though, the measures Ng: are
stochastically increasing). By the same arguments as those used for the Ising model in
Section 3, we have that

Bl < Pt < P

free — wired

for any random-cluster measure u?? for Z% with the given parameters. Hence, uniqueness
n ] ] ] pyq — p,q

of random-cluster measures is equivalent to having Hiree = Hagired-

In order to state the generally agreed belief concerning uniqueness of random-cluster

measures when ¢ > 1, we first need to define the percolation probability
8(p,q) = p? _ (the origin is in an infinite cluster).

By now familiar monotonicity arguments also imply that for p; < p, we have

P19 P2,9
Hoyired j Hopired

whence 8(p, q) for fixed ¢ is an increasing function of p. Let

pe(q) = inf{p: 8(p,q) > 0},

i.e. p.(q) is the critical value of p needed to get infinite clusters in p;! .. The following
is conjectured in [39] and partly in [8]. Write P(gq) for the set of p-values for which there
is more than one random-cluster measure with parameters p and gq.

Conjecture 4.3: For the random-cluster model on Z?%, d > 2, there exists Q = Q(d) > 2

such that
Py =1 " if1<qg<Q
D= @)} ifg> Q.

In other words, phase transitions for the random-cluster model should occur very rarely
in the parameter space: only for large ¢ and with p equal to the percolation threshold
p:(q). Some rigorous progress has been made towards a proof of this conjecture. The
arguments due to Aizenman et al. [3] used in the proof of Lemma 3.10 also show that
there is a unique random-cluster measure whenever p < p.(¢). Grimmett [39] showed
that for fixed ¢ > 1, there is a unique random-cluster measure for all but at most
countably many values of p. The results in [55] and [57] imply that there is more than
one random-cluster measure for large enough integer ¢ and p = p.(¢q); a distinguishing

feature for such (p,q) is that there exist (a.s.) infinite clusters under p? . but not
under pt?

In cofr:‘sl?ast, hardly anything is known about the phase transition behaviour for ¢ < 1,
due to the lack of monotonicity arguments in this part of the parameter space. However,
it is hard to imagine any mechanism that would boost a phase transition in this case,
so maybe one should conjecture the absence of phase transition throughout the ¢ < 1

regime of the parameter space.
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There are of course other infinite graphs, apart from Z?, on which the random-
cluster model can be defined and studied. One interesting case is the regular tree of
order n > 2, denoted by T, and defined as the (unique) infinite connected graph which
has no circuits and in which each vertex is incident to exactly n+ 1 edges. The random-
cluster model on T,, is studied in [43] and [44], motivated by previous studies of Ising
and Potts models on T,, (see e.g. [29]), and also by the general philosophy that when
a question (such as Conjecture 4.3) about a Z%-indexed random process appears to be
“too difficult”, then one can sometimes shed light on it by studying the corresponding
T,-indexed random process.

It is not immediately clear how the random-cluster model on T,, should be defined.
For finite trees, the definition of finite graph random-cluster measures leads simply
to i.i.d. edges with probability m of being present; this is a direct consequence
of Lemma 2.9. The i.i.d. behaviour carries over to T, if Definition 4.1 is brought over
directly to the T,, case, so such a definition is nothing but a complicated way of defining
standard bond percolation on a tree. A different definition is proposed in [43] and [44],
where Definition 4.1 is brought over to the tree case with the important modification that
the exponent k(n,€) in (23) is defined as the number of finite connected components
that intersect S’. It is only with this alternative definition that the correspondence
between phase transition in the Potts model and infinite clusters in the random-cluster
model carries over to T,. The two different ways of counting connected components
are (trivially) equivalent for finite graphs, but probably also on Z?, since it is believed
that random-cluster measures for Z¢ give rise a.s. to at most one infinite cluster (if
we restrict to translation invariant measures, then this is certainly the case due to the
Burton—Keane Uniqueness Theorem). The basic existence and uniqueness questions are
studied in [43]: The phase transition behaviour on T,, (for the version of the model where
only finite clusters count) turns out to be a bit different from that on Z%, in that for ¢ > 2
the set P(q) contains an entire interval of p-values. The existence result (Proposition
4.2) carries over to T, although it requires a different (and more constructive) proof,
due to the failure of the “uniqueness of the infinite cluster” property on T,,.

5 Ising model with random interactions

In this and the following three sections, we shall see examples of how the random-cluster
methods of Sections 2 and 3 can be adapted in order to illuminate the phase transition
behaviour of systems other than the standard lIsing and Potts models. This section is
devoted to spin glasses, i.e. to Ising models with random interactions. The study of
such systems is a highly active research area in statistical mechanics; see Petritis [71] for
a general survey. The arguments of this section are taken from Aizenman et al. [2] and
Newman [67], and go through also for ¢ > 3 Potts models with random interactions,
but for simplicity and tradition we stick to the lsing case ¢ = 2.

Consider first the following “inhomogeneous” version of the Ising model on a finite
graph. Let GG be a finite graph with vertex set V and edge set F, and let {J.}.cr be
non-negative real numbers, called the coupling constants.
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Definition 5.1: The Gibbs measure VéJE}’ﬁ on {—1,1}V for the Ising model on G with
coupling constants {J.}.cp and reciprocal temperature [3 is the measure for which

1
vg(w) = s )

for all w € {—1,1}". Here

H(w) =2 Z -]e(x,y)]-{w(z‘);ﬁuJ(y)}'

T~y

z,y€V

Obviously, taking J. = 1 for each e € F gives the standard Ising model. Having differ-
ent coupling constants for different edges corresponds to having different strengths of
interaction between different pairs of neighbouring vertices.

The corresponding “inhomogenisation” of the random-cluster model is to have dif-
ferent values of p for different edges:

Definition 5.2: The random-cluster measure ,u{pe}’q for G with parameters ¢ > 0 and
{Pe}ecr taking values in [0, 1] is the probability measure on the set of subgraphs of G

given by
{pe}ﬂ )1
Z{pe,q{]-_-[pe (1-p e }q

for all n € {0,1}¥, where as before k(n) is the number of connected components of 1.

The proof of Theorem 2.5 carries over directly to the inhomogeneous case, and as a
consequence we get the following analogue of Corollary 2.6:

Proposition 5.3: A random spin configuration X € {—1,1}V distributed according
{Je}.8

to the Ising measure vy can be obtained as follows. For each e € F, let p. =

1 —exp(—203.J.), and pick an edge configuration Y € {0, 1}¥ according to the random-

cluster measure ,u{pE}’ Then, for each connected component C of Y, pick a spin at
random (uniformly) from {—1,1}, assign this spin to every vertex of C, and do this

independently for different connected components.

Next, the inhomogeneous Ising model can of course be generalised to a Z¢ setting in the
exact same way as the standard Ising model (Definition 3.2). The spin glass model is
simply an inhomogeneous Ising model on Z% where the coupling “constants” {J.}.cE,
are chosen at random. T'hus, the spin glass model contains randomness on two levels:

1. First, the coupling constants {.J.}.cg, are chosen according to some probability
measure ll. Here, and throughout most of the spin glass literature, it is assumed
that the coupling constants are i.i.d. We write m for the distribution of a single

Je.

2. Given {J.}ccE,, the spins are chosen according to some Gibbs measure for the
ingomogeneous Ising model on Z? with coupling constants {.J. }.cg, and reciprocal
temperature (.

The basic question is whether there is a unique Gibbs measure in Step 2 of this proce-
dure. It is easy to see that the answer to this question is independent of {.J. }.cx for any
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finite edge set ¥ C E?, so by Kolmogorov’s 0-1 law the answer must be either yes Il-a.s.
or no ll-a.s. The arguments used for the standard Ising model in Section 3 imply the

{Je}.8 {Je}.8

existence of two particular Gibbs measures v} and vz , obtained as weak limits

with plus and minus boundary conditions, respectively. Just as for the standard Ising
model, uniqueness of Gibbs measures is equivalent to Vije}’ﬁ and VEJE}’B being identical.
The following result, in which p. as before denotes the critical value for standard bond
percolation on Z?, provides a partial answer. The proof is so similar to the proof of
Theorem 1.1 that a short sketch will suffice; the reader (having come this far) will have
no trouble filling in the details.

Theorem 5.4: Consider the spin glass model on Z%, d > 2, with non-negative coupling
constant distribution .

(i) If 7(J.=0) > 1 — p,., then there is Il-a.s. a unique Gibbs measure for any (3.

(ii) If on the other hand w(J. = 0) < 1 — p., then there exists 3. = f.(d, ) such that
there is Il-a.s. a unique Gibbs measure when [ < (3., and Il-a.s. more than one
Gibbs measure when (3 > (3..

Sketch proof: Let p. = 1 —exp(—203.J,) for each e € E,. For (i), note that =(J. = 0) >
1 — p, implies that TI(p. = 0) > 1 — p.. Hence, the edge set {e € E? : p. > 0} does not
form any infinite cluster Il-a.s. Using Proposition 5.3, we thus get that the spin at a
given z € Z¢ is asymptotically independent of the spins on dA,, as n — co. Uniqueness
now follows as in the proof of Lemma 3.7.

Pe

To get (ii), write p, = 7=, note that

p. if e’s endvertices are already connected

{p5}72 3 —
pe“ " (e is present | all other edges) = { P, otherwise,

and use HOHey’S Theorem to deduce tha[
: )1 efy2 el 2
ge} < ! ”g } < ! “’g } ( 5)

for any G. Write m (resp. m') for the expected value of p, (resp. p.) under II. Since
the p.’s are i.i.d., we have that the unconditional distribution (i.e. averaged over II) of

the edge configuration is i.i.d. with edge probability m (resp. m’) under ,uépe}’l (resp.
,uép’e}’l). Uniqueness now follows as for (i) when 3 is small using the second inequality
in (25) and the observation that m tends to 0 as  — 0. Phase transition for large 3
follows similarly, using the first inequality of (25) and limg_oom =1 —7(J. = 0) > p..
Finally, monotonicity in § follows from a translation of (17) to the inhomogeneous case.
O

Let me end this section by pointing out that the restriction to non-negative coupling
constants can be described as “spin glasses for beginners”. The really difficult questions
arise for systems where the coupling constants can take both positive and negative
values. Newman [67] shows how the approach sketched above can be carried further, so
as to actually shed some light on this more difficult case.
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6 The Ashkin—Teller model

The Ashkin—Teller model [4] is a spin system which is of interest because it exhibits a
double critical phenomenon: it has two critical values 81 < (33 such that the behaviour of
the model is qualitatively different for 3 chosen in the high temperature regime § < 3y,
the low temperature regime 3 > (2 and the intermediate regime § € (1, 32). Each site
z € Z9 takes a value from the spin set {A, B,C, D}. The spin set should be thought
of as hierarchical: A and B are closely related to each other, as are C' and D, whereas
the relationship between {A, B} and {C, D} is more distant. Fix two coupling constants
J1 and Jo such that 0 < J; < Jg, and define the symmetric pair interaction function
h:{A,B,C,D}?—= R as

h(A,A) = h(B, B)
h(A, B) = h(C, D)
h(A,C) = h(A, D) =

h(C,C) = h(D, D) =0
?

[l
v&

B,C) = h(B, D) = Js.

As usual, we first define the model on a finite graph.

Definition 6.1: The Gibbs measure Vél"b’ﬁ on {A, B,C, D}V for the Ashkin—"Teller
model on G at reciprocal temperature 3 is the probability measure on {A, B,C, D}V
which assigns probability

T o, 1
vg P w) = WGXP{—ﬂH(W)}
G

to each w € {A, B,C, D}V. Here

w)=2 ) hw(z),w(y)).

xT~Y
z,y€V

This means e.g. that an A prefers to sit next to A’s, likes B’s a bit worse, and hates to sit
next to C’s and D’s. Since H (w) only contains terms involving nearest neighbours, this
defines a Markov random field on (7, and it generalizes in the obvious way (analogously
to Definition 3.2) to a Z? setting. The model can be seen as a kind of interpolation
between the lsing model and the 4-state Potts model: taking J; = 0 and identifying
({A, B},{C, D}) with (=1, 1) gives the Ising model, whereas for .J; = .J; the hierarchical
structure of the model vanishes and the ¢ = 4 Potts model is obtained.

The phase transition behaviour mentioned above is made precise in the following
theorem. Pfister [72] proved it using Griffiths inequalities; here we shall indicate how it
can be proved using a random-cluster representation.

23



Theorem 6.2: I'ix J; and J, such that 0 < J; < Jq. If the ratio % is sufficiently large,
then the Ashkin—Teller model on Z®, d > 2, with coupling constants .J, and J, has two
critical values 31 and (33 such that 0 < 31 < 3 < co and the following holds.

(a) At reciprocal temperature 3 < [31, there is a unique Gibbs measure.

(b) For 8 € (f1,02), there is more than one Gibbs measure, but all Gibbs measures
are invariant under permutations of {A, B} and of {C, D}.

(c) For 3 > [, there exist Gibbs measures in which a single spin dominates. For in-
stance, there exists a Gibbs measure v”'*2% such that for each = € Z% the proba-
bility that site x takes value A is strictly greater than % whereas the corresponding
probabilities for spins B, C, and D are strictly smaller than }Z'

In other words, 3 is the critical value for breaking the symmetry between {A, B} and
{C, D}, whereas [, is the critical value for breaking the symmetry within {A, B} or
{C, D}.

Random-cluster representations for a somewhat more general version of the Ashkin—
Teller model appear in papers by Wiseman and Domany [88], Salas and Sokal [80], and
Pfister and Velenik [74]. The random-cluster representation given below is a simplified
special case of those in [88], [80] and [74]. We call this variant of the random-cluster
model the ATRC (Ashkin-Teller random-cluster) model. In contrast to the random-
cluster models of the previous sections, the ATRC model allows an edge to be in three
different states: 0 (absent), 1 (weakly present), and 2 (strongly present).

Definition 6.3: The ATRC measure H(Gpo,phpz) with parameters py, p1, p2 € [0, 1] satis-
fying po + p1 + p2 = 1 is the probability measure on {0, 1,2}" which to each element
n € {0,1,2}¥ assigns probability

(po,p1,p2) _ { =0} 1{77() 1}, L{n(e)= } k1 (n)+k2(n)
Ha - po,pupa H Py 2 .

Here ky(n) is the number of connected components of the edge set {e € E : n(F) €
{1,2}} and kq(n) is the number of connected components of {e € F : n(F) = 2}.

Let us now see how the Ashkin—Teller model and the ATRC model can be coupled
analogously to the coupling in Section 2 of the Potts model and the standard random-

cluster model. Let P((;po’pl’m) be the probability measure on {A, B,C, D}V x {0,1,2}F
corresponding to the following procedure:

1. Assign each vertex a spin value chosen uniformly from {A, B, C', D} and each edge
a value chosen from {0, 1,2} according to the probability vector (po, p1,p2), and
do this independently for all vertices and edges.

2. Condition on the event that

(i) for each edge e with value 1, the two endvertices of e have spins which are

either both in {A, B} or both in {C, D}, and

(ii) for each edge e with value 2, the two endvertices of e have the same spin.
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The following result, which is analogous to Theorem 2.5 and which is easily proved
by the same kind of counting argument as in the proof of Theorem 2.5, tells us that

Pépo’pl’pz) really is a coupling of the Ashkin—Teller model and the ATRC model.

Proposition 6.4: Given 3, J; and J,, let py = e~ 2P p; = 72PN _ =202 apd
py =1 —e= 200 Write plpopipe) (resp. Pc(;pgc’égm)) for the probability measure obtained

G verter

by projecting P((;po’pl’p"’) on {A, B,C, D}V (resp. {0,1,2}*). Then

(P07P17P2) _ VJ17J27ﬁ
Guertex — G
and
(po,p1+p2) _  (Po,p1,p2)
GLedge = Hg '

The following analogue of Corollary 2.6 is an immediate consequence:

Corollary 6.5: Given 3, J, and Jo, let py, py and py be as in Proposition 6.4. Suppose
we pick a random spin configuration X € {A, B,C, D}V as follows:

1. First, pick a random edge configuration Y € {0, 1,2} according to the ATRC
(po,p1,p2)

measure fig; .

2. Then, for each connected component C of the edge set {e € ' : Y (e) € {1,2}},
flip a fair coin to determine whether the spins in C will be taken from {A, B} or
from {C, D}, and do this independently for all C.

3. Finally, for each connected component C' of the edge set {e € E: Y (e) = 2}, flip
a fair coin to determine which of the two possible spins (consistent with Step 2)
the vertices of C' will get, and do this independently for all C’.

Then X is distributed according to the Ashkin—'leller measure I/él’J2’ﬁ.

Theorem 6.2 can now be proved by a straightforward modification of the proof of Theo-
rem 1.1. The behaviours in (a) and (c) follow exactly as in the proof of Theorem 1.1; the
(a) scenario corresponds to having no infinite clusters of edges taking values in {1, 2},
and the (c) scenario corresponds to having infinite clusters of edges taking value 2. To
show also that ; < (2 so that the behaviour in (b) also occurs for some parameter
values, the following key observation is needed. If %’ is sufficiently large, then G can
be chosen in such a way that the p; parameter of the corresponding ATRC model is
large enough to ensure that edges taking values in {1,2} dominate i.i.d. edges with edge
probability greater the critical value p. of standard bond percolation on Z¢, whereas
edges taking value 2 are dominated by some subcritical percolation process.

We end this section with an open problem: It seems reasonable to expect that the
proviso that % is large can be dropped in Theorem 6.2. It would be interesting to see
a proof of this, either by some refinement of the above random-cluster argument or by
some other approach.

7 Subshifts of finite type

Let S be a finite set. A d-dimensional subshift of finite type X’ is defined as the subset
of SZ* where certain prespecified finite patterns (“forbidden words”) do not occur. Only
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finitely many disallowed configurations may be specified. Perhaps the simplest nontrivial
example of a subshift of finite type is the hard core model, where X" consists of those
elements of {0, l}zd in which no two 1’s sit next to each other anywhere in the lattice.

Subshifts of finite type have been studied mainly in ergodic theory; see e.g. [81] for a
general discussion. We shall be concerned with probability measures on X’; of particular
interest are so called measures of maximal entropy. Assuming translation invariance
and a certain regularity condition on X called strong irreducibility (see Definition 7.1
below), these are exactly the measures where the conditional distribution on any finite
set W C Z¢ given the configuration off W is uniform over all elements of S that
do not give rise to any forbidden word. We call measures on X" satisfying this uniform
conditional probability property maximal.

As long as a subshift of finite type X is nonempty, there has to exist at least one
maximal probability measure on AX’; this follows from standard compactness arguments.
In analogy with the phase transition questions of the previous sections, the issue here
is whether there can exist more than one maximal measure.

To see the need for some irreducibility condition, consider the subshift of finite type
X consisting of those elements of {0, l}zd in which no 1 ever sits next to a 0. There are
exactly two elements of X', namely the configuration with all 1’s and the configuration
with all 0’s. There is a continuum of probability measures on X', parameterized by the
probability of having all 1’s, and it is obvious that these measures are all maximal. This,
however, is a totally uninteresting example.

If X is a subshift of finite type, W C Z% is finite, and 7 is a configuration on W (i.e.
an element of SV), we say that 7 is compatible (with ') if there exists an element of
X whose projection on SY is 5.

Definition 7.1: The subshift of finite type X is said to be strongly irreducible if
there exists an r > 0 such that whenever W, and W, are finite subsets of Z% that
are separated by distance at least r and both n, € S and n, € S"2 are compatible
configurations, then there exists some element of X whose projection on S"1 is n; and
whose projection on S™2 is n,.

If we restrict to strongly irreducible subshifts of finite type, then we have the following
dichotomy: A 1-dimensional strongly irreducible subshift of finite type has a unique
maximal measure (as shown by Parry [69]), whereas for d > 2 there exist d-dimensional
strongly irreducible subshifts of finite type that have more than one maximal measure.
The analogy with Markov random fields is obvious, and we refer to the nonuniqueness
of maximal measures as a phase transition.

The following two examples of subshifts of finite type in dimensions d > 2 exhibiting
phase transition are due to Burton and Steif [12] [13].

Example 7.2: The beach model. Let M; and M, be positive integers such that
My < Ms, and let the symbol set be

F=FUF,UF3UF, (26)
where
I = {-My,—My+1,...,—M; — 1}
F2 - {—Ml,—Ml—}-l,...,—l}
3 = {1,2,...,M1}

F, = {;M1+1,M1-|—2,...,M2}.
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Call a symbol f € F
negative if feFr Ukl
positive if feFs3UFy
unprivileged if fe FyUFy
privileged it fe FyU ks,

and consider the d-dimensional subshift of finite type where a negative may not sit
next to a positive unless they are both privileged. Write M for the ratio % The
name “beach model” comes from the interpretation in two dimensions that if a symbol
represents altitude above sea level, then the rules of the model prevent shores from being
too steep. Burton and Steif [12] showed that for large enough M, the model exhibits
a phase transition. It was then shown in [42] that there is a unique maximal measure
for M sufficiently close to 1, and furthermore that the occurrence of a phase transition
is monotone in M, so that there is a critical M, below which there is uniqueness and
above which there in nonuniqueness of maximal measures.

Example 7.3: The iceberg model. Let N; and N, be positive integers, and define
the symbol set H = H_ U Hyo U H,, where

H_ — {_]V27_]\72+17...7_1}
Hy = {01,0q,...,0n,}
H.I_ = {1,2,...,]\72}.

The iceberg model in d > 2 dimensions is the subshift of finite type consisting of all
configurations w € HZ" in which no element of H_ sits next to an element of H,. This
model can also be viewed as a variant of the lattice Widom—Rowlinson model, which was
first studied in [59] and which is a lattice analogue of the point process to be discussed
in Section 8. In [13], it is noted that the methods used in [12] for the beach model can
be adapted to prove phase transition in the iceberg model for large values of N = %
The uniqueness of maximal measures for sufficiently small N is also established in [13]

In addition to these examples of subshifts of finite type exhibiting phase transition,
there is now available a general scheme for the construction of subshifts of finite type
whose properties mimic those of a wide variety of Gibbs systems, such as the Ising,
Potts, and Ashkin—Teller models; see [41].

The following two theorems are the closest analogues to Theorem 1.1 that current

knowledge of the phase transition behaviour of beach and iceberg models permit.

Theorem 7.4: For the d-dimensional beach model, d > 2, there exists an M, = M.(d) €
(1,00) such that we have a phase transition whenever M > M., and a unique maximal
measure whenever M < M..

Theorem 7.5: For the d-dimensional iceberg model, d > 2, there exist N! = N!(d) > 0
and N/ = N!(d) < oo such that we have a phase transition whenever N > N! and a
unique maximal measure whenever N < N..

Note that the beach model is better understood than the iceberg model, in that mono-
tonicity in the parameter (M resp. N) is known for the beach model but not for the
iceberg model. Nevertheless, it is intuitively believable that the occurrence of a phase
transition should be monotone in the parameter also for the iceberg model, i.e. that one
should be able to take N, = N in Theorem 7.5.

We shall now consider a random-cluster approach to phase transitions in beach and
iceberg models. It turns out that this approach yields simple new proofs of Theorems
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7.4 and 7.5, whereas like previous methods it fails to resolve the monotonicity-in-/NV
question for the iceberg model. The two models look, at first sight, so similar that it
is surprising that monotonicity question is resolvable for one of them but (so far) not
for the other. For the random-cluster approach, we will soon see exactly what it is that
leads to this difference.

The method of proof is essentially the same as that used for the Ising model in Section
3, so in particular we will only use random-cluster representations on finite graphs. To
this end, we first need to define beach and iceberg models on finite graphs. As usual, G
denotes a finite graph with vertex set V and edge set /. The maximal measure for the
beach model on G with parameters M; and My is simply the probability measure on
FY (where I is defined as in (26)) which is uniformly distributed over those elements
of IV in which no two vertices that have an edge in common take values with opposite
sign unless they are both privileged. The maximal measure for the iceberg model on GG
is defined similarly.

The random-cluster representations of these models differ from those of previous
sections by living on the vertices of a graph rather than on the edges. Let us begin with
a random-cluster representation of the beach model.

Definition 7.6: For p € [0, 1], the BRC (beach random-cluster) measure pif, g p. for G
is the probability measure on {0,1}V which to each n € {0,1}V assigns probability
1

“Z();,BRO(U) = Zpi{ H P — p)l_n(u)}QkB’RC(n).
G.BRC = ¢y

Here kpprc(n) is the number of connected components in the subgraph of G obtained

by letting each edge e € I be present if and only if it is incident to some vertex v for
which n(v) = 1.

Now fix parameters M; and M, for the beach model, and let M = %'f and p = %
Consider the following way of picking a random element X € FV. First pick a random-
cluster configuration Y € {0,1}V according to the BRC measure Ng,BRC' For each
connected component C of the subgraph of G used to define kg, flip a fair coin to
determine whether the vertices of C should take all positive or all negative values in X,
and do this independently for each C. It remains to determine the absolute values in X.
For each v € V independently, we pick | X (v)| uniformly from

{ {1,..., My} if Y(v)=0
{Ml—l—l,...,MQ} lfY(’U) =1.

We now claim that X obtained in this way is distributed according to the maximal
measure for the beach model on G with parameters M; and Mj; this follows from a
simple counting argument analogous to the proof of Theorem 2.5.

Sketch proof of Theorem 7.4: The beach model on Z? with parameters M; and M,
. ) . Ml,MQ M17M2

has two particular maximal measures vy and v

beach models on finite boxes with +Ms; resp. — My boundary conditions, satisfying

, obtained as weak limits of

V]_WMMQ <y I/Ml’MQ <4 Vthz

for every maximal measure vM M2 This follows from the arguments used for the Ising
model in Section 3, together with a straightforward modification of the proof of Hol-

ley’s Theorem. By further copying of the arguments of Section 3, we get that phase
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transition for the beach model is equivalent to having infinite connected components of
1I’s in the “wired” limit of BRC models on finite boxes tending to Z?. Here, “connected
components” should refer to the graph Z¢ defined to have vertex set Z? and edge set
consisting of pairs of vertices within L;-distance at most 2 from each other. To prove
Theorem 7.4, we first note that p —+ 0 as M — 1, and that p — 1 as M — oo. Next,
we need nontriviality of the critical probability p. for independent site precolation (site
percolation is defined similarly as bond percolation, except that it is the vertices rather
than the edges that can be present or absent) on Z%. This is analogous to Theorem 3.8,
and follows from standard percolation-theoretic arguments [35] [65]. The proof of Theo-
rem 7.4 can then be completed with stochastic domination arguments: The conditional
probability under ug; g that Y (v) = 1 given the configuration Y (V' \ {v}) = 5 equals

p21=(n)
p21_"(77) +1- P

Ng,BRO(Y(U) =1Y(V\{v})=n)= (27)
where £(n) is the number of connected components of the edge configuration correspond-
ing to n (as in Definition 7.6, taking n(v) = 0) that contain v or some vertex incident
to v. When G is a portion of Z%, we have that #(n) is between 1 and 2d + 1 for all .
Hence, the right hand side of (27) can be made arbitrarily close to 1, uniformly in 7, by
picking p sufficiently close to 1. Using Holley’s Theorem to compare with independent
site percolation, we get that the limiting BRC measure for Z? yields infinite connected
components for p sufficiently close to 1, so we have phase transition for the beach model
with large enough M. Absence of phase transition for M close to 1 follows similarly. It
remains to show that the occurrence of phase transition is increasing in M, and this
follows as for the Ising model using the fact that

P P
:uGl,BRC =24 M(?Q,BRC (28)

whenever p; < po; this in turn follows from Holley’s Theorem using the crucial obser-
vation that the right hand side of (27) is increasing in 7. O

Next, we consider a random-cluster representation of the iceberg model.

Definition 7.7: For p € [0, 1], the IRC' (iceberg random-cluster) measure ut, ;. for G
is the probability measure on {0,1}V which to each n € {0,1}V assigns probability

1 Y e
MZ()?,IRO(U) = Zpi{ H Pt )(1 -p)! n( )}2]‘911{0(77).

G,IRC ~ v

Here kirc(n) is the number of connected components in the subgraph of G obtained by
including only those vertices v for which n(v) = 1, and only those edges both of whose
endvertices have been included.

A configuration X € HV distributed according to the maximal measure for the iceberg

model can be obtained in the following manner, analogous to how the beach model
could be obtained from the BRC model: First pick Y € {0,1}" according to the IRC

measure gl ;po, with p = N1]i2N2 = NL-H For each v € V for which Y (v) =0, let X (v)
take a value chosen uniformly from {0i,...,0x,}, independently. For each connected

component C of {v € V : Y (v) = 1}, flip an independent fair coin to determine whether
the X-values of the vertices of C should be taken from {—Ny,..., 1} or from {1,..., Ny},
and for each v in C independently pick the precise value of X (v) uniformly from the
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chosen set. This defines X, and the usual counting argument shows that X is distributed
according to the maximal measure for the iceberg model on G.

The proof of Theorem 7.5 is now more or less identical to that of Theorem 7.4, except
that the IRC model replaces the BRC model. However, if we try to prove monotonicity in
N of the occurrence of phase transition by the same approach, we run into the following
obstacle. The conditional probability

p21=(n)
p21_"(77) +1-p

N%,IRC Y()=1Y(V\{v})=n)= (29)
where k() this time is the number of connected components of the random subgraph
of G used in Definition 7.7 that contain some vertex incident to v. Unlike the BRC
counterpart (27), the right hand side of (29) is not increasing in 7, and therefore the
use of Holley’s Theorem to prove the stochastic domination (28) cannot be translated
to the iceberg setting. The property causing the right hand side of (27) but not the
right hand side of (29) to be increasing is the following. The way we count connected
components for the BRC model, all vertices of G belong to some connected component,
so that increasing n can only cause old connected components to become connected to
each other, thus reducing the number of connected components. On the other hand,
only vertices v with n(v) = 1 are considered when we count connected components in
the IRC model, and therefore an increment in 7 can increase as well as decrease the
number of connected components.

Monotonicity in N of the occurrence of phase transition for the iceberg model on Z?
thus remains an open problem. Very recently, Brightwell and Winkler [9] gave a proof
of this monotonicity for the iceberg model on the regular tree T\.

8 Continuum models

All the models considered so far live on a lattice. In many physical applications, it is more
realistic to have a model which lives in continuous space. In this section, we consider
the Widom—Rowlinson model [87] and some of its generalizations. The Widom—
Rowlinson model is the most well-known example of a continuum model exhibiting a
phase transition phenomenon. It is a spatial point process with particles of two types A
and B. The particles are distributed in space according to two Poisson processes subject
to the condition that no two points of different type are within unit distance from each
other, so that in other words we have a hard core repulsion between points of type A
and points of type B.

Let S be a compact subset of R?, d > 2, and let Qg be the set of all finite subsets
of S. We should think of {25 as being the set of all possible realizations of a finite point
process on S. An element of Qg is denoted x = {z1, ..., z,} if it consists of n points. Let
ﬂ'g be the probability measure on €25 which yields a Poisson process on S with intensity
A. In other words, let [ denote d-dimensional Lebesgue measure on S, and define ﬂ'g by
letting

\ 0 \ne—Al(S)
) =Y S [ [ eendi(en) - di(a)
n=0 )
for all F' € Fg, where Fg is the smallest o-algebra which allows us to count the number

of points in each Borel subset of S. A configuration of particles of types A and B on

S is identified with an element (x,y) of Qg x Qg. The Widom-Rowlinson measure vg
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on Qg X g is obtained by picking an element (x,y) = ({z1,..., 2.}, {y1,. -+, Ym})
according to 73 X m& conditional on the event that

inf |z, —y;| > 1
(2%

where | - | is Euclidean norm. A useful picture to have in mind is to have a closed sphere
of radius % around each point; the hard core repulsion then prevents balls centered at
different types of particles from overlapping each other. By scaling S, we see that there
is no loss in generality in having the hard core radius equal to %

Besides physical motivation [87], the Widom—Rowlinson model is also of potential
interest in spatial statistics, both in itself and via its close relation to the so called area-
interaction process [5] which arises if we pick a particle configuration according to the
Widom-Rowlinson model, and then disregard one of the particle types (see also [46]).

Taking S to be [—R, R]? for some large R, the phase transition behaviour of the
Widom—Rowlinson model manifests itself as follows: If A is small, then with high prob-
ability approximately half of the particles will be of type A and the others of type B,
whereas for A large there will with high probability be a large majority of either A- or
B-particles. For fixed large or small A, this holds uniformly for sufficiently large box
sizes R.

To give a more precise definition of phase transition, we need to define the Widom—
Rowlinson model on R%: Let Qga be the set of locally finite subsets of R?. A measure
g on Qra x Qga is called a Gibbs measure for the Widom—Rowlinson model on R?
at intensity \ if for every compact S C R?, and p-a.e. configuration (x,y) of points
outside S the conditional distribution of what happens inside S given (x,y) is 73 x 74
conditioned on no two points of opposite type coming within unit distance from each
other.

Theorem 8.1: For the Widom—Rowlinson on R?, d > 2, there exist X' = X(d) > 0
and N = X'(d) < oo such that there is a unique Gibbs measure when A < X', while for
A > X' there is more than one Gibbs measure.

The phase transition behaviour was first proved by Ruelle [79]. Recently, Chayes et al.
[15] gave an alternative proof based on a random-cluster representation which we now
go on to describe (see also [32] for some related ideas). Let S, . denote the closed sphere
of radius r > 0 centered at z € R.

Definition 8.2: The continuum random-cluster measure y3 for S C R? at inten-
sity A is the probability measure on Qg which has density f(x) with respect to the unit
intensity Poisson process m§ given by

Fx) = Zigm’“(*) (30)

where k(x) is the number of connected components of the set |J,cx S, 1

The continuum random-cluster model was first introduced by Klein [53]. Note that
without the factor 25(X) in (30), we would simply get the Poisson process m&. The
factor 25(®) plays the same role here as the factor ¢*(" does in the definition of the
Fortuin—Kasteleyn random-cluster model: they are both weightings of a “completely
random” measure (the Poisson process resp. product measure on {0, 1}7) depending on
the number of connected components in the random object which arises. One can of
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course generalize Definition 8.2 by replacing 2 by arbitrary ¢ > 0 in (30). The relation
between the continuum random-cluster model and the Widom—Rowlinson model is given
in the following result.

Proposition 8.3:

i) If a random point configuration X € g is obtained by first picking an element of
p 8 Y p 8
Qg x Qg according to the Widom—Rowlinson measure v and then simply disre-
g S ply
garding the type of each point, then X is distributed according to the continuum
random-cluster measure y3.

(ii) Conversely, an element of Qg x Qg with distribution v can be obtained by first

picking X € Qg according to ,ug and then for each connected component C of
Urex Sx’% independently tossing a fair coin to determine whether the points x €

X NC should be of type A or of type B.

To see why this should be true, note that there are exactly 25(*) allowed elements of
Qg x Qg which correspond to X € Qg. See [15] for a detailed proof.

The Widom—Rowlinson model on R? has, analogously to the Ising model, two par-
ticular Gibbs measures v and v, where v} is obtained as a weak limit of Widom—
Rowlinson measures on finite boxes (tending to R?) with boundary condition consisting
of a dense crowd of points of type A4, and Vg is obtained similarly. Let us define the

partial order < on Qg x Qg by
(x,y)=(x,y) if xCx'andyDy’

so that in other words a configuration increases with respect to < if points of type A
are added and points of type B are deleted. We then have

v 2a v a v

for any other Gibbs measure v (this is analogous to the relations (9) and (10) for the
Ising model), so uniqueness of Gibbs measures is equivalent to having
Py

This, in turn, is equivalent to the probability, in the continuum random-cluster model
on [—R, R]? with appropriate boundary conditions, of having the origin in a connected
component of (J,ex SI’% which intresects the boundary of [—R, R]?, tending to 0 as
R — oo. This issue can, like the corresponding issues for lattice models, be resolved (at
least partially) using percolation and stochastic domination.

The percolation result needed is the following continuum analogue of Theorem 3.8;
see [65] for a proof and for a general survey of continuum percolation.

Theorem 8.4: Pick a random point configuration X € Qgra, d > 2, according to a
Poisson process on R* with intensity X\, and let X = Urex S, 1. Furthermore let 6(X)
)

denote the probability that the origin belongs to an unbounded connected of X. Then
there exists a A\, = A.(d) € (0,00) such that

—0 ifA< )\,
0(/\){ >0 ifA> .
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Meester and Roy [65] call this particular model of continuum percolation the “Boolean
model”; others have used the terms “Poisson blob model” and the more poetic “lily pad
model”.

Theorem 8.1 now follows if we can show for some A; > A, that the continuum
random-cluster model with intensity A stochastically dominates an intensity A; Poisson
process when A is sufficiently large, and that it for some Ay < A, is stochastically
dominated by an intensity Ay Poisson process when A is sufficiently small. To this end,
we first need some point process analogue of Holley’s Theorem, and for this we need
to introduce the concept of Papangelou conditional intensities for point processes.
Suppose that P is a probability measure on €2g which is absolutely continuous with
respect to the unit intensity Poisson process m§, and write f(x) for the density of P
with respect to w&. For z € S and a point configuration x € Qg not containing z, the
Papangelou conditional intensity under P of a point at z given x is, if it exists,

flxUz)
fx)

Heuristically, A*(z|x)du can be interpreted as the probability of finding a point inside

N (z|x) = (31)

a small region of volume du given that the point configuration outside this region is x
(see [52] or [17]).

The following point process analogue of Holley’s Theorem is due to Preston [77]
who proved it using a coupling of so called spatial birth-and-death processes similar to
the coupling used in the proof of Holley’s Theorem. An alternative proof, based on a
discretization argument, can be found in [31].

Theorem 8.5: Suppose that P and P are probability measures on Qg with Papangelou
conditional intensities \* and \* satisfying

N (x]x) < M (2[%)

for all z € S and all x,% € Qg such that x C x. Then P <4 P, in the sense that there
exists a coupling (X, X) of P and P such that X C X a.s.

(Actually, Preston’s proof does not quite work in the generality stated here, but the
Georgii—Kiineth proof [31] does.)

By inserting (30) into (31), we get that the Papangelou conditional intensity under
the continuum random-cluster measure ,ug of a point at z given x is

A (z]x) = A2!~#(@X) (32)

where £(z,x) is the number of connected components of [ J,¢y 5, 1 which intersect S 1.
1 ’

We then use the simple geometric fact that there exists a Kpmar = Kmaz(d) < 00 suth
that k(2,%) < Ky for all 2 and x (for d = 2 we may for instance take K4 = 5). It
follows that

A1 Fmar < A% (2]x) < 2X (33)

for all z and x. Hence, we have by Theorem 8.5 that taking A < % yields absence

of unbouded connected components of [J ey S, 1 in the S — R? limit of continuum
’2

random-cluster measures, while taking A > \.2%me=~1 yields presence of unbounded
connected components in the same limit. Theorem 8.1 follows.
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Note that this approach fails in proving that the occurrence of phase transition is
increasing in A. The reason is (similarly to what we saw for the iceberg model in Section
7) that the right hand side in (32) fails to be increasing in x.

There are several interesting directions in which the Widom—Rowlinson model can
be generalized. An obvious direction is to increase the number of particle types to an
arbitrary integer ¢ > 3. This corresponds to replacing 26(%) by ¢F) in (30), and it is
not hard to extend the above arguments to prove an analogue of Theorem 8.1 for this
case.

Chayes and Kotecky [16] consider a related model with four types of particles
{A,B,C, D} and a symmetry of Ashkin—Teller type: For some 0 < r < R < oo, there
is a hard core repulsion of radius r between A and B and between C' and D, and
a hard core repulsion of radius R between {A, B} and {C, D}. By an extension of the
above random-cluster approach, they establish for sufficiently large g a phase transition
behaviour similar to that in the Ashkin-Teller model (Theorem 6.2).

Yet another direction of generalization is to relax the hard core repulsion into a “soft
core” repulsion of finite strength. For a repulsion function ¢ : [0, R] = R4, consider the
measure ,LL%’A on Qg x Qg whose density f(x,y) with respect to 73 x 73 is

fxy) = e |~ 5 glle-y)

; s

This means that configurations with plently of particles of different type sitting close to
each other tend to by less likely (but not impossible, as in the Widom—Rowlinson model)
than those where particles of different type keep far apart. Phase transition for large A
under a certain condition on g was first proved by Lebowitz and Lieb [60]. Georgii and
Higgstrom [30] proved phase transition in a larger class of systems using a random-
cluster arguments. This leads to a kind of generalized continuum random-cluster model
(also considered in [53]), consisiting of a random point configuration X € Qg together
with edges that are included in a certain random fashion between points z1,29 € X
that are within distance R from each other. This model relates to the so called random
connection model of continuum percolation [65] in the same way as the continuum
random-cluster model of Definition 8.2 relates to the percolation model in Theorem
8.4. The proof of phase transition in [30] contains the usual ingredients of percolation
and stochastic domination: For the percolation part it suffices to refer to an analogue
of Theorem 8.4 for the random connection model (see [65]), whereas the stochastic
domination arguments are, due to the extra randomness of the edges, somewhat more
involved than for the Widom—Rowlinson model (in particular, more work is needed to
prove an analogue of (33) since we no longer have any deterministic bound on how much
the number of connected components can decrease when a point is added to the point
configuration).

9 Concluding remarks

We have seen that random-cluster representations are useful for studying the phase
transition behaviour in a wide range of models, none of which was originally proposed
with a random-cluster representation in mind. This is, in my opinion, a clear case in
favour of the importance of random-cluster ideas. | also hope that if anyone has the
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feeling that the relationship between Ising and Potts models on one hand, and the
random-cluster model on the other, has a somewhat “coincidental” or “miraculous”
aspect, then this feeling is lessened after having seen these further examples of random-
cluster representations.

It has to be admitted, however, that all systems studied in this paper feature a
certain symmetry (such as the +1 symmetry of the Ising model) and it seems to be
difficult to apply the random-cluster approach to the study of phase transitions in
systems where no such symmetry is present. For such systems, so called Pirogov—Sinai
theory has proved to be more successful. In fact, Pirogov—Sinai theory has been used to
study various properties of the infinite-volume random-cluster model; see e.g. [56], [54]
and [23]. These developments, however, go beyond the scope of the present paper.

We saw for some models (the iceberg model in Section 7 and the continuum models
in Section 8) that the random-cluster approach failed to establish the existence of a
critical parameter value above which there is phase transition and below which there
is not. For each of these models, it nevertheless seems intuitively plausible that such a
critical value should exist, and it is in my opinion an important class of open problems
to prove (or disprove!) this. The analogous problem for the so called hard core lattice
gas model in two or more dimensions [7] is also open. The discussion at the end of
Section 7 shows why some new idea is needed to take care of this class of problems.

It certainly seems worthwhile to study the various random-cluster models that we
have seen in this paper in their own right, and not only as representations of other sys-
tems. For the original Fortuin—Kasteleyn random-cluster model we have seen examples
of work in this direction in Section 4. Perhaps some of the models can be given an inter-
esting unified treatment. The setups in [38], [66] and [74] are all strict generalizations of
one or more of the random-cluster models studied here, and they all deserve attention.
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