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Abstract

Let O be an arbitrary order in an indefinite quaternion division algebra over Q. If O! is the group
of elements in O with norm equal to 1, and H the complex upper half-plane, then Xp := O'\#H is
a compact Riemann surface. Furthermore, let T'o(d) C SL2(Z) be the Hecke congruence group of
level d. Then X, := Io(d)\H is a non-compact Riemann surface with finite volume. Let A be the
hyperbolic Laplace-operator on . In certain situations, it is known that it is possible to relate the
spectral resolutions of automorphic Laplacians in the compact case to the non-compact case. In
this paper, we give an explicit construction of such correspondence in the case of Maafl waveforms.
The construction uses Siegel theta functions and generalises the one in [8]. Furthermore, we prove
that the theta-lifts commute with Hecke operators. Finally, we investigate to what extent the lifted
forms are newforms or not.



1 Introduction

The spectral theory of automorphic Laplacians allows for a variety of different approaches. From a
geometrical point of view it is natural to consider closed compact surfaces X endowed with Riemannian
metrics of constant negative curvature, and the spectral resolution of the Laplacian on L?(X). In an
arithmetical approach, the most natural example to start with is the modular group SL9(Z) and its
automorphic Laplacian. The corresponding modular surface is then non-compact and has two branch
points. The spectral resolution of the Laplacian has an absolutely continuous part in addition to
the discrete one. In certain situations, it is possible to relate the spectral resolutions of automorphic
Laplacians in compact and non-compact situations, respectively. To obtain this the compact surface
has to come from a cocompact arithmetic Fuchsian group. The spectral correspondence thus achieved
also extends to preserve not only Laplace eigenvalues, but also the eigenvalues of Hecke operators.
From a representation theoretic point of view, the most general case of such spectral correspondences is
covered by the Jacquet-Langlands correspondence, see [10]. A proof of this correspondence exploiting
adelic theta functions was subsequently given by Shimizu [21]. In the classical context of Maafl
waveforms and trace formulae, it seems however desirable to formulate spectral correspondences in a
classical language in order to make them more explicit.

In this paper, we work out the details of a classical construction of the spectral correspondence
when the cocompact arithmetic Fuchsian group is given by a unit group of an order in an arbitrary
indefinite quaternion algebra over the rationals. In the case of certain types of orders, the relevant
constructions were previously given by Hejhal [8]. We show that this procedure can be extended to
arbitrary orders, and we also improve the result concerning the level of the congruence group. It
turns out that there is a natural correspondence between the discriminant of the order and the level
of the corresponding congruence group. Moreover, based on an investigation of Hecke operators, we
are able to demonstrate that in case of non-maximal orders a proportion of the theta-lifts cannot
be newforms. This is complementary to a result of Ribet [18], who proved for holomorphic forms
of weight one that in the case of maximal orders the analogous lifts yield an isomorphism onto the
newforms for an appropriate Hecke congruence group. In the case of Maafl waveforms, we are able to
give a partial answer to the question whether the lifts yield newforms in the case of maximal orders.
Also in the holomorphic situation, lifts from forms of half-integer weight to forms of integer weight
were introduced by Shimura [22], and Niwa realised these lifts using theta functions [17]. A lift in the
reverse direction, i.e. from integer weight to half-integer weight was subsequently provided by Shintani
[23].

To be specific, let H := {z =z +iy : = € R, y > 0} be the complex upper half-plane. The
hyperbolic metric ds?> = y~2(dz? + dy?) on H is of constant Gaussian curvature K = —1. The
orientation preserving isometries of the Riemannian manifold (7, ds?) are given by the fractional
linear transformations

Haz+ﬁ,
vz + 46

(1.1)

where z € H and (i? ) € SLy(R). A cofinite Fuchsian group I' is a discrete subgroup of SLy(R) such
that the orbit space Xp := I'\{ is of finite volume,

vol(Xr) = A du(z) < oo . (1.2)

Here du(z) := y 2dx dy denotes the hyperbolic volume form derived from the metric ds?, and Frr C H
is a suitable fundamental domain for I'. The finiteness condition (1.2) is equivalent to I' having a
finite number k of inequivalent parabolic fix-points (cusps). X thus extends to infinity in k points;
the latter are the I'-orbits of the respective parabolic fix-points on 0H. Furthermore, Xt is compact
iff kK = 0. In this case, the Fuchsian group I is called cocompact.



In the coordinates given above, the Laplace-Beltrami operator (hyperbolic Laplacian) for the
Riemannian space (7, ds?) reads

0? 0?
A= =+ =5 - 1.3
(5 + ) (1)
On the dense domain of smooth and bounded functions in L?(Xt), the operator —A is essentially self-
adjoint and non-negative. Henceforth, we will also denote its self-adjoint extension by —A. Square-

integrable functions on Xt are realised as I'-automorphic functions ¢ : H — C, i.e. such that
¢(yz) = ¢(z) ¥y €T and

Iolscxy = [ 0GR dutz) < o0 (1.4)

The spectral resolution of a I-automorphic Laplacian for a cofinite Fuchsian group I' C SLs(R),
strongly depends on whether I' is cocompact or not. In the following, we want to relate the spectral
resolutions of Laplacians for certain cocompact arithmetic Fuchsian groups to resolutions for non-
cocompact congruence modular groups. Given an order O in an indefinite division quaternion algebra
A over Q let O' := {z € O : n(z) = 1} be the group of units of norm one in @. Then O! is
(isomorphic to) a cocompact Fuchsian group. This gives rise to a compact orbit space Xp := O\ 7.
We denote the discriminant of O by d = d(O) € N, and the volume of Xy by Ap = vol(Xp) < occ.
The non-compact situation we will consider is based on the Hecke congruence groups

To(d) == {(j?) € SLo(Z): ~v=0mod d} (1.5)

of level d. These are subgroups of index
[To(1) =d][] (1 + ) (1.6)

in the full modular group I'y(1) = SLs(Z). Here the product extends over all prime divisors p of d.
Furthermore, the groups I'g(d) have

=20 (m ) =1 (1.7)

inequivalent parabolic fix-points, where ¢ denotes the Euler phi-function [16, Thm.4.2.7]. Hence, the
orbit space Xy :=I'g(d)\H is non-compact, but has finite volume [16, Thms.4.1.2, 4.2.5]

Ag = vol(X,) = —dH<1+ ) : (1.8)

pld
The spectrum of —A on L?(Xp) is discrete, comprising of the eigenvalues
O=X <M< <., Ap — 00 . (19)

Zero is an eigenvalue with multiplicity 1, whereas the positive eigenvalues can occur with non-trivial
multiplicities. The number of eigenvalues (counted with multiplicities) No(A) := #{\, < A} grows
according to the Weyl asymptotics, see [6, Thm.7.1],

A
No(A) ~ 4—7(:>\, A= 00 . (1.10)

Let {¢r : k € Ny} be an orthonormal basis for L?(Xe) consisting of eigenfunctions of —A, with
—Apg = Mgy, such that

0) = P [Cpx] - (1.11)

keNg
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Here we understand the right hand side to denote the closure of the orthogonal sum. We denote by
L3(X ) the closed subspace spanned by all eigenfunctions with positive eigenvalues, so that L?(Xp) =
[Cpo] ® LE(Xo), where pg(z) = (A@)_% is constant.

Due to the non-compactness of X, the spectral resolution of —A on L?(Xy) has a richer structure.
The spectrum consists of a discrete and an absolutely continuous part; the latter is given by the interval
[i, o). The absolutely continuous subspace £ of L2(Xy) is spanned by the Eisenstein series Egz)(z),
i=1,..., kg, with spectral parameter s(1 — s) € [i, 00), or § = % +ir, r € R. The constant function

go(z) = (Ad)_% is an L?-normalised eigenfunction of —A with eigenvalue py = 0. Besides gg, the
discrete subspace of L?(X,) is spanned by Maa8 cusp forms g : H — C, with (i) g(y2) = g(2)
Vy € Ty(d), (ii) —Ag = pg (p > 0), and (iii) g vanishes at every cusp. See [6, 7, 9] for details.

For a general cofinite, non-cocompact Fuchsian group T, there can occur in L?(Xt) Laplace eigen-
functions which are not cusp forms. These derive from residues of Eisenstein series E?) (z) at poles
located at s € (%, 1]. For the Hecke congruence groups we are considering here, the Eisenstein series
have only one pole for s € (%, 1]. Tt is located at s = 1, leading to the constant eigenfunction gg, see
[9, Thm.11.3].

Since ((l)i) € T'y(d), any Laplace eigenfunction g € L?(X,) has to be invariant under z — z + 1.
Hence it can be expanded in a Fourier series in £ = Re z. Cusp forms are then identified by a vanishing
zero-coefficient for the Fourier expansions at every cusp. In particular, the cusp at infinity yields

g9(z) = Z c(n) y Kir (27|nly) g2mine. (1.12)
n#0

where 1 = 12 + % is the Laplace eigenvalue corresponding to g, and K, (w) denotes a modified Bessel
function. The cusp forms span a closed subspace Cy of L?(X,), so that one has the orthogonal
decomposition

L*(Xg) = E4© [Cgo] ®Cy - (1.13)

The eigenvalues of —A on [Cgg] @ Cy,
O=po<pi <po<..., |fip—>00, (1.14)

follow the Weyl asymptotics [9, Ch. 11]

A
Na(p) == #{pn < p ~4—7':u, = 00 . (1.15)

For general congruence modular groups, p1 is bounded from below by u; > %, see [14]. However,

Selberg conjectured pq > i, see [20], so that all positive eigenvalues would be embedded in the interval
(3, 00).

Given an order O in an indefinite quaternion division algebra over QQ, the spectral correspondence
we are going to investigate is a bounded linear map from L3(Xe) into the space of cusp forms C, for
a Hecke congruence group I'g(d). The level d is determined to be the discriminant d(Q) of the order
0. One thus associates to every (non-constant) eigenfunction of —A on L?(X) a MaaB cusp form in
Ca(0), with the Laplace- and Hecke eigenvalues unchanged. This linear map is realised as an integral
operator with a Siegel theta function as its integral kernel. Transformation properties of these Siegel
theta functions are then the key to verify the desired properties of the spectral correspondence.

The outline of this paper is as follows: In Section 2, we recall how to calculate the quadratic Gauf}
sum corresponding to an arbitrary quadratic form over Z. We then specialise in Section 3 to quadratic
forms which are norm forms of quaternion algebras. If O is an arbitrary order in a quaternion algebra
over (9, then Theorem 3.1 gives the value of the associated quadratic Gaul sum. This is used in the
proof of the transformation formula of Siegel theta functions.



The construction of the Siegel theta function entering the definition of theta-lifts is provided in
Section 4. Proposition 4.1 contains the relevant transformation properties of the theta function under
the unit group O! as well as under the Hecke congruence group I'o(d).

In Section 5, we then introduce the theta-lifts and discuss their principal properties. These lead to
the conclusion in Proposition 5.4, that the Laplace eigenvalues on L?(Xp) occur (with multiplicities)
among the Laplace eigenvalues on C.

Specialising to Eichler orders, we study Hecke operators acting on L?(X¢) and Cq in Section 6. The
main result in this context, stating that theta-lifts commute with the action of the Hecke operators
on the two spaces, is contained in Proposition 6.1. As a consequence, Hecke eigenvalues are preserved
under theta-lifts.

In Section 7, we address the problem as to whether theta lifts from L2(Xo) to Cy are newforms in
Cq4. Finally, we demonstrate that whenever O is not a maximal order the answer is negative.

This work is a result of a cooperation that was enabled by Deutscher Akademischer Austauschdienst
and Svenska Institutet. We want to thank both institutions for their support. We also would like to
thank Juliusz Brzezinski for helpful discussions and valuable comments on this manuscript.

2 Quadratic Gaufl sums

Let @ be an integral quadratic form on Z™ and A the (symmetric) matrix of the corresponding bilinear
form, so that Q(z) = %mtAa:. Let a and ¢ be relatively prime positive integers. In this section, we will
make a general investigation of sums of the form

Fo(a,c) = Falp) = 3 %), (21)
TEL™[ L™
where p = ¢*™¢ is a primitive c-th root of unity.
A trivial observation is that if Q = @1 L ... L @, is an orthogonal decomposition of (), then

Fo(p) = [ Fa.(0)- (2.2)
=1

In particular, if Q) is diagonal, then the calculation of Fg(p) simplifies to the calculation of n quadratic
Gaufl sums

c
Glai,c) =Y e, (2.3)
=1

Next we will show that we may more or less reduce to the case when ¢ is a prime power. Let p be
a prime, and ¢ = p°c; with (p,c1) = 1. If p is a primitive c-th root of unity, then there are primitive
roots p1 and pp of orders ¢; and p® respectively, such that p = p1p,. In this case,

Fol)= Y (mpp)?@=| Y p2@ S 9@ ) = Folp)Falpy),  (2.4)

TELM/ L TEL" /e 2 TELn)pSL™

(=)

where the second equality holds since pf only depends on x modulo p*Z". By induction, we have

the following result.
Proposition 2.1 Let Fg(a,c) be defined as in (2.1). If c = pr“"f’, then
Fo(a,c) = [ Folap,p®™) (2.5)
ple

for some integers ap, such that (a,,p) = 1.



The next step in the simplification is to prove the following.

Proposition 2.2 Let Q and Q' be two integral quadratic forms, which are equivalent over the p-adic
integers Ly. If p is a primitive p°-th root of unity, then

Fo(p) = F (p). (2.6)

Proof. If A and A" are the matrices of the corresponding bilinear forms, then Q and Q  being
equivalent over Z, means that there exists a matrix B € GLy(Z,), such that A" = B'AB.

Let p be a primitive p*-th root of unity. If z € Zj, then let £ € Z" be an arbitrary choice of a
vector such that £ = & mod p*Z™. The following reasoning will not depend on the particular choice of
Z. Let y = Bx € Z", with B as above. Then, when y runs through all classes modulo p*Z", so does
Z. Hence, we have

1.t 1. tipt 1-t(pt =
R)= Y o Y pEwame SN Ewans g @
YyELN pSL™ BzxeZn/psLn A A

O

Now let H and J be the quadratic forms with corresponding matrices

01 2 1
w0 ) (21, o)

respectively. We recall the following well known result from the theory of quadratic forms. For a proof
see for example [12, Ch.5].

Theorem 2.1 Let Q be an integral quadratic form, and let p be a prime.
1. If p is odd, then Q is equivalent over Z, to a diagonal integral quadratic form.

2. If p=2, then Q is equivalent over Zs to an orthogonal sum of a diagonal integral quadratic form
and integer multiples of H and J.

Summing up everything achieved this far, we see that calculation of Fy(a,c) has been reduced to
the calculation of quadratic Gaufl sums G(a, p®) for prime powers, Fy(a,2°) and Fj(a,2%). A proof
of the following can for example be found in [13, Ch.IV.3].

Proposition 2.3 Let p be a prime and ¢ = p*. Then

(5)°Ve, ifc=1 mod 4
ay, it o=
Gla,c) = (p)z\/E, z.fc = 3 mod 4 (2.9)
0, ifc=2
ws(a)ve, if c=0 mod 4,
where
141, ifa=1 mod8
) (=1)*(1—=14), ifa=3 mod8
Psla) = (-1)*(1+14), ifa=>5 mod8 (2.10)
1—1, if a =7 mod 8.
We conclude this section with the calculations of Fy(a,2%) and Fj(a,2%).
Proposition 2.4 Let a be an odd integer and H, J as in (2.8). If 0 < r < s, then
Fp(a2",2%) = 2"%% and Fy(a2",2°) = (—2)" . (2.11)

5



2mi
Proof. If pg =e2? and ¢ = 2%, then

Z Zp‘”y (2.12)

z=1y=1

We now employ some well known results on sums involving roots of unity (see for example [13,
Ch.IV.3]). First ay may be replaced by y, since a is odd. Furthermore, the inner sum only depends
on the power of 2 in the prime factorisation of z, and is equal to 0 if x is odd. Hence, we may put
a=1and z =2™. We get

s—1
Z gs—m—1 Zp vl + Zp2 Yy — Z 9s—m—1 ip:;jfm +c=cg, (2.13)
m=1 y=1

since the inner sum before the last equality is equal to 0. Furthermore, we have

a27‘ Z paQTmy _ Z pazy _ 22rFH(a,2s—r) — 95t (2_14)
zy=1 z,y=1

We now turn to Fy. It is trivial to check for s = 1, so assume that s > 1. We divide the double
sum into two parts

c

Fi(ae)= Y (irﬁ(ﬁ”y”) > A (Zp“(”””’z) (2.15)
r=1

y=1,y even y=1,y odd

where the first part is over even y and the second one over odd y. The second part is equal to 0, since

- a{z+1)2
> ps P =0 (2.16)
=1
. a(z—|—%)2 a(w+%+%)2 .-
To prove this, we observe that p; = —ps . Hence, we get by Proposition 2.3 that
1 2 - a((z+%)2+342) c 2
Fj(a,c) = 5 Z (Z s ) Zp&w (Z pal@ty) )
y=1,yeven \z=1 =1
1 HG(a,c)? =c¢ if s is even
_ - — 2 ) )
N 2G(3a, ¢)G(a,¢) { —2|G(a,c)[? = —c if s is odd. (2.17)
The proof for the case » > 0 is exactly the same as for Fy. m

3 Quaternion orders

Let A be a quaternion algebra over Q. It is always possible to find a basis 1, j, k, jk of A over Q, such
that
2—a,k>=0, jk=—kj, a,b € Z and ab # 0. (3.1)

There is a natural involution in A given by
T =x0+ 1) + x2k + 235k —> T = x9 — 21j — T2k — x37k. (3.2)
One defines the (reduced) norm, n: A — Q, and the (reduced) trace, tr : A — Q, by
n(z) := 27 and tr(z) ==z + . (3.3)

6



The norm is a quadratic form on A and the corresponding bilinear form has matrix (tr(e;e;)), where
e1,---,€4 18 a basis of A.

If K = Qp, the p-adic numbers, or K = Q, = R, then it is well known that either A®gK = My (K)
or A®qg K = Hg, where H is a unique division algebra of dimension 4 over K. We say that A is
ramified at p (at 00), if A ®g Q, (4 ®g R) is a division algebra. The algebra A is always ramified
at an even number of places. We say that A is definite, if it is ramified at oo; otherwise it is called
indefinite. This is equivalent to the norm form being positive definite or not. The discriminant d(A)
of A is defined to be the product of all finite primes at which A is ramified.

An order O in A is a subring of A with unity which is a finitely generated Z-module containing a
basis of A. We may regard the norm on A restricted to O as an integral quadratic form on Z*, since
O 2 Z* and n(0) C Z. The matrix of the bilinear form is once again given by (tr(e;€;)), where now
€1,-.-,e4 1s a basis of O over Z. The modulus of the determinant of this matrix is always the square
of an integer, and one defines the (reduced) discriminant d(Q) of O to be

d(0) = /| det(tx(eiE))- (3.4)

If O is a maximal order in A, then d(A) = d(O). Moreover, if O; C Og, then d(O;) = d(O2)-[O4 : O1].
For further information on quaternion algebras we refer to [25].

A symmetric matrix M will be called even if M € M3(Z) with even elements in the diagonal. This
is obviously equivalent to the corresponding quadratic form being integral. The following lemma will
be essential for the application in Section 4.

Lemma 3.1 Let O be an order in a quaternion algebra over Q, and let M be the matriz of the bilinear
form corresponding to the norm form on O. If d = d(O), then d- M is an even matriz.

Proof.  Let ey,...,eq be a basis of O, such that M = (tr(e;€;)). The dual O of O in A is
O# := {z € A: tr(zO) C Z}. The lattice OF has a basis fi,..., fs, which is determined by

tr(e; f;) = 6;;. This basis is called the dual basis of eq,...,es. It is well known that
M= = (6 (£,F5))- (3.5)
We have, according to [3, (3.2)], that d - O#O# C O. Hence
d-tr(fif) = tr(dfif;) € tr(d - OFO%) C tr(0) C Z, (3.6)

so that d - M~1 € My(Z). Moreover, since d - f;f; € ONQ = Z, we get d - tr(f;f;) € 27 and we are
done. 0O

Let R be a ring. If f is a quadratic form on R3, then Cy(f) will denote the even Clifford R-algebra
of f. To characterise the norm forms of quadratic orders, we will make use of a well-known one-to-one
correspondence between orders in quaternion algebras and ternary quadratic forms. We will only need
part of this correspondence, namely:

Lemma 3.2 Let R be a principal ideal domain and O an order in a quaternion algebra over the
quotient field of R. Then there is a non-degenerate R-integral quadratic form f on R3, such that
O = Cy(f). Furthermore, if

f= Y a;XiXj, (3.7)

1<i<i<3

then the norm form on Cy(f) is given by

Q=X5+ > [ayXoXk + aiiaj; Xj, + (awaje — aijorr) XiX;] , (3.8)
(4,5,k)

where the sum is over all even permutations (3, 7,k) of (1,2,3).

7



Proof. For a proof of the first statement, see [2, (3.6)]. To prove the formula for @), one can make
use of [4, (5.2)]. We remark that in both references, the results are formulated for Gorenstein orders.
However, if O = R + b(O)G(0O), with b(O) the Brandt invariant and G(O) = Cy(f) the Gorenstein
closure (see [3] for definitions), then O = Cy(b(O) - f). 0

Let @ be a quadratic form on L with corresponding matrix A. Then the notation
Q= (1) L... L{ay) (3.9)

means that there is a basis z1,...,x, of L, which is orthogonal with respect to A and satisfies
Q(zi) = .

Proposition 3.1 Let O be an order in a quaternion algebra over Q, with d(O) = prdp. Further-
more, let Q@ be the norm form on O.
If p is an odd prime, then there are k,n,m,¢; € Ny such that

Q=(1) L <_€1p2k> 1 (—eap™) L {e1e9p™ ™) over Zy, (3.10)

where (€;,p) = 1. Moreover, we have max{2k,n +2m} <dp, =k +n +m.
Furthermore, Q) is equivalent over Zsg to one of the following forms:

Qr = (1)L <—6122k> L (—e2™) L {eyep2mt2m) |
Q = HL12"H,
Qs = <n_L<—2%—2>J_ﬂ*"Hg (3.11)

Qi = JL2"J,
Qs = (1)L <3 : 22’“—2> Lgktng

where H and J are defined in (2.8). In the case Q1, €; are odd integers, do = 2+ k +n+ m and
max{2k,n + 2m} < dy — 2. Moreover, dy = n in the cases Q2 and Q4, and dy = 2k + n in the cases

Q@3 and Q5.

Proof. Let O = Cy(f) for a ternary integral quadratic form f.
If p is odd, then according to Theorem 2.1, we may assume that

£ = (89" L (op") L (™). (3.12)
where ¢; € Z and (d;,p) = 1. From Lemma 3.2, we get that the norm form on O is

Q=(1)L <5152pk+"> L <5153pk+m> L (8y85p™ ™Y (3.13)

If we rename the d;’s and observe that at least one of the exponents has to be even, we get ) in the
desired form and max{k +n,k+m,n+m} <k+n+m = dp.
If p = 2, then according to Theorem 2.1 we have 3 possibilities f = f; with

fio= (0") L (Gp") L (™),
fo = 2FH 1 (627, (3.14)

where §; are odd. The case f; is completely analogous to the case with p odd. For fy, we get from
Lemma 3.2 that the norm form on O is equal to

Q = X2 + 28X X3 — 628" X X, (3.15)

8



From this, we immediately get that @ = Q2 if K =0, and @ = Q3 if £ > 0. For f3, we get once again
from Lemma 3.2 that the norm form on O is equal to

Q = X2+ 2" Xo X3 + 22 X3 + 628 (X? — X1 Xo + X3). (3.16)
This implies that Q@ =2 Q4 if K =0, and Q =2 @5 if kK > 0. O

Now we restrict our attention from the general situation in Section 2 to the special case, when @ is
the norm form of an order in a quaternion algebra over Q.

Theorem 3.1 Let O be an order in a quaternion algebra A over Q, and let Q be the norm form on
A restricted to O = Z*. Suppose that d = d(O) = Hp p% and ¢ = Hp p?, with dy < ¢, for all primes
p. If (a,c) =1, then

—c?d, if A is definite,
Fala,c) = { c2d, if A is indefinite. (3.17)
Proof. We will prove the theorem by showing that
2ep+dp  if A :
ey ) —pT%, if A is ramified at p,
Fo(a,p?) = { p2rtds otherwise. (3.18)

The result follows from this and Proposition 2.1, since A is definite iff it is ramified at an odd number
of (finite) primes.
First assume that p is odd. According to Propositions 2.2 and 3.1, we may assume that

Q= (1) L (~eip™) L (—eap™) L (ereap™>™), (3.19)
where (¢;,p) = 1, and k,n,m € Ny. We have ¢, > dp, = k+n +m > max{2k,n + 2m}. If p, = e%

and ¢ = ¢, then
p° p° p° P°
(Z ﬂ?3> (Z pe “lpzkxg (Z pe “62’“%) (Z p?“”p"”m”%)

ro=1 r1=1 zro=1 r3=1

Fg(a,p°)

p

i p° _ p°
G(a,p°) (Z pc__“;?%> (Z pc__“;”%> (Z pi?;szm) (3.20)

r1=1 xr2=1 xr3=1

= G(aapc)p2kG(_a617pc_Zk)pnG(_a’€27pc_n)pn+2mG(G€162,pc_”_zm) .

If we divide into different cases depending on ¢,n mod 2, and p mod 4, and use Proposition 2.3, we
get

2cp+d e
pCrTip, if n is even,
Fala.p) = { (S)p*>t, if nis odd. (3.21)
But A is ramified at p iff n is odd and (%) = —1. To show this, one can for example calculate the
Hasse invariant, S(Q), of @ [12, §3.4]. Namely, we get that
S(@) =" e)p, (3.22)

where (a,b), is the Hilbert symbol for Q,. The assertion follows since A is ramified iff S(Q) = —1 [12,
Th.3.5.1].

Now assume that p = 2 and set ¢ = cy. This case is a little more elaborate, since we have to take
some non-diagonal forms into account. By Proposition 3.1, we get 5 different possibilities @@ =2 Q).
Analogous to the odd case, we first get

FQl (a, 20) — 22(k+n+m)G(a, 2C)G(—0,61, 20_2k)G(—a€2, 2c_n)G(a6162, 20—n—2m)
22HRHNAM (@) pe(aer) Pen(ae2) pe_n(acies) (3.23)
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where @, is defined in Proposition 2.3. Notice that co > do > max{2k,n + 2m} + 2 is crucial here.
We have

ws(a) = ps(—a) and ps(a) = (—1)°ps(3a). (3.24)
Hence, if a = (—1)3” mod 8, then

Fg,(1,29), if a+ 8 =0mod 2

Fg,(a,2° = {

since an even number of the integers ¢, ¢ — 2k, ¢ —n and ¢ — n — 2m is odd. The calculations below
will show that Fg, (1,2¢) is real, and hence Fy, (a,2¢) = Fp,(1,2°). To calculate Fy, (1,2¢), we once
again divide into different cases depending on n mod 2. Direct calculations using Proposition 2.3 give:

1. If n =0 mod 2, then

22¢2td2  if ¢, =1Vey =1 mod 4,
FQ1(1’2C2) - { —22c2+d2, otherwise. (3.26)

2. If n =1 mod 2, then

FQ1(1,202)_{ 220td2 if (¢ =1) V(e =3ANea=3VT7)V(e1 =7Aea=1V5) mod 8,

—22ctdy otherwise.
(3.27)
For the other 4 cases, we get:
Fg,(a,2°) = Fpy(a,2°)Fg(a2™,2°) = 22617 = g2e2td>
FQ3 (a’20) _ G(a,20)22k72WFH(a2k+n’20) — 22c+2k+n71|(pc(a)|2 — 92catd2
Fg,(a,2°) = Fj(a,2°)F;(a2",2°) = (—2)%™" = (—1)n222td (3.28)
Fg,(a,2°) = G(a,292%2G(3a,2° 12 F;(a2F™, 2°)

— (_1)n+k+c22c+2k+nfl(pc(a)goc(:;a) — (_1)n+k22cz—|—d2 .

To show that we have a negative sign iff O is in an algebra which is ramified at 2, we can for
example calculate the Hasse invariant. First we observe that

H>=(1)1(-1) and J = (1) L (3) (3.29)
over . If Q = @1, then the Hasse invariant S(Q) is equal to

S(Q) = —(e1,2"€2)2, (3.30)

where (a,b)y is the Hilbert symbol for Q. Hence, @ is non-isotropic over Qq iff (e1,2"€2)2 = —1 [12,
Th.3.5.1]. Now it is straightforward and easy to check that the sign is the desired one in all the 5
different cases. 0

4 Siegel theta functions

With the help of Theorem 3.1, we will now generalise the result in [8] from the special orders considered
there to arbitrary orders and also sharpen the quantitative results. Our strategy is to define a Siegel
theta function as in [8], which ensures invariance under the unit group 0!, and then to check invariance
under I'g(d) along the lines of [24].

If S is a symmetric matrix in GL,(R), then a majorant of S is a positive definite symmetric matrix
P such that PS~'P = §. We remark that if P is a majorant of S, then B'PB is a majorant of B'SB
for B € GL,(R).

10



Now we fix S to be

00 0 1
0 0 —-10

=10 -1 0 o (4.1)
1 0 0 0

Since S? = id, the identity matrix is a majorant of S. For L1, Ly € SLo(R), we define A(L1, Ls) €
M, (R) by requiring that

aq a

B | _ B ar B\ _ a B\ 1

Vi = A(Ll,Lg) N ; where ( v 51 > —L1 ( ~ P >L2 . (42)
01 0

Since a1d; —B171 = ad— By, we find that A(Ly, Ls)!SA(L1, Ly) = S and hence A(L1, Ls) is a majorant
of S. For w, z =z + iy € H, we define

1

2
Mz::<y N

0 y 2

_1
2

) and Py, = A(M, ', M, ") A(M, b, M), (4.3)

Let O be an order in an indefinite quaternion algebra over Q. Then let S* be the matrix of the
norm form of O with respect to a fixed Z-basis. For ¢ € O, let k; € Z* be the coefficient vector of ¢
in this basis. We fix an embedding o : @ — M3(R). Since o is linear, we have a unique B € GL4(R)
which for every ¢ satisfies

(6
5 = Bkg, whenever o, :=0(q) = ( : ? ) . (4.4)
b
Since
kLS kq = 2n(q) = 2det(oq) = 2(ad — By) = (Bky)'S(Bky), (4.5)

we conclude that S = B'SB. For this fixed embedding of @, we define majorants Pz'w of §' by
P, = B'P,,B.

To simplify notations, we let
oW — 2 ?

#(q, z,w) =

~ Im(o,w)Imz’

(4.6)
where z,w € H and g € O, so that 0, € SLy(R). We also remind of the well known identity

lgz = gul® _ |z —wf?

(4.7)

ImgzImgw ImzImw’

for z,w € C\ R and g € SLy(R). From this identity, we derive
$(g,04,2,w) = $(ar ' g, 2, w), (4.8)
for ¢; € O'.

Lemma 4.1 Let kg, P;w and ¢ be defined as above. Then

/

kfjpzwkq = _n(q)(¢(% Z, w) + 2)' (4'9)
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Proof. This is (v) of Proposition 4.1 in [8], though in the form which appears in the proof of this
proposition at the end of page 138. The proof only requires elementary algebraic manipulations and

(4.7). 0

Now fix zg € # and let 7 = u + iv, z = z + iy € H. With R := uS + ivPZ'ZO, we define a Siegel
theta function 6(z; 7) by

0(z;7) :=ImTt Z ek Rk — Im 7 Z emikatke, (4.10)
kez* qe0
By (4.5) and Lemma 4.1, we find that
0(z7) =Imr Z ™(@)[2ui+v(d(9,2,20)+2)] (4.11)
qe0

The main result of this section, which is crucial for the application in Section 5, is summarised in

Proposition 4.1 Let O be an order in an indefinite quaternion algebra over Q, with (reduced) dis-
criminant d. Then

1. 0(o4z;7) = 0(2;7), Vg € O,
2. 0(z;97) = 6(z; 1), Yg € Ty(d).
Proof. Take g1 € O. Then by (4.8) and (4.11), we get

G(UQ1'Z; T) = Imr~ Z eﬂn(q)pm"'”w(q’“ql 2,20)+2)]
qeo

= Im7y_ em(ar QR2uiv(@(a 622042)) = (5, 7), (4.12)
qeO

since ¢; is a unit in O with n(q;) = 1.

For the second part of the proof one notices that due to (4.5), S’ is the matrix corresponding to
the norm form n of @. Now Lemma 3.1 states that dS'~! is an even matrix, when d = d(O) is the
discriminant of O. Therefore, according to [8, (2.7)] we obtain

0(z; g7) = Imgr(Tm7) " }y7 + 6|2 [| det Sl|*%fy*2Fn(a,fy)] 0(z;7), (4.13)

for any g = (‘;? ) € T'o(d). A complete proof of this relation can be found in [24]. Since d|y and
(a,7) = 1 for g € T(d), we can apply Theorem 3.1 in order to determine that Fy(a,v) = +2d.

Moreover, d = | det S'|% and Im g7 = |y7 + §|72Im 7, so that finally 6(z; g7) = 8(2; 7). 0

5 Theta-lifts

As before, let A be an indefinite quaternion division algebra over Q and O some order in A and
Xo = ON\H the associated compact surface. Given an eigenfunction ¢ € L3(Xo) with —Ayp = Ap,
we now consider the following linear integral transformation,

O(p)(r) := . 0(z;7) p(2) dp(z) - (5.1)

12



Here z =z +iy € H, 7T =u+iv € H, and 6(z;7) is the theta function as defined in (4.10). Consider
the Hecke congruence group I'y(d), with its level d given by the discriminant d(Q) of the order O. For
a cusp form g € C; with eigenvalue u, we then introduce an associated transformation,

O(9)(2) == . 0(z7) g(1) du(7) - (5.2)

Both O(p) and (:)(g) are known as theta-lifts of ¢ and g, respectively.

In order to distinguish the hyperbolic Laplacian in the z-variable from the one in the 7-variable,
we temporarily employ the notations A, = y?(8% + (95) and A, = v%(82 + 02), respectively. It can be
shown, either directly or by referring to [8, (12.2)], that

AL0(z7) = A0(z;7) . (5.3)
As a consequence, we observe

Lemma 5.1 1. If p € L3(Xp) is an eigenfunction of —A, with eigenvalue X, then ©(yp) is an
eigenfunction of —A, with the same eigenvalue.

2. If g € C4 is an eigenfunction of —A; with eigenvalue i, then é(g) is an eigenfunction of —A,
with the same eigenvalue.

Proof. One exploits (5.3) to obtain

ArO(p)(1) = i Ar0(z;7) o(2) du(z)

= A0(z; 7) o(2) du(z) (5.4)
Fo

= / (02 + 8;) 0(z;7) p(z)dzdy .
Fo

A two-fold partial integration together with the relation —A,p(z) = Ap(z) then shows that

—A0(p)(1) = — . 0(z;7) Ayp(z) du(z)
(@}
= AO(p)(7) . (5.5)
This completes the proof of 1. Part 2 is shown in a completely analogous manner. O

According to Proposition 4.1, the theta function (z;7) is automorphic with respect to O! in
z and with respect to T'g(d) in 7. This implies that ©(p)(7) is automorphic with respect to I'y(d),
whereas ©(g)(z) is automorphic with respect to O'. Therefore, ©(p) € C®(X4) and O(g) € C*(Xo),
since both are eigenfunctions of elliptic partial differential operators. The compactness of Xy then
immediately yields that é(g) € L3(Xo). Square-integrability of ©(y) is not so easily established, but
we recall from [8]:

Proposition 5.1 Let p € L3(Xp) be an eigenfunction of —A, with eigenvalue A = r? + i. Then
1. O(p) has a Fourier expansion at the cusp at infinity, compare (1.12), that reads
O(p)(r) = c(n) Vv Kir(2m|nfv) 2™ (5.6)
n#0

with Fourier coefficients

4 (n)
c(n) = — iZ0) - 5.7
(n) M;w(w 0) (5.7)
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2. O(p) € Cq C L3(Xy).
REMARKS:

1. In order to arrive at the Fourier expansion (5.6), one notices in the definition (4.10) of the theta-
function that the sum over k; € Z* may be viewed as a summation over the elements g € Q. As
in [8], this sum can be split into one over n € Z, and a remaining sum over the elements of the
set O" := {q € O; n(q) = n}. According to the lemma on p.118 in [5], O™ decomposes into a
finite number of (left) cosets of the unit group O!,

d(n)
or=|]J0%;. (5.8)
7j=1

This defines the quantities d(n) € N and y; € O™ appearing in (5.7). Moreover, 2y € H is an
arbitrary reference point that enters O(p) through the matrix P;zo appearing in the definition
(4.10) of the Siegel theta function. We have also defined 2y := 2y for n > 0, and 2, := zj for
n < 0. A further discussion of the Fourier coefficients will be postponed to Section 6.

2. The Fourier expansion (5.6) also shows that the theta-lift ©(¢) does not depend on the choice
of the embedding o : O — M>(R), although this appears in the Siegel theta function through
the matrix B, see (4.4)—(4.10). So obviously, the theta-lift in fact only depends on the choice of
the reference point z;.

An immediate corollary that can be drawn from Proposition 5.1 is of some importance to the
sequel.

Corollary 5.1 Let ¢ be as in Proposition 5.1. Then ©(p) # 0, if the reference point zy € H has been
chosen suitably.

Proof.  Consider the term corresponding to n = 1 in the Fourier expansion (5.6). Since then the

(1)

decomposition (5.8) is trivial, i.e. d(1) = 1, one can choose 7; * = id so that the first Fourier coefficient
is given by ¢(1) = 4¢(zp). Since ¢ € C*®(X0p), ¢ # 0, one can choose the reference point z in such
a way that ¢(1) = 4¢(z9) # 0. This is possible for almost all zg € H with respect to du. With this
choice, O(yp) Z 0. O

By linearity, one can obviously extend the definitions of the theta-lifts © and O to linear combi-
nations of eigenfunctions. Again by linearity and due to Lemma 5.1, the resulting function is a linear
combination of eigenfunctions. We now show

Proposition 5.2 The theta-lifts can be extended to bounded linear maps
0 : LiXo)—Ca,
0 : C4— LiXo). (5.9)

Proof. 'We have to show the boundedness of © and ©. To this end consider an arbitrary eigenfunction
¢ € L3(Xp), with —Ap = Ap, A > 0. Since ¢ is orthogonal in L?(Xp) to the constant functions, one
obtains that ffo ©(z) du(z) = 0. Inserting (4.10) into (5.1) then yields

Op)(r) =v 3 emuk'sE / T ik () duz) (5.10)
kez4\ {0} Fo

which enables the estimate

O(p)(1)| <w e TR Pl lp(2)] du(z) - (5.11)
e ke;\:{o} /fo 0(2)| dp
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Choose w € Fp such that 0 < k*P,, k < k'P,, k for all k € Z*\{0} and for all z € Fo. The Hélder
inequality implies

el Li(x0) < 4o llll2(xe) (5.12)
so that finally, upon squaring (5.11) and integrating the result over F,

—TTv ¢
k1ez4\ {0}’ T

with some constant C' > 0.

Now let ¢ € L3(Xp) be arbitrary. Denote the distinct eigenvalues of the Laplacian on L3(Xo)
by 0 < A1 < A2 < ..., and the respective eigenspaces by Elg()\k) - LQ(XO) the latter subspaces
are clearly mutually orthogonal. Let ¢}, be the projection of ¢ onto Eig(\) so that ¢ = > r Pk- By

linearity of ©, then
=S 0@) - (5.14)
k

Since ©(@y) and O(@;) are eigenfunctions of the Laplacian with eigenvalues A, # N for k # [, the
summands appearing on the r.h.s. of (5.14) are mutually orthogonal. Hence

106)2: Xd)—ZHG 2 (x,) < € Zn@knm o) = O lelioixegy »  (5.15)

and thus O is bounded. The proof of the boundedness of © is completely analogous. =

Proposition 5.1 in conjunction with Corollary 5.1 shows that an eigenvalue A of —A on L?(Xo)
necessarily also occurs in the discrete spectrum of —A on L?(Xjy), since the eigenfunction ¢ € L?(Xo),
—Ap = Ay, is mapped to a not identically vanishing eigenfunction ©(yp) € L?(X,) with eigenvalue ).
However, if © is not injective, then multiplicities will be reduced. We thus have to have a closer look
at the properties of the linear maps © and é, and describe their ranges and kernels as far as possible.
To this end, we introduce the closed linear subspaces V C Cy and W C L%(Xo) as the orthogonal
complements of ran ©® and ran é, respectively. That is,

Cq = ran®OV,
L3(Xp) = ran@aW . (5.16)

The r.h.s.’s of (5.16) are to be understood as closures of direct sums, which are orthogonal with respect
to the scalar products (-,-) x and (-,-) x, in L?(Xp) and L?(X,), respectively. In order to characterise
V and W further, the following observation will prove useful.

Lemma 5.2 The maps © and O are mutually adjoint, that is if ¢ € L%(Xo) and g € Cq, then

(©(¢)9)x, = (.6(9) (5.17)

Xo

Proof. One simply inserts the definition (5.1) into the Lh.s. of (5.17) and observes

©(0)9)x, = /f [ 0(:57) 616 dutz) g(r) dutr)

_ / o) / 80z 7) 9(r) du(r) ds(2) (5.18)
Fo Fa

= <90, @(g)>XO :
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This fact results in a further important observation.
Proposition 5.3 1. Cj = ran© & ker©,

2. LY(Xo) = ran ©,

3. ©: L Xo) — Cq is injective.

Proof. 1In order to prove 1. and 2., we first observe that the decompositions Cy = ran © & ker O and

L3(Xp) = ran © @ ker O follow from © and © being mutually adjoint: take any g € V = (ran @)L and
an arbitrary ¢ € L(Xp). The equality

0=1(0().9)x, = (#.6(0)) (5.19)
then implies that V C ker ©. Conversely, let g € ker© and ¢ € L%(Xo). Then

0=(0.0(9)  =(O)ax, (5.20)

shows that ker © C (ran©)* =V, and hence V = ker ©. Interchanging © and © yields W = ker ©.
To complete the proof of 2., we have to show that W = ker® = {0}. To this end take any
@ € ker ©, so that ©(¢) = 0 a.e. Decompose ¢ into its projections @ onto Eig(Ag) as in (5.14). Then

0=0(p)=> O(@) ae. (5.21)
k

Due to the mutual orthogonality of the summands appearing on the r.h.s. of (5.21) these are linearly
independent. However, this contradicts (5.21) unless ©(@;) = 0 a.e. for all k. Corollary 5.1 then
implies that ¢ = 0 a.e. for all k, so that finally ¢ = 0 a.e. Since ker ® = {0}, the last assertion is
obvious. 0

We now restrict O : Cq = ran © ©ker 0 — L% (Xo) to the complement of its kernel, so that we have
the two vector space isomorphisms © and (:)|ran@ between L%(Xo) and ran® C C4. Moreover, both
isomorphisms respect the spectral decompositions of L3(Xp) and Cg4, respectively. This observation
immediately yields

Proposition 5.4 The (discrete) spectrum of —A on L?(Xp), including multiplicities, is completely
contained in the discrete spectrum of —A on L%(Xg).

As a consequence one for example observes that the spectral counting functions Np()), see (1.10),
and Ny(u), see (1.15), obey
No(A\) < Nyg(A) . (5.22)

The Weyl asymptotics (1.10) and (1.15) therefore allow to obtain the geometric information Ap < Ay
from the spectral information contained in Proposition 5.4 through (5.22).

However, one can learn even more about the geometry of compact surfaces of the type X¢ from
the above spectral correspondence. To this end one employs Proposition 5.4 to obtain the lower bound
A1 > &k for the smallest positive eigenvalue of —A on L?*(Xo) from the respective bound py > -
for T'y(d) [14]. We then exploit a relation between short closed geodesics on closed compact surfaces
Xr = I'\H (of genus g > 2) and small eigenvalues of the Laplacian on L?(Xr). Denote by Lx, the
length of the shortest dissecting closed geodesic on Xr, i.e. the shortest geodesic in the zero class in
H(Xt1,Z). In [19] one then finds
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Proposition 5.5 There exist constants c1(g) > 0 and co(g) > 0 depending only on the genus, such
that for any closed compact surface Xr of genus g,

c1(9) Lxy < M(Xr) < e2(9) Lx; (5.23)
where A\ (Xt) is the smallest positive eigenvalue of —A on L%(Xr).

Any order O in an indefinite division quaternion algebra over Q with a unit group O! void of elliptic
elements yields a closed and compact surface X of some genus g > 2. The bound A\ (Xp) > % then
implies that Lx, > %621@. Since c2(g) only depends on the genus, one has thus obtained a lower
bound for the shortest dissecting closed geodesic on X¢. A surface of the type X» therefore cannot

develop a too thin neck.

6 Hecke operators

The arithmetic nature of the surfaces X and X, allows one to introduce non-trivial correspondences
on them. These then give rise to Hecke operators acting on L?(Xp) and L?(Xy), respectively.

In the cocompact case we restrict our attention to Eichler orders O of level N in an indefinite
division quaternion algebra A over Q, see [16, §5.3] for explanations. Here we only remark that N
has to be coprime to the discriminant d(A) of A, i.e. N is not divisible by any ramified prime of A.
Furthermore, the discriminant d = d(O) of the order is given by the product d(O) = Nd(A). Hence
maximal orders are characterised as Eichler orders of level one. The reason for this restriction is that
the Hecke operators are not known explicitly in general.

In order to define Hecke operators, we follow the general prescription, as for example outlined in
[16, §2.7]. One starts with an arbitrary element u # 0 of the commensurator of O!, which in our
situation is given by A itself [25, Ch.IV,Prop.1.4]. Then O(u) := O! Nu~1O is of finite index d(u)
in O!, so that

d(u)
o'=Jowe;, (6.1)
j=1
for some representatives €1,...,€4x) € O!. Since the norm n(u) is rational, one can choose ¢ € Z
such that n(qu) = ¢’n(u) € Z. However, O(qu) = O(u) so that we can restrict to u € A with
integral norm. Moreover, an Eichler order always contains an element ¢ with norm n(e) = —1, see [11,
Prop.6.2,Cor.2]. This allows to restrict ones attention to n(u) > 1, since if n(u) < 0 one can change
to eu with norm n(eu) = —n(u) and O(eu) = O(u).

The decomposition (6.1) of the proper unit group now yields a corresponding decomposition

d(u)
00! = | O'ug; (6.2)
j=1

of the double coset O'uO!. Following the general scheme, one can give the set R(O) := {Ou0O; u €
O, n(u) > 1} a ring structure, see [16, §2.7]. R(O) is called the Hecke ring of O and in case of an
Eichler order is known to be commutative, see [16, Cor.5.3.7].

The Hecke ring R(©) can be represented on L?(Xp) by introducing operators 7}, through

R 1 d(u)
(Tup) (2) = m;ww). (6.3)

One then defines for n > 1 the Hecke operators



where the sum is over representatives u € O™ that yield distinct double cosets O'uO!. Returning to
the decomposition (5.8) of O™ and noticing that

J oot (6.5)

ueOn
we obtain that the Hecke operator (6.4) applied to ¢ € L?(Xo) reads

d(n)

(Tnso) f Z o(152) - (6.6)

If in (5.8) n = n(u) is negative, we choose ¢ € O with norm n(¢) = —1 and consider eu with norm
n(eu) = —n > 1. The corresponding Hecke operator is then

(Tur) (2) wa = (Tnp) (2) - (6.7)

It is well known, and can be readily deduced from (6.6), that the ’_Z~“n are bounded linear operators
on L?(Xo) which commute with the hyperbolic Laplacian. They are moreover self-adjoint, a fact that
can be drawn from the observation that if u € O™ defines the operator T;,, then the adjoint operator
ﬁj is generated by the conjugate u of u,

d(n)
(Tapw) = Z [, v dute
o ]:1
d(n)
- = / o) (") () (68)
] 1
= T* ;
<<’0’ n¢>X0
Since v~ ! = %ﬂ, so that v~ 'z = Tz, the assertion follows from the boundedness of Tn However,

n(z) = n(u) = n implies that T = T}, since the Hecke operators obviously only depend on .

The Hecke operators Tn for n € N commute, since the Hecke ring R(Q) is commutative. Hence, one
can choose an orthonormal basis {¢x; k¥ € Ng} of L?(X¢) consisting of simultaneous eigenfunctions
of the Laplacian and the Hecke operators,

—App = M@k ,
Toor = t(n)ek . (6.9)

Such an orthonormal system is called a Hecke basis of L?(Xp).

For the sequel, we will need the multiplicative properties of the Hecke operators. These can be
derived immediately from the multiplication rules in the Hecke ring R(O) as given in [16, Cor.5.3.7].
First notice that the elements T'(p,p) € R(O), (p,d(O)) = 1, as they appear in [16, Cor.5.3.7], are
represented on L?(Xp) by p~! times the identity. This leads to the observations that

ToTw = Tom, if(n,m)=1, (6.10)
~ Toer1 4+ Ther, if (p,d(0)) =1

T,Tpe = & P Pl ’ ’ 6.11
bep { Tpet1, if (p,d(0)) > 1, (6.11)

for all m,n € N and primes p. This enables us to obtain
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Lemma 6.1 The Hecke operators T,,, n € N, on L?(Xp) obey

T T =Y. Tompe - (6.12)
(L

Proof. By induction, one can derive from (6.11) that

f f’j:' . — Zﬁg{e’f} Tpe*'f*zia if (p7 d(O)) =1, (613)
P Tp€+fa if (pa d(O)) > L
Together with (6.10) one immediately gets (6.12). 0

If one now considers a Hecke basis {¢x; k& € Ny}, Lemma 6.1 readily yields the multiplicative
properties of the Hecke eigenvalues #(n) as

. - ~ /mm
B hm) = Y & (—) (6.14)
(l,lcli((%’;r)b):l
foralln,meN, k€ Ny.

In the case of the congruence modular group I'g(d), the construction of its Hecke ring R(T'o(d)) is
based on the same principles as for the unit group O' discussed above. The result is well known, and
the procedure is for example explained in [16, §4.5]. If n € N with (n,d) = 1, the action of the Hecke
operator T, on g € Cy is the same as in the case of the full modular group,

_ 1 ot + 3
T )= ¥ o(*57) (6.19

0<B<é

Thus the Hecke operators T),, (n,d) = 1, together with the hyperbolic Laplacian form a commutative
ring of self-adjoint operators. One can therefore introduce a Hecke basis {gx; k € N} for Cy,

—Agr = Gk
Togk = tk(n)gk , (6.16)

where (n,d) = 1. As in (1.12), every eigenform g; admits a Fourier expansion
ge(1) = Y ex(n) Vo Kip (2m|nfv) 7 (6.17)
n#0
In complete analogy to [16, Lem.4.5.15] one obtains for the Fourier coefficients of g
Lemma 6.2 The Fourier coefficients cx(n) with (n,d) =1 obey cx(n) = cx(1)tg(n).

Hence, all Fourier coefficients cx(n) with (n,d) = 1 vanish whenever ¢;(1) = 0. On the other hand, if
¢k (1) # 0, one can express the Hecke eigenvalues in terms of the Fourier coefficients as t(n) = iz(g)),
(n,d) = 1.

To complete the discussion of Hecke operators on Cq, one still has to introduce Hecke operators T},
for primes p dividing the level d. In explicit terms these read

_Lp_ T+ 0
(Tyg) () = \/ﬁﬁgog( - ) (6.18)
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compare [16, Lem.4.5.6]. The multiplication rules of the Hecke operators on C;y can now be summarised
in
TnTwm = Tpm, if (n,m)=1,
Tpe = (Tp)¢, if p prime and pl|d,
compare [16, Thm4.5.13] and [9, (8.39)].

Our primary goal in this section is to study the composition of Hecke operators and theta-lifts.
This discussion is based on Proposition 5.1, which yields the Fourier coefficients of a theta-lift of a
Laplace eigenfunction ¢ € L3(Xp). We stress that in this context, it is essential to choose the level d
of the congruence modular group I'y(d) to be the discriminant d(Q) of the quaternion order O.

Now let ¢ € L3(Xp) be an eigenfunction of the Laplacian, —Ag = Ap. According to Proposi-
tion 5.1, (6.6) and (6.7), the Fourier expansion of the theta-lift reads

O(p)(r) = >_ 4 (Tup) (20) Vo Kir (2rnfv) €>min" . (6.19)
n#0

We now consider a Hecke basis {¢y; k € N} of L3(Xp), so that

Olp)(r) = 4pil(z0) 3 E(n) Vo Kip (2minfo) 27
n>0

k() D Tr(n) Vo Kir (2 Infv) €27 (6.20)
n<0

= 42 tk \/_Kzr 27TnU) [(pk (zo) e?ﬂinu + (Pk(z_o) e*?ﬂ'inu] )

Hence, in case @i (29) = ¢ (Zp) the theta-lift can be expressed in terms of a cosine- or sine-Fourier
series, respectively. In Corollary 5.1, we saw that generically the first Fourier coefficient c¢(1) of a
theta-lift does not vanish. In (6.20) we now explicitly see what happens if the reference point zg is
chosen such that ¢x(z9) = 0 = ¢k(Zp): in this case O(pg) = 0.

We are now able to prove the main result of this section.

Proposition 6.1 Let n € N be arbitrary. Then
1. For p € L3(Xp) one obtains
0 (Tup) =Ta (0 (9)) - (6:21)

2. For g € ran® C Cy one obtains
6 (Tng) =Ta (6.(9)) - (6.22)

Proof. TFirst let ¢ € L%(Xo) be a Laplace eigenfunction, and (m,d(O)) = 1. Then in view of (6.19)
and Lemma 6.1, one finds

@(Tm(p) (T) = Z 4 (’fn’fm(p) (2?0) \/'l_)Kzr(27T|’fl|’l)) e2minu

n#0
= 34 > (Tumpew) (0) Vo Kip (2n[n]v) €27 (6.23)
n#£0  l(n,m)
(1,d(0))=1

On the other hand, according to the well known action of T, (m,d) = 1, on Cg,

Ty (© =Y1 ) ( m/,w) (%) Vo Kir (2|n|v) €27 . (6.24)

n#0  1|(n,m)
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Now the r.h.s.’s of (6.23) and (6.24) coincide, since (m,d(O)) = 1 and I|(n, m) automatically implies
that (1,d(0)) = 1.
For the case of m = p a prime dividing d, we first recall that

p—1 .
15 s {1 ook, 625
p 5=0

0, otherwise.

Employing the definition (6.18) of T}, for p|d and Lemma 6.1, we find

-1

T,(0(0) (1) = %ﬁ o (T+ﬂ>
N 4( ) (20) Vv Kir (27r|n|2> Q2T U 11)2162m'%,3
ha P pfa’:o
= 3 4( mp‘P) (20) Vv Kir (21|m]v) 2T0mu (626
m#0

= 4 (T Tpgo) (20) Vv Kip (21|mv) €2mm
m#0

= 0(Tw) (1) .
We have thus proven (6.21) for n being an arbitrary prime power, n = p°. In fact, the powers p® of
primes (p,d(Q)) = 1 are covered by (6 23)—(6.24). The case of prime powers of p dividing d(O) then
follows from (6.26), since Tpe = (fp) and Tpe = (T})°. Moreover, for coprime n,m € N the Hecke

operators are multiplicative, as seen in (6.10) and (6). If then n = [ p® is the prime factorisation of
an arbitrary positive integer n, one finds

T, =][Tp» and Tp=][[Tpe . (6.27)
p p

Exploiting this, one applies the relation (6.21) for the different prime powers successively.
By choosing in L%(Xo) a basis of Laplace eigenfunctions, and by the linearity of the theta-lifts
and the Hecke operators, respectively, one extends the validity of (6.21) to arbitrary ¢ € L3(Xo).
The relation (6.22) follows from (6.21) by an application of Lemma 5.2. Since if g € Cy4 and
¢ € L*(X0), then

(6Ta) o), = (Tng.©(@)x, = (8T (O@))x,

-~ (s0 (1)), - (60T :

<g © ( ny X, 0(9),Tnp Xo (6.28)
= <Tn (9(9)) ’(’0>Xo :

which finishes the proof, since ¢ can be chosen arbitrarily. O

If one now considers a Hecke basis {¢x;k € N} of L3(Xp), one obtains

T (0 (1) = © (T (o0)) = © ((mpr) = T(m)O () (6:29)

for all n € N. Hence © maps a Hecke basis of L3(Xe) to that part of a Hecke basis of C; that spans

ran® C C;. The Hecke eigenvalues are not changed under this map. In the same manner © maps a
Hecke basis {gx; k € N} of C4 onto a Hecke basis of L3(Xp),

T (6 (91)) = O (Tuge) = © (te(m)g) = (m)® (a1) (6.30)
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again for all n € N. The theta-lifts © and © therefore not only preserve Laplace eigenspaces and
eigenvalues, but also Hecke eigenspaces and eigenvalues.

7 Newforms

In the previous section we saw that the theta-lift © maps a Hecke basis {¢y; k € N} of L3(Xp) into a
Hecke basis {gx; k € N} of C4. Due to Corollary 5.1, a generic choice of the reference point zy ensures
that ran® C C; is contained in the linear span of the Hecke eigenforms g with non-vanishing first
Fourier coefficients cx(1). Now a way to analyse such eigenforms is provided by the oldform-newform
formalism as developed in [1] for holomorphic modular forms. However, the concepts and principal
results carry over to Maaf} cusp forms, see for example [9, §8.5].

Now let a,m € N, m < d, be such that am|d, and take some h € Cp,. The inclusion I'y(d) C Tg(m)
implies that C,, C Cy4 so that h € C4, but also h(®) € C4 with h(®)(7) := h(ar). The linear span of
all such forms h(® e C,; that derive from all possible a,m is called the oldspace C"ld Its orthogonal
complement within Cy is the newspace C;°*, so that Cy = C°ld @ Cy°v. The oldspace is closed under
the action of the Hecke operators T, w1th (n,d) = 1. Since the latter are self-adjoint, the same is true
for the newspace. One can therefore introduce a Hecke basis of C; such that one part of this basis
spans the oldspace, and the remaining part spans the newspace. A Hecke eigenform in the newspace
is then called a newform. If & is a newform in C,,, then h{® is called an oldform in Cj.

Let a, m be as above and consider a cusp form h € C,, with Fourier expansion

Zb ) Vv K (21| n|v) 270 (7.1)
n#0

Then h® has a Fourier expansion

h(r) = Zb(n)mKir(2W|na|U) g2minau
n#0
B S ND -

m=0moda

with Fourier coefficients ¢(m) = 1/ab(™) if m = 0 mod a, and ¢(m) = 0 otherwise. In particular, a > 1
implies that ¢(1) = 0. According to the non-holomorphic analogue of [1, Thm.5], C3' is spanned by
oldforms, see also [9, p.129].

From the above considerations, and from the non-holomorphic analogue of [1, Lem.19] one con-
cludes

Lemma 7.1 Let {gi; k € N} be a Hecke basis of Cq and denote the Fourier coefficients of g by cx(n).
Then ci(1) # 0 iff g, € C2¢* for some divisor m of d.

Since we know from Section 6, that the theta-lifts ©(yy) of a Hecke basis {¢x; k € N} of LE(Xo)
have non-vanishing first Fourier coefficients, we conclude that ©(pg) € CJ\* for suitable m|d. An
interesting question now arises: Are all theta-lifts newforms for I'y(d), i.e. is it true that ©(yy) € CJ*?
In order to at least partially answer this question, we introduce the spectral counting functions for
various classes of Hecke eigenforms,

Ny(N) #{ur <A},

Ny(\) = #{u <A: gpecCiv},

Nj(A) = #{m <A: (1) #0} (7.3)
Ny () = #{O(pr): me <A}
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Due to Proposition 5.4 and (1.10), we know that

n .A. A
N, (A):N@(A)NT:A::E#)@, A= 00 . (7.4)

The asymptotics (1.15) together with (1.8) reads

Na(A) ~ % Pd) Ao oo, (7.5)

where (d) = d [T, (1+1).

In order to determine the asymptotics of N('l(/\) and N:i'()\), respectively, we relate these to the
known asymptotics (7.5) of Ng()\). For divisors m of d the oldspace C2¢ is built up by newforms of
level m'|m. This procedure can be traced back to the lowest possible level m' = 1, ie. to the full
modular group. By definition, C; = C7"*". Hence Cy4 is constructed from the newforms of all levels
dividing d, including d itself. In this procedure one can form as many oldforms h(®) from h € Che™ as
there are divisors a of %, and all these forms have the same Laplace eigenvalue. Denoting the number
of positive divisors of n € N by 7(n), one therefore obtains

' d
ORSEACEY E (7.6)
m|d
which is the non-holomorphic analogue of [1, (6.6)]. According to [1, (6.7)] one can invert (7.6),
/ d
N =Y Mnp(2) &
m|d

with B(n) := 32y, u(k)u(%), and p(n) is the Mdbius function. Asymptotically for A — oo, the r.h.s.
of (7.7) yields

N~ 5@ with v (@) = wm (4] (75)

m|d

The arithmetic function 1 is multiplicative in the sense that ¢ (nm) = ¥ (n) ¥ (m) if (n,m) = 1. We
recall the following result from elementary number theory:

Lemma 7.2 1. Let f and g be two arithmetic functions such that

fln)=7"g(d) . (7.9)
dln

Then f is multiplicative iff g is multiplicative.
2. If T(n) is the number of positive divisors of mn, and f is an arithmetic function, then
o) =D Fd)7(5) =X f(@). (7.10)
dln d'|n d|d
In particular, by applying part 1. twice, we get that f is multiplicative iff g is.
An evaluation of both sides of (7.6) asymptotically results in

b =Y d (%) (7.11)

m|d
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Part 2. of Lemma 7.2 then shows that v is multiplicative since 1 is. We therefore only need the
values of '(p' on prime powers. An easy calculation gives

p— 1’ €= ]-a
P (p?) =S pP—p—1, e=2, (7.12)
P (p—1)°(p+1), e>3,

A similar procedure will now be applied to the counting function Ng (A\). As an immediate conse-
quence of Lemma 7.1 we observe that

Ny =) "N, . (7.13)

m|d
The asymptotic behaviour (7.8) of N,()) then yields for A — oo
" A " . " !
Ng(\) ~ 59" (d) with 9" (d) =) 9 (m) . (7.14)
m|d

Since v is multiplicative, so is 1" according to part 1. of Lemma 7.2. Therefore " is determined by
its values on prime powers,

Y6 ={ Ty, e22) (719
In summary, we have
Proposition 7.1 Let N(Ii()\) and N(;' (A\) be defined as above. Then for A — oo
Ny(A) ~ % [T+ &™), (7.16)
pld
and N
Ny~ [T#"6™) (7.17)
pld

when ' and " are given by (7.12) and (7.15) respectively, and d = [ p is the prime factorisation
of d.

Therefore, the asymptotic fraction of theta-lifts that are newforms in C4 is bounded from above by

NI
Fp:= lim ,‘,1,()\) =
A—00 Nd ()\)

vo' [ %) - (7.18)

pld

In case O is a maximal order the following consideration shows that Fp = 1. It is therefore possible
that in this case all theta-lifts are newforms. The discriminant d = d(QO) is given by the discriminant
of the quaternion algebra, i.e. by the product of the ramified primes,

14 o) =T[4 w =]]e-1 . (7.19)
pld pld pld
On the other hand, [25, Cor. IV.1.8] yields
Yo =¢(d) =[[w-1), (7.20)

pld



so that the r.h.s. of (7.18) is equal to 1.
We also remark that Proposition 7.1 in conjunction with Proposition 5.4 implies that

[T+ @) > vo, (7.21)

pld

since ¢; # 0 for theta-lifts by the proof of Corollary 5.1. This puts a restriction on the least possible
level d for a fixed order O. In many cases one can conclude that d = d(Q) is best possible, in particular
this is true for all maximal orders.

Now let O be a non-maximal order. Hence there exists an order @' in A containing @ as a proper
suborder. In this case d = d(0') is a proper divisor of d = d(0). Since L}(X,y) C L%(Xo) one can
lift ¢ € L(X,y) either to © () € Cy, or to O(p) € Cy.

Proposition 7.2 Let Oy C O1 be two Eichler orders in an indefinite quaternion algebra over Q, and
let p € L3(Xo,) C Li(Xo,). Fiz a base point 2o € H and let ©1 and O be the theta-lifts of L3(Xo,)
and L3(Xp,), respectively (each corresponding to the same zy). Then ©1(p) = Oa(p).

Proof. Let ¢ be a function in a Hecke basis of L3(Xp,). We may assume that ¢y (z) # 0. Take
an arbitrary m € N, such that (m,d(O2)) = 1. Since d(01)|d(O2), this also implies (m,d(01)) = 1.

Then the action of the Hecke operators T,,, (T;,) is the same on L§(Xo,) and L§(Xo,) (Cyo,) and
Ca(0,)). Hence by (6.29), we obtain

Tin(©1(pk)) = t(m)O1(px) and T (O2(px)) = tx(m)O2(pr)- (7.22)

Therefore, O1(px) and O2(ypx) have the same eigenvalues for all m with (m,d(02)) = 1. By the
non-holomorphic analogue of [1, Th.5], this implies that ©;(yx) and Os(pg) are in the same class
in the sense of [1]. Since the first Fourier coefficients ¢; = 4¢(z0) # 0 agree, this implies that
O1(pr) = O©2(pg). The result then follows by the linearity of ©1 and ©-. 0

In the case of Proposition 7.2, we now denote the theta-lift of L3(Xp,) N L3(Xp,) simply as ©.

Corollary 7.1 If ¢ € L}(Xo,) N L3(Xo,) for Eichler orders Oy C O1, then O(yp) is not a newform
in Cqo,)- In particular, if O is a non-mazimal Eichler order, then there are ¢ € L%(Xo) such that
O(yp) is not a newform in Cq(p)-

Proof.  This is an immediate consequence of Proposition 7.2, since Proposition 7.2 implies that
O(p) = O2(p) € Cy(0,)- O

In the case of maximal orders, we will use the fact that g is a newform iff it is an eigenform of all
Hecke operators and all adjoints of Hecke operators, see Corollary 1 to Theorem 2 in [15]. This fact
and the fact that the Hecke operators on X all are self-adjoint gives the following partial result:

Proposition 7.3 Let V be the subspace of L3(Xo) spanned by Hecke forms ¢ such that the eigenvalue
of the Laplacian of ¢ is simple. If ¢ is a Hecke form in V', then ©(p) is a newform.

Proof. By (6.29), we get that ©(y) is an eigenform of all Hecke operators. Hence it is enough to
show that O(y) is an eigenform of all adjoints of Hecke operators.
Suppose that ¢ and 1 are Hecke forms in V. Then

00(p) = cpp and OO (1) = ¢y, (7.23)
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for some constants c, and ¢y, since ©© maps an eigenform to an eigenform with the same eigenvalue.

From this, Lemma 5.2, Proposition 6.1 and the fact that all Hecke operators Tp are self-adjoint, we

get

(L0(0). 00)x, = (8Tw).0W) = (T.60())
= & <Tvp‘Pa ¢>X0 =Cy <<Pafp¢>xo (7.24)
= % ey (80(0). D) =75 ey (O0). OT))

= T ey (O(9), T,O(®))x, -

Xo

Since Ty = T}, for p such that (p,d) = 1, we get that ¢, = ¢, € R. From this we derive T = T}, on
O(V). Hence all Hecke forms in ©(V) are also eigenforms of 7,7 and therefore newforms. m

Corollary 7.2 Let V be as in Proposition 7.3. Then ©0 is a real multiple of the identity on V.
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