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We derive upper and lower asymptotic bounds for the distribution of the supremum
for a self-similar stochastic process. As an intermediate step, most proofs relate
suprema to sojourns before proceeding to an appropriate discrete approximation.
Our results rely on one or more of three assumptions, which in turn essentially
require weak convergence, existence of a first moment, and tightness, respectively.
When all three assumptions hold the upper and lower bounds coincide (Corollary 1).
For P-smooth processes weak convergence can be replaced with the use of a certain
upcrossing intensity that works even for (a.s.) discontinuous processes (Theorem 7).
Results on extremes for a self-similar process do not on their own imply results for
Lamperti’s associated stationary process or vice versa. But we show that if the asso-
ciated process satisfies analogues of our three assumptions, then the assumptions hold
for the self-similar process itself. Through this connection new results on extremes
for self-similar processes can be derived by invoking the stationary literature.
Examples of application include Gaussian processes in R™, totally skewed a-
stable processes, Kesten-Spitzer processes, and Rosenblatt processes.

Introduction. Methods to study the asymptotic behaviour of P{SuPte[o,l] £(t) >
u} for large u, for a stationary stochastic process {{(¢)}+>0, have been developed
by e.g., Berman (1982) and Albin (1990). These methods require that a few con-
ditions are verified. Although it can be hard to verify the conditions, this often
constitute the most convenient (if not the only) way to study extremes.

There do not exist systematic approaches to non-stationary extremes comparable
with stationary theories in terms of efficiency: Many arguments that work on a
general level for stationary processes do not extend to non-stationary settings. At
best one can find methods specific for the particular non-stationary process under
consideration making it possible to carry out the corresponding computations also
in the non-stationary case: Usually this requires much effort. At worst the non-
stationary process cannot be studied along schemes of stationary origin, and one
has to start from ‘scratch’ (often meaning that sharp results cannot be found).
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In Sections 2-8 we shall see that for self-similar non-stationary processes, a the-
ory of extremes can be developed that performs (at least) as well as stationary
counterparts. As in the stationary case, given a specific self-similar process one
must check a couple of conditions before infering results on extremes: The contri-
bution of the theory is that it usually is much easier to verify these conditions than
to start from zero, and often alternative approaches are not available.

In Section 2 we find the asymptotic behaviour of fol hy(s) P{&(s) >u}ds for
large u, when £(t) is a self-similar process and {hy(-)}uer a uniformly bounded
family of functions. This technical result is needed in most proofs of latter sections.

In Section 3 we determine the asymptotic distributional behaviour (for large )

of the sojourn time spent above the level
t
L(u) = L(1; u) where L(t;u) = / I(u,a)(§(s)) ds for t>0.
0

To that end we require weak convergence of the conditional finite dimensional distri-
butions {(w'[¢{(1—qt)—u] |£(1)>u)}i>0 to some limit {{(¢)};>0 as u becomes
large, when w = w(u) and ¢ = g(u) are suitably choosen. Further we need a
requirement which interprets to BE{ ;" 1(0,00)(¢(s)) ds} < o0.

In Section 4-6 we study the asymptotic behaviour of P{sup,co,&(t) > u}
through establishing relationships between the events {SUPte[o,l] E(t) > u} and
{L(u) > 0}. To get a sharp relationship we (not suprisingly) have to require that
the convergence (w™[E(1—gt)—u] |£(1)>u) —¢ ((t) is ‘tight’.

In Section 7 we investigate how results can be simplified and/or sharpened when
the limit ((¢) takes the simple form ((t)=¢’ -t for some random variable ¢’

In Section 8 we develop several sufficient criteria for verifying tightness.

In Section 9 we derive a connection between our findings in Sections 2-8 and ex-
tremal theory for the associated stationary process obtained via the transformation
of Lamperti [see e.g., Proposition 7.1.4 and the notes to Section 7.1 in Samorod-
nitsky & Taqqu (1994) ([S&T])]: We show that if the associated process fits into
the framework of the stationary theory of Albin (1990, Section 2), then the original
self-similar process satisfies the hypothesis of our result in Sections 2-8.

Connections to stationary theory are automatic for some global problems like
e.g., the law of iterated logarithm. But this is not the case for local extremes,

and the relation we establish is non-trivial and new. It is first now that results



on extremes for e.g., fractional Brownian motion (fBm.) are implied by the work
of Pickands (1969) on stationary Gaussian processes: The reader knowledgeable in
the stationary literature will be able to derive many results on self-similar extremes
with little effort by invoking the ‘stationary connection’ established in Section 9.

Our theory is general in the sense that it does not impose additional structural
assumptions on the self-similar process (like e.g., Markovianess). Instead it requires
that one can carry out a few basic estimates related to the tail behaviour of the
one- and two-dimensional distributions of the process. This can be an important or
even crucial advantage. But of course there exist processes which are better studied
via methods specific for the process under consideration than via our approach.

Our results demonstrate what properties of a self-similar process that affect local
extremes and the probabilistic principles involved when proving this. But the main
motivation for our work were a wish to provide a systematic method useful to study
extremes for particular examples of self-similar processes for which other methods
are not available. It is not uninteresting to see how our approach applies to reprove
results for processes whose ‘extreme behaviour’ is already known (and it works very
swiftly in most such cases). But the true value of a new method must be judged by
it’s ability to generate new results for important examples of self-similar processes:

In Section 10 we give an application to R™-valued self-similar Gaussian processes
whose component processes are independent with covariance functions possessing
a polynomial modulus of continuity. This class of processes include virtually all
processes arising in applications as well as most encountered in theory.

In Section 11 we give an application to the L?-norm of Brownian motion. Repre-
senting ‘the action of a Brownian path’, this process is theoretically important [see
e.g., Yor (1992) for more information]. It is also of applied interest in e.g., physics
[e.g., Duplantier (1989) and Chan et al. (1994)].

In Section 12 we study log-fractional a-stable motion that is totally skewed to
the left. This process was discovered by Kasahara et al. (1988) as the first example
of a self-similar a-stable process with index x=1/a that is not a-stable motion.

In Section 13 we study linear fractional a-stable motions that are totally skewed
to the left. These processes were introduced by Maejima (1983) and Taqqu &
Wolpert (1983) as natural stable generalization of fBm., and they constitute the

most important class of stable processes.



The most important class of stationary stable processes are moving averages of
a-stable motion. In Section 14 we give an application to the family of self-similar
processes whose associated stationary processes via the Lamperti transformation
are a-stable moving averages that are totally skewed to the left.

Of course, our theory apply also to a-stable processes that are not totally skewed.
But we do not dwell on this since the extreme behaviour of such processes is already
well-understood through the works of de Acosta (1977) and Samorodnitsky (1988).

In Section 15 we study Kesten-Spitzer processes. These processes appear as
functional limit of random walks in random sceneries when the walk and the scenery
both belong to domains of attraction of stable laws [Kesten & Spitzer (1979)].

In Sections 16 we give an application to Rosenblatt processes. These processes
are important because their role in non-central limit theorems parallells that of fBm.
in central limits: See Taqqu (1975) and Dobrushin & Major (1979) [or surveys like
Taqqu & Czado (1985) and Taqqu (1986)] for precise statements.

All results derived in Sections 10-16 are new, and we do not know any other way

to prove them than via our approach.

1. Preliminaries. In this paper all stochastic variables and processes are defined
on a common complete probability space (£2,F,P). Further {{(¢)};>0 denotes an
R-valued stochastic process which is self-similar with index x> 0. Thus the finite
dimensional distributions of &(At) coincide with those of A®&(t) for A>0.

For each stochastic process under consideration we assume that a separable and
measurable version have been choosen. Such a version exists under weak condi-
tions like e.g., P-continuity almost everywhere [Doob (1953, Theorem I1.2.6); see
Veervaat (1985, Theorem 1.1) for a converse|, and it is to that version our results
apply. In particular, if {(¢) has stationary increments, then £(t) is P-continuous
[e.g., Vervaat (1985, Eq. 1.1)] and thus has a separable and measurable version.

Write G for the distribution function of £(1) and 4@ = sup{z€R : G(z)<1}.
We shall assume that G belongs to a domain of attraction of extremes with 4> 0.
Thus there exist a constant & € (0,00] and functions w : (—oo, %) — (0,00) and
F:(—&,00)— (—00,1) such that F' is a distribution function on [0,00) and
(1.1) limytg (1-G(utazw(u)) / (1-G(u)) = 1-F(z) for ze(-2,00).

Here G can be Type II-attracted [G € D(II)], and then we can take &= —1,
F(z) =1—(14x)~7 for some y>0, and w(u)=wu so that W = lim,4 w(u)/u = 1.
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Otherwise G is Type I- or Type Ill-attracted [G € D(I) or G € D(II)] and
then we can assume that £ = oo and F(z) = 1—e~* for some continuous w
satisfying W = limy4q w(u)/u = 0. Here 4 =00 for G € D(I) while 4 € (0, 00)
when G e€D(III). Further w is self-neglecting, i.e.,

(1.2) w(utzw(u))/w(u) — 1 locally uniformly for x€R as ut.
For future use we define

Fo E/O ((1+W§)§

The fact that G€D is needed in the crucial Proposition 1 below. Most marginal

)

) d3 1 for GeD(I)UD(II)
+1/6 ( :

y+r )71 for GeD(II)

distributions occuring in the study of stochastic processes belong to D, and we are
not aware of a specific self-similar process for which G ¢D. See e.g., Resnick (1987,
Chapter 1) to learn more about the domains of attraction D = D(I)UD(II)UD(III).

In the sequel it is assumed that an interval J C (—1,00) with 0 € J, and

1 exists and a =

a function ¢: (—o0,@) — (0,00) such that Q = limypqq(u)”
1/ (2 sup,<qq(u)) > 0 have been specified. The function ¢ is featured in all
assumptions and theorems, and the first step when applying our results is to choose
a suitable ¢. Inferences then depend on which assumptions hold for this q.

Most results require that the variation of p(u)=u"'"q(u) is restricted by

(1.3) p is almost decreasing, i.e., P1= limyq SUDye[v,a) P(1)/P(v) < and

(1.4) the limit p(z)= limypap(u+zw(u))/p(u) exists and is continuous for z>0.

In applications ¢ tends to be non-increasing so that (1.3) holds with B, =1.
When GeD(I)UD(II) (1.4) holds if e.g., ¢ is regularly varying at oc.

Upper bounds on extremes rely on the additional requirement that

(1.5) thereis a p€R such that [~ (1+Ws)P~ =% (1—-F(s))ds < oo and
(1.6) u’p(u) is almost increasing, i.e., Po=1lim .. inf,ep a)(u/v) p(u)/p(v)> 0

When G € D(I)UD(III) (1.5) is void and (1.6) means that ¢ have bounded
decrease. For GeD(I) (1.3)-(1.6) thus hold ife.g., ¢ is non-increasing and regularly
varying (at oo). For G € D(II) (1.3)-(1.6) hold if e.g., ¢ is non-increasing and

regularly varying with index greater than —~.
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For G € D(I)UD(III) the fact that w(u)/u— 0 makes it natural to require

(1.7) w 'w(u) is almost decreasing, i.e., Pz =1lim sup (v/u)w(u)/w(v) < oo.
vt u€[v,a)

Of course, if Ge€D(II) then (1.7) holds trivially.

The behaviour of extremes will depend on the finiteness of the limits

Pa= li_muTa uq(u)/w(u) and Ps = muﬁl uq(u)/w(u).

Given functions h; and he, we write hi(u)~ho(u) if limypq hi(u)/ho(u)=1
and hi(u) ~ ho(u) if limypq(hi(u)—ha(u)) =0. Further hq(u) < ho(u) means
that limypq(hi(u)—he(w)) <0, and hy(u)=he(u) that lim ., (h1(u)—=ha(u)) >0.

2. The mean sojourn time. In order to study the asymptotic behaviour of L(u)
in Section 3, we must first understand the behaviour of P{&(s)>u} for s€(0,1]:
Proposition 1 gives a quantitative statement of the obvious fact that P{{(s)>u}

increases with s. The idea of the proof is to use (1.1) to obtain (formally)

P{E(s)>u} = PE)>5™u) ~ [1-F (5™~ u/w)] PLE(1) > u}.
Proposition 1. Assume that GED [so that (1.1) holds|. Then we have
(2.1) E{L(u)} ~ Pow(u) P{E(1)>u} /(ku) as utd

Writing s, = (1+sw(u)/u)~Y* we further have

! P{{(s)>u} . 1 [ (1-F(s))ds

for each family {hy}u<a of functions satisfying lim,qq SUP4e(0,1) |hy(8)| < 00.

Lemma 1. Assume that GED. For each y€[0,00) and z€R we then have

_ogu Awe@TV ple(s)>u) 0 (1-F(3)) ds
(2.3) /0 s st‘ /y (1+Wa)l—=

Proof of Lemma 1. When the right hand side of (2.3) is infinite, the fact that

A e g P{E(s)>u} [ P{{(1)>u+sw} .
(2.4) ?/O 5 st _/y (I+8w/u)' == P{{(1) > u} ds
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combines with (1.1) and Fatou’s Lemma to prove (2.3). When the right hand side
of (2.3) is finite, (2.4) readily combines with (1.1) and the fact that w(u)= O(u)
to show that it is sufficient to prove

(2.5) lim lim > 51 P{E(1) >u+3w}

ds =0 here 2=2zVI1.
S ) K PLE(D) > ul 3§ where 2=z

Now let G be the distribution function of £(1)*, choose {u,}°; CR such that
U, 14 as n— oo, and write N, for the integer part of (1—G(uy))~'. Defining
Z, = maxi<i<n, X; where X, X,,... are independent random variables with

common distribution é, we then have
In P{(Zn—un)/w(un) Sx} =N, lné(un—l—xw(un)) ~ —N,, [l—é(un—l—mfw(un))}
as n—oo. Since N, ~(1—G(uy))~", (1.1) thus implies that

(2.6) nli_)n;o P{(Zn—un)/w(u,) <z} = lim GN» (un+zw(u,)) = exp{—[1—F(z)]}.

n—o0

Assume that there exist a non-degenerate random variable Z and sequences
{an}o2 1, {bn}52; € R such that (max{X;,...,X,}—by)/an, —¢ Z as n— oo.
Then Theorem 2.1 of Pickands (1968) states that

E{[((maxlgign Xi—bn)/an)Jr]m} —-E{(Z")™} asn—oo

for each meRT satisfying E{[(X1)7]™} <oo and E{(Z1)™}<oc.
Applying Pickands’ result to the convergence established in (2.6) we deduce that

e B (e ﬂ } S e TR

Here finiteness follows from finiteness of the right hand side of (2.3) when 2 >1

and G e€D(II). Otherwise it is a consequence of the possible forms of F' in (1.1).

It is an easy exercise in integration theory to see that (2.6) and (2.7) imply

) Zn—un Y © 2% F'(z)dx
2. lim Eq( =" ) Iyz, - = .
(2.8)  lim {( wlu) ) {(Zn un)/w<un)>y}} /y exp{1-F(@)} =

Now the fact that 1—(1—¢)¥ > N(1—¢)¥~1e for N>1 and €€[0,1] yields

Z—Un Y
(2.9) E{( ) I{(Zn—un)/w(un»y}}

w(up)
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T 1= G (uptzw(un))] de

Il
N>

'V
e— e

Ooxﬁ_l N GV ug) [1-G (up+zw(uy))] do

L P >un+aw(un)}

/y T RE) S w)
[l

~J

@D | N>

But combining (2.8)-(2.9) it follows that (2.5) holds.
Proof of Proposition 1. Clearly (2.3) implies (2.1), while (2.1) in turn implies that

P{E(s) > u}

(2.10) /Ohu(s) B{L(]]
P{E(s) > u}

- mow/o ") BLe(1) > u)
P{¢(1) >u+ 5w}
(1+8w/u) /= P{£(1) > u}

“wl,

Oyhu((1+§w/u)_1/“)
Ple(H)>u)

pu [OFve T
/ ") B>

+
Pow
Since the convergence in (1.1) is locally uniform, an application of (2.3) followed

O

by sending y— o0 in (2.10) proves (2.2).
3. Asymptotic distributions for sojourns. First we need two assumptions:

Assumption 1. There is an (RU{—00, 00})-valued process {((t)}s+>0 such that

>$i}‘§(1)>u} - P{ié{((ti)>xi}}

n
., Ty €

1imP{ﬂ{ ol

£(1—g(u)ti) —u
wta ] )
for n € Z+(: {1,2,... }), t1,... 1, €[0,Q) and continuity points w1,

J  for the functions P{((t1)>-},... ,P{C(tn)>"}.
In view of the fact that (1.1) implies that P{w™[£(1)—u] > z | £(1) > u}

converges [to 1—F(z)], Assumption 1 is a quite natural requirement.

Assumption 2. We have
_ rVa(w)

lim lim P{¢(1—q(u)t)>u|&(1)>u} dt = 0.

d—o0 uTh

dA(1/q(u))
Assumption 2 is void when () < oo, and more generally Proposition 2 below

shows that it holds when 9B, >0. Assumption 2 requires that if £(1)>wu, then £(t)
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have not spent too much time above the level u before time t=1. Assumption 2
can be interpreted as E{fOQI(Om)(C(s)) ds} <oo when Assumption 1 holds.

In Theorem 1 we find the asymptotic distribution of L(u)= L(1;u) as u1 .
The idea of the proof is that if (w™'[¢(1—gt)—u] |£(1)>u) —¢ ((t), then also

1/q
(L(L;u)/q|é(1)>u) =¢ (/0 I(0,00) (W [E(1—gqt) —u)) dt‘§(1)>u) converges.

By self-similarity this transfers to (L(s; u)/q | &(s)> u), and combining the relation

60) [ P@/a>v}dy = 3 [ P{Llsu)/a>o]¢)>u} PLEG) > u}ds

T 0
with Proposition 1, the asymptotic behaviour of L(u) follows: Eq. (3.0) is discussed
below. It’s significance has long been understood and utilized by Berman.

Theorem 1. Assume that Assumption 1 holds with G €D, and that (1.4) holds.
Defining

1 [ Q x (1-F(s))ds
Alx) = ﬁ/@ P{/O I(O,oo)(C(t)) dt>ﬁ(8)} (l—I—WS)H'l/K” for x>0,

we then have

Lo [ PLL(w)/a(w) >y}
wade  B{LW/g(w)}

If in addition Assumption 2 and (1.3) hold, then we have

= [ P{L(w)/q(w) >y}
ot ), E{L)/q(w)}

Of course, the asymptotic behaviour of E{L(u)} is described by (2.1).

dy > A(z)  for each z>0.

dy < A(z™)  for each z>0.

Lemma 2. Assume that Assumption 1 holds with G € D, and that (1.4) holds.
Then P{((t)>x} is continuous at £=0 for each t€(0,Q), and

TA(su/q)

the conditional law of (/ I(y5) (&(su—qt)) dt
0

E(8y)> u)
(T/p(s))NQ
converge weakly to that of ;ﬁ(s)/ T(0,00)(C(2)) dt.
0

Proof of Lemma 2. Take a ug < such that w(u)/u<1 for u>ug, and note that
(1—gt) " (u—cw) > u+ (6_1/2—81/2—8)11) if (1—gt)™ > 1+e Y% (w/u)
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i=(1—qt) "(utew) < u+(s_1/2+€1/2+€)w if (1—qt)™ < 1+e Y% (w/u)

for u>uy and £€(0,1). Since (1—gt) "w < 2(14+e~Y?)w(@) when (1—qt)~*
14+ 2(w/u) and u>wuy, for some wu;=wui(e)>uy [recall (1.2)], it follows that

P{((t)>—3c} — P{((t)> 3¢}
Plu—cw < {(1—qt) < u+tew}

< PLE()>u)
< mP{f(l) > U+(6_1/2_51/2—5)w} +hm {u 46 14+e— 1/2)’11)(11,) < 5(1) }
- utd P{¢(1)>u} uli P{¢(1)>a}

= (1~ FE - 0)) + (~F(-d(e+</?)
—0 as /0.

Now put @ = s;"u and § = q(@). Since (1.4) implies that §s,/q — p(s),

Assumption 1 then combine with the above established continuity to give

E{ (/OTA(SU/q)I(u,a) (€(su—qt)) dt)m ‘ £(5u) >U}

- / P{N(E6 >0 s af i

0<t1,0 tm < (aT/(@5u))N(1/Q)

Ok / P{ﬁ{g@) >0}}dfm...d£1.

0<Ery < (T/p(sNAQ 1

The lemma now follows from recalling the elementary fact that convergence of

moments for bounded random variables implies weak convergence. [J

Proof of Theorem 1. In view of the elementary fact that

1
%@mmlnﬁmmmm%mwmw:mw@wm for >0,
we readily obtain

(3.1) /°° P{L(w)/a>y} ,

E{L(U)/q}
E{L }/ P{(L(u)—qz)>9}dj
1

— B{L0)) E{(L(u)—qz) I |4y 00)(L(u)) }
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1 1
~ E{L(u)} E{Imw,oo)(L(u))/o (1= T(—oo,qa) (L (s; U)))I(u,a)(i(s))ds}

_ m E{/OII(%OO)(L(S; ) (u,a)(§(5)) ds}

1 /1
=——— | P{L(s;u)/q>x, £(s)>u} ds.
B{L S T }
Taking €€(0,1), (3.1) combines with Lemma 2 and (2.2) to show that

*P{L(u)/q>y}
. BE{L(u)/q}

1 pdA(s/a)
< lim P{/ Iiya) (f(s—qt)) dt>a:—%aa:
0

(3.2)  lim

uti

P{E(s) > uj
0>} iz

P{¢(s)>u}
E{L(u)}

o s/q
+ lim P{/ I(y,0) (é(s—qt)) dt>iex ds
d

utd Jo A(s/a)

1 oo ( arpe)NAQ z—ex| (1-F(s))ds
< %/O P{/ I(O,oo)(C(t))dt > ﬁ(S) } (1+WS)1-|-1/1£

t=s/q M
+s_m 5%3 /t dA(s/q)P{f(s—qt)>u|f(5)>“} "By *

But writing 4=s""u and §=q(a), (1.3) yields that sG/q = p(s—"u)/p(u) < 29,

§(s)>u}

for u large. In view of Assumption 2 we thus have

s/q
(3.3)  sup / P{§(3—qt)>u‘§(s)>u} dt
u2uz JdA(s/q)

1/§ . $q -
_ Sup/ P{e(1—gt)>a|(1)>a} = di
u>uz J (dq/sq)A(1/d) 1

1/q - -
< 293 sup / P{{(1—qt)>ul&(1)>u}dt
u2uz J(d/2P1)A(1/q)

<e®> for d>dy and s€(0,1], for some dp>1 and wug <.

Inserting in (3.2), the upper bound now follows from sending d—oo and €]0.
The proof of the lower bound is analogous (but easier): Using (3.1), Fatou’s
Lemma, and Lemma 2, [but neither (1.3) nor Assumption 2], we obtain

i [ PAL(w)/e¢>y}
wtads  E{L(u)/q}

1 dA(s/q)
> lim P{/ T,y (E(s—qt)) dt >z
0

utd v 0

dy

PE(s)>u)
E{L(w)

§(s)>u}
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1 [ee) (@/B(s))NQ €T (I—F(S)) ds
> ﬁ/o P{/O I(O,oo)(C(t))dt > ﬁ(s)} (1+WS)1+1/"‘

— A(z) as d—oo. O

Berman (1982) used versions of Assumptions 1-2, Lemma 2 and (3.1) [=(3.0)] to
study sojourns, and also worked on relations to extremes. See also Berman (1992).

For q(u) large enough to make B4 >0, the trivial estimate

P{¢(1-qt) >u|£(1)>u} < P{E(l—gt)>u} / P{E(1) >u)
combines with Proposition 1 to show that Assumptions 2 holds:

Proposition 2. If GED and P4 >0, then Assumption 2 holds.
Proof. Write y(u) =rdug/w, so that lim ,.y=rdPs and (1+yw/u)~/% >
(1—gd)™. Invoking (2.2) we then obtain

1 (0-D" Ple(s)>u}

Vi Ple(-gt)>u} 1

lim

uld Jgn(1/q) P{&(1)>u} utd q Jg W }
. 1 P{&(s)>
< }11%2 % . I(O,(l—i—yw/u)_l/”](s) % s

1 /oo (1-F(s))ds
= ‘B4h§ s (I—I—WS)H_l/F"'

4. First bounds on extremes. By Theorem 1, Asumptions 1 and 2 imply

40 Ploupico 0> u) > maxd Ple)>ul. 1 [PLLG) 4>} i

A(z7)

> max{P{f(l) >u}, 1_7 E{L(u)/q}},

and assuming ‘tightness’ this inequality can be reversed. Whether P{SUPte[o,1] &(t)
>u} behaveslike P{¢(1)>u} or E{L(u)/q} thusdepends on theratio P{{(1)>
u} /E{L(u)/q}, which in turn by (2.1) behaves like ugq(u) / (Pow(u)).

In Section 4 we derive bounds for P{SUPte[o,1] £(t) > u} without assuming
knowledge of the size of u¢q(u)/w(u). In Sections 5 and 6 we give more precise
results requiring that lim, uq(uw)/w(u) is infinite and finite, respectively.

The ideas behind all theorems in Sections 4-6 are versions of the estimate (4.0).

As indicated above, it is easy to derive a lower bound for P{SuPte[0,1] E(t)>u}:

12



Theorem 2. If Assumption 2 holds with G€D, and if (1.3) holds, then we have

. 1
i B{L 0} () + PE@ >} - P 0> u) > 0

utd

Proof. Clearly we have [cf. (4.0)]

= [ P{L(u)/q>y}
th B{L(u)/q) °

for each £>0. Given an £€(0,1), (3.2) and (3.3) further show that

(4.1) h_mm P{sup;co11&(t) >u} > 1 [1 _

utd T uti

i [ PiL(w)/q>y}
wti J,  B{L(u)/q}

P{e(s)>u} , 2

- 1P do/\(S/q)I 1
< Tm {/ oy (E(s—at)) dt > (1— 1) BT ©t37

uTﬁ 0

§(s)>u}

Since the first term on the right hand side vanishes for z=dy/(1—3¢), (4.1) yields

| . 1_l€ 28(1—15)
hmwp{wptem,ﬂg(t»“} = do2 (1 - do 2 ) "

uti

The (virtually stronger) statement of the theorem now follows easily. [

Our upper bounds use one of two tightness assumptions: Define t%(0)=1 and
tu(k+1) =ty (k) (1 —aq(ty(k) "u)) for k< K(a,u)=sup{keN:¢i(k) "u<i}

when u€ (—o0, ) and a€(0,a]. Note that ¢¥*(k) > t¥(k—1)>...>27%>0.
Assumption 3'. For some choice of >0 and a€(0,a] we have

_—— P{sup;cpp 11 (1) > utow(u), maxocp<k(a,u) &t (k) <u}
v(a,o) = lim

utd E{L(u)}/q(u) + P{£(1) >u}

< Q.

Assumption 3. Assumption 3 holds with lim, o v(a,0)=0 for each o>0.

Assumptions 3 and 3’ are often verified via Propositions 3-5 in Section 8.
Theorem 3. Assume that Assumption 3 holds with G € D and that (1.5) and
(1.6) hold. If in addition either (1.3) or (1.4) holds, then we have

S 1
lim

uta E{L(u)}/q(u) + P{£(1) > u} P{Supte[o,l] £(t) >u} < 0.

13



Proof. Since w is continuous, and since [recall (1.2)] u—20w + ocw(u—20w) < u <
u+ow for u € [uz,q), for some uz < 4, we can to each sequence u, 14 find a

sequence u,, 14 such that u,=u] +ow(u)) for n large. Consequently

. 1
o B E(w/q) + Ple)su) | UPeeo 0 >u)
_ 1

B 211‘2 E{L(utow)/q(u+ow)} + P{&(1)>utow}

P{SUPte[o,1] E(t)>utow}.

Further note that (1.1)-(1.2) and (2.1) yield E{L(u+ow)}/E{L(u)} — 1—-F(o0),
while lim,14 ¢(u+ow)/q < Cy(1 +oW)Y*5, where C, =9, if (1.3) holds, and
C,=p(o) if (1.4) holds. Hence we have [using (1.1) again]

1
42 IS/ + P sy - CPeontt)>u)
C,(1+oW)HE 1

a 1-F(o) ulgtl E{L(u)/q} + P{£(1) >u} P{SuPte[0,1] E(t)>u+ow}.

In view of Assumption 3’ we now readily conclude that it is sufficient to prove

E%E{L( el {maxlSkSKg(tg(k))>u} <o for ac(0,dl.

To that end we note that (1.6) combines with (2.1) and (2.3) to give

(43)  qP{maxicuer (LK) >u} <q ) PLE(ER)>u)
k=1

< /tfﬂk—n g P{e(t) > u}
t

<
= e ta(k=1) — 63 (k)
N /tfi(k—” p() PLEW) >u}
= Jiuy  ap(ty(k—1)""u)
<y [F_pietu)
o tem) a3Pate(k—1)r"
2 1
< — tTPEP{E(t) >ut dt
< | PO
2E{L } ) ds 0
PoPaa 1+W3)1+1/“ P

5. Sharp (results on) extremes when 5=o0c

14



Theorem 4. Assume that Assumption 3 holds with G €D and that (1.5) and (1.6)
hold. Then the following implications hold

(51)  Py=00 = %W P{sup,co1&(t)>u} =1,
(5.2) Ps=00 = lim—7r-— ! P{Supte[o,l]ﬁ(t)>u} =1.

Proof of (5.1). Clearly we have

(5.3) P{ sup &(t) >u+aw} = P{ sup &(t) >utow, 11511kaSXK£(tg(k)) <u, &(1) >u}

te[0,1] te[0,1]

+P{ sup &(t)>u+ow, max &(t5(k >u}.
s € max €(E2(K)

Taking {u,}>2, such that w, 14 and wu,q(u,)/w(u,) =00, (2.1) and (4.3) imply

1 W )
G4 mp{tzﬁl’i]ﬁ(t)>un+ow(un), 151@21}?227%)5(% (k) > n}
2w(up) 1 - . }

= Kunq(un) E{L(un)/q(us)} P{ISkgK(a,un)g(t“ (k) > n}

2w(u,) 2 © (1—F(s))ds
T Kupg(un) ‘Bomza/o (14+Ws)1+1/m=p
—0 as n—oo.

Further (2.1) combines with Assumption 3 to show that
P{sup;c[o,1]£(t) > un+0w(uy), MaXo<r<k (au,) EEum (k) <un}
P{¢(1)>un}

N (‘Bo’w(un) n 1) P{sup;c(o.11€(t) > un+ow(un), maXo<k<k (a,u,) EEom (k) <un}
K Unq(tn) E{L(un)/q(un)} + P{&(1) > un}
— (0+1) f(a) as n—oo,

(5.5)

where f(a)—0 as al0. Combining (5.3)-(5.5) and sending a0 we conclude that

1

(5.6) nlg]go m P{SUPte[o,u £(t) >un+0w(un)} <1.

But as in the proof of Theorem 3, a change of variable in the limit shows that
1 1
hmiP sup £(t)>u = lim P4 sup &(F) >utow
P w L0 = I s st L 0 o)

uTd uTu

15



1 ) 1
= ) I B s LR 0> o)

uti
In view of (5.6), (5.1) now follows from sending ¢ 0. O

Proof of (5.2). Now (5.4) and (5.5) hold for any sequence wu, 14, and [in view of
(5.3)] so does (5.6). By a change of variable in the limit we thus get

— 1
B%WP{SUPte[O,1]5(t)>U}
— 1
- 1-F(0) Ll%% P{c(1)>u} P{tzl[lol,)l]f(t)>u+0'w} < m —1 as 0l0. O

6. Sharp extremes when ‘35 <oo.

Theorem 5. Assume that Assumptions 1 and 2 hold with G € D and that (1.3)
and (1.4) hold. Then we have

. 1 -
BTIE E{L(u)}/q(u) P{SuPte[O,l] E(t)>u} > limgyo (1-A()) /.

Proof. In view of (4.1) an application of Theorem 1 shows that

. 1
o L)) g Pt 6

utd

)>u} > (1—A(z7))/z for each z>0. O

Theorem 6. Assume that Assumptions 1 and 3 hold with G € D and Ps < o0,
and that (1.3)-(1.7) hold. Then we have

— 1 -
W L)} /a(0) P{sup;epo,&(t)>u} <lim o (1-A(z))/z.

Lemma 3. Assume that Assumption 1 holds with G€D, A(0)=1 and Ps < oco.
If in addition (1.4)-(1.7) hold, then we have

lim lim 1
o0 uta BE{L(u)}/q(u)

P{L(u—aw)/q(u—ow) <z, maxi<p<x(ta(k)) >u} =0

for 0€(0,1) and for a€(0,a] sufficiently small.

Proof of Lemma 3. Using (1.6) and (1.7) we obtain

q(u) < 2PBsw(u)/u < 4P3Psw(v) /v < 4P3Ps  for ug <v<u<d, for some uy< .

16



Choosing a ¢>0 such that (1—z)® > 1—cz for z€0, 3], we therefore get
(t4(k+1)/t4(k))"u > (1—aq(te(k) " u))"u > u—cadPsPsw > u—ow = i
for u>wuy and for a€(0,a] sufficiently small. Since self-similarity yields

(L(w), €@a®)) =2 (@) Lt/tak), @/tmk) ), E®)/% W),

we now conclude, adding things up, and using (1.6) as in (4.3),

{ (@) /a(@) <z, maxaxer E(E () > u )

||MN

P{L/a( <o, €020 >}

L&t gPLL(t/ta(k), ¢/t (k)Ra) fq(i) < (t/E(R))w, £(2) > (£/£ () u)

_kz::/(kﬂ) tu(k)—te(k+1) dt
K0 PLL(t ) /g(@) <, £(1)> @)

- Z/t R O YT

2 ! _ =
: Paa\/1-A(x) /(1_A(z))1/(2p~><P{£(t)>u} - Pl 0)/a(@) >, (¢ >u}>

o [(1-A(@)H/ e
+ m/ 7P P{&(t)>a}tdt  for u sufficiently large.
20Jo

Here (2.1), (3.1), Theorem 1, and the fact that A(z)—1, show that

B S i L, PO ahie = [ P > 60> ) i

1P [T PAE@) /e(@) >y}  F(—o)) 1= A(z
- gl ) ] < 0-F o) VImaE) 0

as /0. Moreover (1.5), (2.1) and (2.3) easily give

uti

(1= A(z))'/ (2er)
lim PP >uldt—0 as x]0. O
i i /. ew>u) !

Proof of Theorem 6. We can without loss assume that A(0)=1 (since the statement

of the theorem is void otherwise). Writing 4=u—ow and §=q(@) we then have

(6.1) P{SuPte[O,l] E(t)>utow}

17



L {{ s >} on/as o ma e >} iy

IN
8~

[E{L )/at — /P{L /Q>y}dy]

AN
SHE

+P{(1) >a} 5/0 P{L(4)/G<y|&(1)>u}dy
+ P{L(a)/déx, maxi<k<k &(tg (K)) >U}

+ P{SUPte[o,u £(t) >u+ow, maxo<k<i £t (k)) §u}.
Since Ps < oo, Lemma 3 and Assumption 3 show that the last two terms are

asymptotically neglible. Further Lemma 2 and the fact that A(0)=1 imply

T [ P{L(@)/a<y| 1) >} dy
ulu 0

1 [ dn(1/q)
< lim lim — ; P{/O I w5y (E(1—qt)) dtgy‘£(1)>u} dy

<el[ oy (€O e}

—0 as zl0.

Adding things up and invoking (1.1), (1.3) and Theorem 1, we now conclude

1
BT " e 0> bow)

B{L()/3} 1-A(2) Ple)>a) o f [
<tmlm S e B Ry <P T ass]

< B(l-F(=0)) ), 1-A@)  (A=F(=0)Psr
(l—oW)l/r T PBo
The argument used to establish (4.2) therefore carries over to show that
1-F(— 1 Un 1-A
2} < B0=Fo) Colleath) e | 1-Ae)
(1—oW)V/s(1-F(0)) 20 T

1
I G iy a LS, 60>

Corollary 1. Assume that Assumptions 1-3 hold with G €D and Ps < oo, and
that (1.3)—(1.7) hold. Then the limits

whi B )}/q(u) P{supicqo,y§(t) >u} = limayo (1-A(@))/z = —4'(0)

exist with common value —A’'(0) € (0, 00).

Proof. The facts that the limits exist and are equal follows from Theorems 5 and

6. Further Theorems 2 and 3 show that the limit is strictly positive and finite. [J
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7. Sharp extremes for P-smooth processes with G € D(I)UD(III). One often

encounters processes £(t) which are asymptotically smooth in the sense that

(7.1)
lin}P{‘E(l_qt)_u _tWzu  gtE) 5(1)>u}: 0 for e>0 and tef0,Q),
utd w w w

for some variable &' [usually a derivative of £(t) at t=1]. Also assuming that

(7.2) EE{ (M>Q

uti w (U)

5(1)>u} < 00 for some p>1,
and that Ge€D(I)UD(III) possesses a density g for which
(7.3) limy1q w(u) g(u+zw(w))/(1-G(u)) =e™* for >0,

we shall prove a version of Corollary 1 where Assumption 1 is not needed.

Every infinitely divisible process £(¢) can be written £(t) =z [ fi(z (z)
where f;(-) is a deterministic function and M an 1ndependent1y scattered random
measured. When f(y(z) is smooth this suggests that ¢’ = = [ fi(z
and so it can be quite easy to prove (7.1) (cf. Sections 11-12 and 14).

Also the verification of (7.2) can be suprisingly easy: See the proof of Theorem
10 for a swift strategy for verifying (7.2) that works for ‘light-tailed’ processes.

It is well-known that (7.3) holds if e.g., ¢ is ultimately decreasing [e.g., Resnick
(1987, Propositions 1.16 and 1.17)]. In view of (1.1) and (1.2), it is also obvious
that if (7.3) holds for =0, then (7.3) holds for all z€R.

Theorem 7. Assume that Assumptions 2 and 3 hold with G € D(I)UD(III) and
Ps <oo. If in addition (1.3)-(1.7) and (7.1)-(7.3) hold, then we have

B{E) [€0)>u} _ — o) B{E)* | £()>u)
w(u) = utd w(u)

(74) 0 < lim 2

uTd

and moreover

(7.5) P{supte[o,l]ﬁ(t)>u} ~ (nu)_lE{(f’)+‘§(1)>u} P{&{(1)>u}  as uti.

Proof. Given an s€R, (1.1) and (7.3) imply that w g(u+(s+z)w)/(1-G (u+sw)) —
e~ * for z€[0,00). Here the functions on both sides are densities on [0,00), and

the convergence theorem of Scheffé (1947) thus shows that

wg (u+(s+2)w) /°° _,
o~ h 1 .
(7.6) / 1= Gutsw) dz ; hy(z)e ?dz when Jﬁiigﬁ'h u(2)] <00
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Writing 4=u+sw, o=w(@) and §=q(@), (2.2), (3.1), and (7.6) yield that
1 “P{L(w)/q>y}
I A

P{{(s) >u}
} E{L(u)} ds

= l/ P{L(s;u)/q<z | &(s)

T.Jo

N L £(1—Gt)—i q
_/0 p{/ 1(0,00)<7w )d_su~

oo (dg/ PN (1/9) e gt
<[/ PO L PR
0 0

w w

oo dq/q E)—a  q&  £(—gt)—a gex
+/O P{/O I(a:2,oo)< — - )dt>—

w w w q

o0 (da/N(1/q) R Y 2
j/ P{/ I(ﬂ@)(f(l u qt§>dt < a0+e)’w
0 0 w w q

+/ e *ds

{s>0:55 > (14€)}U{s>0: w>(1+e)w} T

+/°°P{ﬂ <&(1) < u+z’w} e~ds
P{&(1)>a} x

WAL fED-a g €0-g)-i_ wa?
+/0 qsx/ { w 1l = w

where d,e>0 are constants. Here the second integral on the right hand side tends
to zero (as utd) by (1.2), while the third integral tends to (1—e~%")/z by (1.1).
Using (1.4) and (7.1) we further obtain

- e %ds
f(l)>u}dt pa

g

2

i/dq/‘ip{é(l)—ﬂ ate 5(1—gt)—a> wz

qex Jo w w fl

N i —0
> {Sd/(m),

and so the fourth integral tends to zero. Upon conditioning on the value of £(1),

the first integral on the right hand side of (7.7) finally becomes

SSTeS] (da/ DN (1/d) Syl 1 2
A e O
0 Jz 0 w q

(1)—u

= s-i—y:ﬁ}

w g(i+yzw) dy (1+€) w g(4) ds
1-G(a) G(u)
:/m/oop{q(l-:j)2§/ S ya ‘ g(li}—u _ s+ym} (1+¢) wiq(zi—(zng) dsdy
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:/OOP{iq(l-'_E)%I >y—x

w

6(11)1)—7! >yx} (1+¢) (1;f?é%é$yww)) dy

< (1+€)/:COOP{(I(1+7€)2£I> y—x

w =

1) uf dy

provided that x,e >0 are sufficiently small compared with d>0 and (). Evaluating
the integral on the right hand side and inserting in (7.7) we therefore conclude

2

1 [®P{LW/a>y) ] (+efaB{E) 1) >u) | 1—c
(7.8) E[“L B{L(u)/q) dy}f w T

In a similar (but less complicated) manner we get [using (1.1) and (7.1)]

(7.9) i/OEP{L(u)/qu | £(1) >} dy
D fe(1—gt)—u
SP{/O I(O,oo)(T>dtS$ 5(1)>u}
< P{/OdA(l/q)I(mz’oo)G(lZ)—u 3 q:‘f') dt < (1+€)z 5(1)>u}
) P{/Od/\(l/Q)I(wzm)(g(lL—u B q:f/ - 5(1—Zt)—u)dt - §(1)>u}
P{u<¢(1) <u+yzw}
P{¢(1)>u}
+ gix/dP{g(ll)U_u i qz;)é./ o g(l_zjt)_uz $2 £(1)>u} dt
< P{q(l_l_TE):CEI > Vx—1? 5(1)>u}
N G(u++vzw)—G(u)
1-G(u)
< (+e)z ¢B{(&)T[£(1)>u}
— JVx—x? w
+ (1—e~V?)

provided that x,e>0 are sufficiently small compared with d>0 and (.
On the other hand (3.3) and (7.2) combine with the arguments above to yield

1 CP{L(u)/q>y}
(7.10) 5[1‘/m B{L(u)/q} »
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oo (da/su@)A(1/Q) —at)— _ —s
t/0 P{/O a/5ud qI(O,OO)G(l fjt) u)dtsq(lsu;)m 5(1)>1]}e xds
! 5/4 P{{(s)>u}
[P gl tetematna> co [ er>of S a
e dq/suq - -8
=[P e (U < e e
_/ e *ds
{s>0:w<(1—e)w} L
// P{¢(s— qt)>u‘§ }dtP{g }
dA(s/q) E{L(u)}
da/suq 1 q(1-2
L) 2 o
(1—8)@g(ﬁ)d3
z(1-G(u))
00 dq/suq T N Iy ~y el
_/ P{/q "I(ﬁ,oo)(E(l gt)—u _ £(1) u+qt£)dt2q69’c~ 5(1)>a}
0 0 w w w Suq
e %ds
X
T

—e/z

A e

wg(u+yrw)dy (1—e)wg(a)ds

1-G() 1-G(u)
da/su £(1— qt) u {)-u gt w z? . e~ %ds
/qu/ { 5 + 7 > Z 5(1)>u}dt -
—e/x
:/()O"P{q(l—je)ﬁ’ > yio 5(11)0—u>y$} (1—¢) (11—_Gc(;z;r)y:vw))dy
—¢e/x

- (1—5)/000P{% -z >y ‘ 5(1)>U} dy

Gu+z~3zw) —G(u)

1-G(u)
am{ (O o) [
22
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—e/z

= (1-¢) (1-2¢) AA(MISOEID S

—z V31— ")

(1 oo}

—e/x for z sufficiently small.

Since > is transitive, (7.10) shows that

NS B €0 >u
i sy P 0> )

1 - L [T PiL(u)/a>y}
>£‘$2<E{L< ay Pl > = [P EEa )

+11m<x [ Rz, qE{<s'>+|f(1>>u}>

uta E{L(u)/e} " w
ol (Y ) 2
—0 as zl0.
Hence we conclude that
(7.11) ﬁl(E{L( 77 }P{supte[o’l] £(t)>u} — qE{(E’)+U|J§(1)>u}) > 0.

On the other, defining I':Rt —[0,1] by

[ PLW/aw) > )
Py =t | /ey

we obviously have

1-I(z) P{L(u)/q>y} 1 " .
x ‘}mx/@ B{Lw/gd 7= E%BE{L( )/q}P{ Picio,1) §(8) > u}.

Here the right hand side is finite by Theorem 3. In particular lim, o I'(z)=1, and

replacing A with I' in the proof of Lemma 3 we therefore easily deduce

. 1
(7.12) E&E{EW {L(u)/q( ) <z, maxi<p<rx&(ty (K ))>u}:0
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[without using Theorem 1 or Assumption 1], where @ =u—ow(u) and o > 0.

Writing u=u+ow for o0>0 we further have

_ N @B >
(7.13) LTU(E{L( D/a@] ¢ Peeon §0>T} w(@) )
1 _ 1 " P{L(a)/q(a) >y}

< T ey P (e 60> - 4 [ O dy)

+hm($/ P{L(w)/q(@) >y},  a(@) B{( )~|£(1)>u}>

e E{L(a)/q(a)} (@)
(@ B{E) 1) >} @) BE)T|EW) >}
*5%%< (@) (@) )

Here (7.9) and (7.12) plus (1.6), (2.1), (6.1) and Assumption 3 give that

| . 1 PLL)/a() > )
sz agey P> - [ s )

<oy [ P@/i<y|€)>a)dy
T iz TS 6 > o
T BT T, SO i S <
B EEER UL L UR Y
o, T e L)) S, s €020 >
b TP {ti%pl £0) >, s €(E3(K) <o )

—0 as /0 and al0 (in that order),

where we also used the obvious fact that (7.2) implies

19 I {Q(u) € £<1)>“}S%[E{(Q(ﬁ(f)l)+)g

uld w (’U,)

£(1) >u}] Ve < 0.

Moreover (7.8) yields

(1 T PL@fa@ >y}, a@ B>} _ e
fim (x/ B{L@)/q@)} w(@) )S
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as x)0. Finally (7.2) and Holder’s inequality combine with (2.1) to show that

m(a(ﬂ) E{({)T[EM)>u}  q(a) B{(E)*£01) >U})
uTd

w(a) w(a)

S%E{%I{u«mw} ¢ )>ﬁ}
il (15 o) )

—0 as ol0.
Inserting all these facts in (7.13) we obtain

1
lim

P su t)>uy; —
7z ey P o €0>)
which in turn [by (1.2) and (1.3)] implies that

w(w)/w(w) _
hm(E{L( /@) P{supte[o,l]ﬁ(t)>u} _

VAN

q(ﬁ)E{(ﬁ’)+|£(1)>ﬂ}> 0.

w()

¢() E{<s'>+|£(1>>ﬂ}> <0,

utl w(ﬂ)
But here (1.1) and (2.1) combine with Theorem 3 to show that
1
E{L(()gq/uq(( 6 P{supiepo, £(1) >} - E{L(T)/q(q) P{S“Pte[o né@t)>u}

_ (BZ@}w(@ 1 N ]
‘(E{L(ﬂ)}w@ 1) E{L(w)/q()] o Preton 6() >

P((1)>T) @ I .
- (W - ) B{L() /q(@)] © PWPeebé(t) >}

— 0 as utd and ol0 (in that order).

Consequently we have

(7.15) m(m P {supeeo €(0)> ) — LELE1EQ) >u}> <o

w

Combining (7.11) with (7.15), observing that by (7.15) and Theorem 2,

hTmE{%L 5(1)>U}

1 ¢ B{(¢)"1€0) >u}
> Ty P 0> - SRR
g © e s>

> 0,

and recalling (7.14), we finally conclude that (7.4) and (7.5) holds. O
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8. Sufficient criteria for tightness. It is an old idea to derive tightness for a
process from requirements on it’s increments. Generally speaking, most derivations
of this type have many steps in common. Thus they should not be regarded as

inaccessible for readers despite their often both long and technical proofs.

Proposition 3. Assume that (1.5)-(1.7) hold with G€D and &(t) P-continuous.

(1) If there exist Ao, c, e, C >0, us<t and d>1 such that

(8.1) P{g(l) >u+(A+v)w(u), £E(1—q(u)t) Su—l—l/w(u)} < CtAIATCP{E(1) >u}
for 0 <t <A< Xy, v>0 and u€lus, ), then Assumption 3 holds and Ps < co.
(i) If there exist Ao, c, e, C >0, us<@ and d>1 such that

(8.2) P{g(1—q(u)t)>u+(A+y)w(u), 5(1)§u+yw(u)} < Ot A~ P{E(1) > u)

for 0<tc <A< Ao, v>0 and u€lus, ), then Assumption 3 holds.

Proposition 5 below describes one method potentially useful to verify (8.1).

Other such methods include estimates related to Tjebysjev’s inequality like e.g.,

P{¢{(1)>u+A+v)w, E(1—qt) <utrvw}
P{{(1) >u}

If £(t) has a (super-exponetially) ‘light-tailed’ distribution the estimate

< ()2 E{[6(1)—£(1—gD)]? |€(1) > u).

P{¢(1)>ut (A +v)w, E(1—qt) <utvw} < P{(1)+A[E(1)—£(1—qt)] > u+ Aw}

may also work provided that A is suitably choosen.
When Assumption 1 holds (8.1) is interpreted as P{((t)<—-A} < Ctd A ~¢.
Although often useful, (8.1) is a stronger condition than (8.2). In particular (8.1)
cannot hold when PBs =00 while (8.2) still may work well (cf. Section 13).

Proof of Proposition 3.(i). Take a € (0,a] and choose ji = j,7 € N such that
t (1) >t (uyr) (K) > t%5_ (jp+1) for neN. Further let T, = inf{t€[0,1]:
t*u<a} and Cy = UpeCun where Cy, = {t%_.(1),t%_.(2),...}. Since
t n(k)—tty_n(k+1) < a27"sup, 4 q(v), the fact that C, is dense in [T}, 1] will
follow if we can prove that limy_ o t%, ,(k)=T, whenever K(a2™",u)=o00. But

if the limit were greater that T,, then we would have

1 = limg o0 t% n (k+1)/thy—n(k) = 1 — limg_yoo a2 "q(tly—n (k) "u).

26



In view of (1.6) this implies limg_,o t%,_, (k) "u=14, so that t¥,_, (k) —T,!
Taking A, = (1—-279) Y 7_,27¢% where g€ (0,cA((d—1)/e)), (1.7) yields

(8:3) o (B) "0 (A=At )w > (23) o (1-270) 272" w(ty ey (K) "0)

for u sufficiently large. Further (1.6) shows that
1—t*

(8.4) 02— n(j;:—i_l)/tZQ—(n-}-l)(k)
Q(tg2 (n+1)(k)_ﬁu)

_ oy _ -1

a2”"q(th, . (J1) " "u) < 22" (t22 i (F) n)p " < B Lg2tn (e 1)T
p— i - 2 )

4ty iy (B)7Fu) = 3P \ 1]

a2~ ”(JI?)_K
Since C, separates {{(t)}ieir,,1] (being dense in [T, 1]), (4.3) and (8.1) now give

(8.5) P{SuPte[o,u E(t) >u+ow, maxi<k<i £(th (k) < u}

o0
< P{ U {SUPtecu,n+1 () >utow, SUPtec, ., &(t) Su-l—o)\n_lw}}
n=0

o0 K(a2_("+1) ,u)

Z P{f(tZZ—(nH) (k)) >u+oAw, g(tZ:z—n (]Z‘l_l)) < U‘l‘o')\n—lw}
k=1

Mo 10

U+, w ’ £< o n(j}:%—l)) < U+, W }

t (i (K)" iy (B) ) Tty iy (R)F

+1),u) C (m;1a21_n+(ﬁp_1)+)d
n=0 k=1 ((2Ps) o (1-27¢)27em)

Z 1421—n+(kp— 1)+) QE{L(’U,)} 00 (1—F(8))d$
a 2‘1‘3) lo(1—-2-¢)2—en)® ¢ PoPaa2~(+1) Jo  (14+Ws)lH1/m—p’

€ P{f(l) > t22—<n+1> (k)_nu}

Hence the following strong version of Assumption 3 holds;

(8.6) ngLl E{L(u )/q(u)} P{tzl[lol,)l]g(t) >u+ow(u), H}ca%xKg(tU(k)) <u} —0

as al 0. Moreover an inspection of the proof of Theorem 3 reveals that the fact

that the left-hand side of (8.6) is finite for a small implies

P €0>a} @ e

uti E{L(u)/q(u)} wta  KE{L(u)}

Proof of Proposition 3.(ii). Now (8.3) and (8.4) change to

£ 0 GE) 0= At )w > (2PBa) o (1-279)270 w(t%, . () "u), and
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1_#;2 <n+1>(k)/tg2*n(j1?) 1-— tZQ, n( ”+1)/t32—n(j£‘)
q(t%y_ (j7) " u) - q(t¥,_. (j7)~"u)

Consequently (8.5) modifies to

= a27".

(8.7) P{supte[o’l] £(t) > u+ow, maxocper E(E(K)) gu}

< Z Z | P{g(t22_(n+1)(k)) >utoAw, £(t%-n(ji)) < u—l—a)\n_lw}

£, ( -
i) ke oo
ta2 n(]k) ta2 n(]k) ta2 ,,L(Jk)ll'C

K (a2~ (D 4)

C (a27m)4
n=0 k=1 ((2m3)_1‘7(1_2_9)2_9n)

But here (1.3) and (1.6) show that

= PLE(1) > 12 (G7) ).

tag—(mtn (B—€) = 5y (ni1) (K)

:Zta2 iy (k—i) a2~ F) q(thg- s (E—1) " u)

=1

n u b a n+1 k— _] —Fu
= a2~ (" a2-n Uk +1)q (ta2 nUE+1)7 Z ( 2 +)( ) )

> a2~ Ly (i) 39 200 g (- () ) £ (2%B1)

for a € (0,a] and u large. Hence there is an £ € Z* such that t%,_,(j;) <
tt_(niy (k—£) for k>£+1, and inserting in (8.7) and using (4.3) we thus conclude

P{supte[o 1] £(t) >u+ow, maxo<p<k £(to (K)) gu}

LC (a27 )¢
<Z T e P>

> C (a27m)? 2E{L(u)} * (1—=F(s))ds
I -

+ _ |
X @ tot1 o) i @), (W

Proposition 4. (i) If (1.5)-(1.7) hold with Ge€D, and if

(8.8) v (a,0) = im P{SuPte[l 1+aq(u)] () > utow(u), £(1)<u} e

uti P{f( )>’U,}
for some o>0 and a€(0,a], then Assumption & holds and Ps <oo. If in addition

vi(a,0)/a—0 as al0 for each o>0, then Assumption 3 holds.
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(ii) If (1.5)-(1.7) hold with G€D, and if

—Tm P{Supte[l—aq(u),l] é.(t) >U+0”LU(U), g(l) SU}
(8.9) va(a; o) = lim P{¢(1)>u}

for some o>0 and a€(0,a|, then Assumption & holds. If in addition vy(a,0)/a

< o0

—0 as al0 for each o>0, then Assumption 3 holds.

Proof of (i). Since (1—agq)™'<1+2aq for ag<1, (1.6) shows that

(1—aq(tt(k —1)™"w) ™" < 2aq(t2(k — 1) u) < 2a (392) 207D g (82 (k) ")
for a€(0,a] and wu sufficiently large. Using (1.7) and (8.8) we thus get

(810)  P{subyerey ey ey sy £() > utow, (1K) <u}

P{ sup §(t)>uu+m:,§(1)§ uu K}
tell, (1—aq(t2 (k—1)—*u))~1] tu(k)

<P

{ (> o SR, )
tG[l,1+‘132_1a22+('w7*1)+q(tg(k;)*nu)] ta( ) ‘133

< 2u1(a,0) P{&(1) >4 (k) "u} for u sufficiently large.
In a by now familiar manner (4.3) therefore yields that

P{SuPte[o,u £(t) >utow, maxi<p<k E(ty (k) < u}
4 vi(a,0) E{L(u } )) ds
4 FoFz 0 e
Hence the left-hand side of (8.6) is finite so that PBs < oo (cf. the proof of Proposition
3). Further Assumption 3’ holds, and Assumption 3 holds if v4(a,0)/a—0. O

Proof of (ii). Using (8.9) instead of (8.8), (8.10) changes to
P{SuPte[tg(k),tg(k—n] §(t)>utow, E(tg(k—1)) SU}

u ow(t(k—1)""u) u }
=P sup &(t) > + = <
{te[l—aq(t;‘(k—l)—“u) 1] Q tu(k—1)" 2B3 tu(k—1)~

< 2us(a,0) P{&(1) >t (k—1)""u} for u sufficiently large.

Thus we readily conclude [again invoking (4.3)]

P{SUPte[0,1] £(t) >utow, maxo<p<i &ty (k)) Su}

2E{L(u)} [ (1-F(s))ds

O
qPoPaa Jo (1+Ws)HH1/r=p

< 2us(a,o) |P{&(1)>u} +
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For some processes there exist constants C,c>0 and ug < such that

v
(8.11) P{e(t)>u, £(s) <o} < c/ P{e(c(t—5))>u—z} dFy(s)()

— 00
for 0<s<t and wg<v<wu<u. Obviously (8.11) holds when £(¢) has stationary
independent increments. But (8.11) is a much weaker requirement than that.
Proposition 5. Assume that (1.5)-(1.7) hold, and that (8.11) holds with £(t) P-
continuous. If in addition G €D(I) with

(8.12) L; =limy oo In(1-G(u))/u<0 and Ly=lm__ _ q(u) " w(u) >0,

or if GeD(II) with yk>1, then Assumption 3 holds.

Proof. First assume that G €D(I). Then de Haan’s Theorem (e.g., Resnick, 1987,
Proposition 1.4) states that there exist a constant uy; € R, and functions ¢, :

[uz,00)—(0,00) with ¢ self-neglecting, such that

. i Y dx
(8.13) uli)rgo@(u) exists and 1—-G(y) = P(y) exp{—/ m} for y>wur.

Since ¢(u)/Pp(u+xp(u)) — 1 locally uniformly it follows that

1-Guttp(u))  Pluttp(u)) exp{_/u+t¢(u) dx } et s uti

1-G(u) — O(u) $(z)

Consequently w(u)~¢(u) [e.g., Resnick (1987, p. 26)]. Since (1.7) yields w/w(u—
yw) < 2Psu/(u—yw) < 4P;3 for 0<y<u/(2w) and u large, we further obtain

1-G(u—yw) v dx /“ 2dx 8
— = = K — s < <2 3y
—Gu —26XP{L_yw (:v)}—2e"p{ (@ | =2

for 0<y<u/(2w) and u large. Hence (8.11)-(8.12) show that

(8.14) P{&()>u+(A+v)w, £(1—qt) <utvw}
[u/(2w)]-1
<C Z P{&(cqt) > A +Ow} P{u+(v—~£—1)w < {(1—qt) < u+(v—L)w}
=0
+ CP{&(cqt) > (A +[u/(2w)])w}

[u/(2w)]-1
<C Z (1—G((cqt)_“()\+€)w)) (1—G(u+(y—£—1)w))

£=0
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+ C (1-G(3(cqt) " u))

<2C(1-G(u Zexp{ (LiA1)(LaAl) (ct)""(A+£)} exp{8Ps({+1-v)}

C(I—G(u))é(%(cqt)_"u) scat) "v g
+ () exp{—/u m} for u large.

Since ¢(zu) < 2w(zu) < 4Pszxw for £>1 and wu large, we here have

3(cat) "u g, 3(ca)™ o de
8.15) expq — —— ¢ < expq — = (3(cqt)r )/ Whsw),
619 o[ G el [ ) = O
Inserting in (8.14) and recalling that ®(u) converges it follows that (8.1) holds.

Now assume that GeD(II). Given an €€ (0,1) Potter’s Theorem (e.g., Resnick,
1987, Proposition 0.8) then claims that there is a ug= ug(G,e) > 0 such that

z77A4)/(14e) < (1-G(ux))/(1-G(u)) < 27709/(1—¢) for z>1 and u>us.
Invoking (8.11) we therefore deduce (8.1) through the estimates

P{¢(1)>u(l+A+v), E(1—gt) <u(l+v)}

< C (1-G((egt) ™M) < C(1—¢)7 ((cgt) ™" X)) (1-G(u)). O

9. Lamperti’s associated stationary process. In essence, Assumptions 1-3

consist of a set of asymptotic distributional requirements on ‘events’ of the type
(€(1+qt)>a|(1)>u) where @ =u+dw(u) and 6,t€R are constants.

Expressed in terms of the stationary process X (t)=e "£(e?), this event becomes

(1+qt)* X (In(1+qt)) > @ | X (0) >u) ~ (X (qt) >0 | X (0)>u) where @ = (1—rqt)d

and the right hand side is a Taylor expansion. Thus it is not surprising that
Assumptions 1-3 can be expressed in terms of similar assumptions on X(t) or
Y (t)=X(—t), which is done in Propositions 6-9. These assumptions in turn essen-
tially coincide with those used by Albin (1990) to study stationary extremes.
Since stationary processes often allow neat and ‘balanced’ calculations, it can be
rewarding to first analyze X (¢) and then transfer results to {(¢) via Propositions
6-9. Further these propositions yield ‘gratis’ results for self-similar processes obtain-

able by invoking estimates in the literature for the associated stationary process.
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Proposition 6. If for each K €[1,00) we have
P{X(—q(u)t)> e"“Q(u)tu|X )>u} < f1(t) + f2(u)  for 0< q(u)t < K—In(q(u)),

for some f1 €LY (RY) and fo(u) = o(q(u)/In(q(v))), then Assumption 2 holds.

Proof. Since Assumption 2 holds when @Q < oo, we can assume () = oo so that

q(u) —0. Using stationarity and that —In(l—z)>z for z€]0,1), we then obtain

1/q
(9.1) /dP{f(l—qt)>u|£(1)>u}dt

:/ P{X(—qﬂ>e’“q£u|X(0)>u} e df
(—1In(1—dq))/q
(K-1In(q))/q K—1 [e’s) .
< () + K o) / et df
d q (K—-In(q))/q

—>/ fAt)dt+0+e K as uta. O
d

Proposition 7. Assume that there are f3€L'(R") and fi(u)=o0(q(uv)) such that
(9.2) P{X(q(u)t)>u|X(0)>u} < f3(t)+ fa(u) for 0<q(u)t<h,

for some h>0. If in addition (1.7) holds with lim, ,. w(u)In(g(uw))/u=0 and
GeD(I), then Assumption 2 holds.

Proof. Inspecting (9.1), and using de Haan’s result (8.13) as in (8.15), we obtain

1/q
/d P{¢(1—qt) >u‘§(1)>u} dt

h/q 01 _ G( Kqt )
g/ P{X(—qt)>e“qtu‘X(0)>u}e_qtdt+/ AL
—In(1-dq)/q nig 1-G(u)

h/q f (u) 9 [ ety dr
< tdt+4—+—/ ex {—/ }dt
o POEETTE U s
/ fa(tyde 4 140 / (e=rtyu/(WFaw) gy

—)/ f3(t)dt+0+0 as utd
d

[where the second zero follows readily using that w/u—0 and w In(q)/u—0.] O
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Proposition 8. Assume that for each choice of >0 we have

9.3 lim lim
(93)  lmlim T 5rx

P sup X(t)>utow(u), X(0)<upg=0, or
0)>u} {tE[O,aq(u)] () ( ) ( ) }

(9.4) limlim

al0 utd aP{X Sup X(t)>u—}—aw(u)7 X(GQ(U))SU} =0.

P
0)>u} {te[o,aqw)]

| - | -

If in addition (1.5)-(1.7) hold with GED and P5<oo, then Assumption 3 holds.
By Albin (1992a, Proposition 2), the requirement (9.3) holds if

P{X(qt)>u+w, X(0)<u}

< d —e f C< < ~
P{X(0)>u} <Ct*\ or 0<t°< A<\ and u€|ug,u),

for some constants A1, ¢, e, C > 0, ug<@ and d>1, while (9.4) holds if

P{X(0)>u+ w, X(qgt)<u}
P{X(0)>u}

<CtiA™® for 0<t°< A<\ and u € [ug, 0).

Proof of Proposition 8. Since In(14+aq) < ag and (1+aq) *(utow) > u+iow
for u sufficiently large and a >0 sufficiently small, (9.3) implies that

— 1
r(a,0) < hﬂ}w P{Supte[o,ln(l—i—aq)] X (t)>u+zow, X(O)SU} = o(a).

utia 1—
Similarly (9.4) yields that vy(a,0)=0(a). O
Proposition 9. Assume that (1.3) and (1.4) hold with GED, Q=00 and Ps=
Ps < oo, and that (9.3) or (9.4) holds for each o>0.

(i) If for each y € J there is an (RU{—o00,00})-valued process {ny(t)}t>o0 such
that

: ~ § X (a(w)ti) —u X(0)—u
I (0 e PR S (N,
for ti,...,t, >0 and continuity points z1,...,zn € J for P{n,(t1)>"-},...,
P{n,(t,)>-}, then Assumption 1 holds.
(ii) If there is an (RU{—o00,00})-valued process {n(t)}t+>o such that
(9.6) 1imP{(n]{W }‘Y(O } {ﬂ{n > }

) A w(u) ’
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for ti,...,t, >0 and continuity points x1,...,x, € J for P{n(t;) >-},...,
P{n(t,)>-}, then Assumption 1 holds with ((t)=£n(t)—Pskt.

Proof of (i). Given z,...,z,€J and writing xo=ty=0, we have

(9.7) P{ﬁ{%m} ‘5(1)>u}

=1

" P{ﬁ{X(ln(l_qti))_(l_qti)_nu>(1—qti)‘%}}'

1-G(u) b w

Here (1.1) easily combine with the fact that g(u)—0 to show that

A= {w_l(X(ln(l—qti)) —(1—gt;) ™ u) > (1—qti)_”$i}
Bi = {w_l(X(ln(l—qti))—u) > .’Ei+‘p5h‘,ti}

satisfy

n n

N4} - P{i(:]OBi} | < > (PLANB{+PAINBY) = o(1-G(w)

1=0

(9.8) ‘ P{

=0
as uTu. Inserting in (9.7) and using stationarity it therefore follows that
= 1—qgt;)—u
(9.9) P{ﬂ{% >$i} ‘f(l)>u}
i=1

~J

1 P{ ﬁ{X(ln(l—qti)—ln(l—qtn)) —u

l—G(u) ” >:ﬁ,~+‘l§5nti}}.

1=0

Now write u, =u+zw for z€J, and define
A; = {X(In(l—qti)—ln(l—qtn)) >11$} and B; = {X(q(tn—ti)) >&$}.
Given an >0 it is easy to see that
0 <In(l—gqt;) — In(1—gqt,) — q(t,—t;) < eq(t,—t;) for u sufficiently large.

Since (1.3) and (1.4) show that Cpq(u;)>¢q for u large, for some C, < oo, an
application of (9.3) now yields

P{ANBE} = P{X (0(1—gts) ~0(1—qtn)) > i, X (0t —1:)) <0 }
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< P{ sup X (s)>ty+ow(ty), X(O)gﬂw}
s€[0,In(1—qt;)—In(1—qtn)—q(tn—t;)]

+ P{i, < X(0) < dp+ow(as)}
< P{ sup X (s)>tg+ow(iy), X(O)Sﬂm}
s€[0,eCq(tg ) (tn—ts)]
+ (G(ag+ow(is)) — Glig))
N(o(eCw(tn—ti)) +F(a)) (1-F(z)) 1-G(w)) as uti.
Sending &,0 — 0 it follows that P{4;NBf} = o(1—G(u)) and similarly (9.4)
implies P{A{NB;} = 0(1-G(u)). Since P{4;NBf} = P{A{NB;} by stationarity,
we get (9.8). At continuity points, (9.9) thus combines with (9.5) to show

(9.10) P{ﬁ{%m::} ‘5(1)>u}

1 S X(q(tn—ti)—u
~1-Gw) P{QO{ w > ‘”i+m5“ti}}
n—1
— (1—F(mn+5B5/<atn)) P{ ﬂ {n$n+s135,€tn (tn—ti) > mi‘i‘mSHti}}- ]
1=0

Proof of (ii). At continuity points, the first relation in (9.10) plus (9.6) yield

P{ﬁ{g(l_iﬂ >xi} ‘{(1)>u}

=1
n

1 P{H{Y(Q(ti—tn))—u >a;,~+‘l¥5nti}} — P{ﬁ{n(ti) >:vz-—|—51§5nti}}. O

w

10. Gaussian processes in R”. Let x1(t),...,Xxn(t) be independent zero-mean

Gaussian processes that are self-similar with index x and whose covariances satisfy
(10.1) E{x:(Dxi(1+t)} = 1+ &t — Ci[t|* + o(|t|+[t|]*) as t—0,

for some constants a€(0,2] and Cy,...,Cp,>0. Then &(t) = |(x1(f),.-.,xn(t))|
= /x1(t)2+.. .+ xn(t)? has associated process X(t) = |(X1(t),...,Xn(t))| with

standardized Gaussian components X;(t)=e "y, (e’) satisfyin
g

(10.2) E{X;(0)X;(t)} = 1 —Ci[t|* + o(Jt|+]t|*) as t—0.
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The class of processes satisfying (10.2) is very rich, and since an associated pro-
cess X(t)=|(X1(t),...,Xn(t))| generates a self-similar process &(t)=t"X(In(t))
for each >0, the class of self-similar processes satisfying (10.1) is very rich indeed.

In particular (10.1) holds with C; = 3 and k= /2 when x;(t) = B;(t) and
B;(t) is fBm. with E{B;(s)B;(t)} = 1 (|s|*+[t|*—[t—s|*).

Pickands (1969) studied stationary Gaussian extremes when (10.2) holds, and
the first extension to R™ is Sharpe’s (1978). Our results for £(¢) below are new
for n>2. When n=1 the behaviour of extremes follows from e.g., Konstant and

Pitebarg (1993, Section 2), but the sojourn result still is new.
Now observe that (10.1) implies the existence of an h>0 such that

(10.3) SUP1 <j<n SUPte(e,h] e " E{x;(1)xi(e"} <1 for e€(0,h).

Further let U be a unit-mean exponentially distributed variable and w a variable
uniformly distributed over the unit sphere {Z € R*: |z| =1} such that U, o,
{B1(t)}+>0,--- , {Bn(t)}t>0 are mutually independent.

Theorem 8. Assume that (10.1) and (10.3) hold with o€ (0,1]. Then (2.1) and
the conclusions of Theorem 1 and Corollary 1 hold with w(u)=(1Vu)~!, q(u)=

2

(tvu) =2/, P{E(1) > u} ~ (u/v2)"2(I(5)) e 2 and

o0 n
/1(37) = P{/ I(O,oo) (U—‘,Bg,mf +Z \ Cz W; (Bz(t) — Cz wi|t|a)) dt > .’L’}
0 =1
The proof uses Propositions 7-9, and the hypothesis of these propositions follows

using results for X (¢) in Albin (1990, proof of Theorem 9) ([A9]).

Proof of Theorem 8. The asymptotic behaviour of P{&(1) > u} = 1—-G(u) is
elementary and shows that G€D(I). Further (1.3)-(1.7) hold and Ps=P5=1 for
a=1, while P,=P5=0 for a<1. An inspection of [A9] also yields

(w™ (Y (qt)—u) | Y(0)>u) =, n(t) = U+ ZI\/ C; wi (Bi(t) =/ C; wi|t]¥)
1=
in the sense of weak convergence of the finite dimensional distributions.

In [A9] it is further shown that there are A, B>0 and €€ (0, h] such that

AnP{N(0,1)> At*/2} for qt€[0,e]

P{X(qt)>U‘X(O)>“} < {4nP{N(0, 1)>Bu} for qte (e, h] ,
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and constants C, Ay >0 such that

P{X(qt)>u+(A+0)w, X (0)<u+dw}

(10.4) P{X(0)>ul

< 2nP{N(0,1)>Ct=*/?}

for 0<t*/2 <A< \y. Hence (9.2), (9.4), and (9.6) hold, and Propositions 7, 8 and
9.(ii) apply to prove that Assumptions 1-3 hold with ((t)=,n(t) —PBsxkt. O

Theorem 9. Assume that (10.1) holds with a € (1,2]. Then (2.1), (5.2) and the
conclusion of Theorem 1 hold with w(u)= (1Vu)~!, q(u)=(1Vvu)~2, P{£(1)>
u} ~ (u/V2)"AI(2) e 3% and A(z)=e"".

Proof. Now [A9] shows that the finite dimensional distributions of (w=(Y (gt)u) ‘
Y (0)>u) converge weakly to those of the random variable U. Further the fact that
E{X;(0)X;(t)} > 1—c|t| for t small, for some ¢>0, combines with an inspection
of [A9] to show that (10.4) holds. Since P4 = P5 =1, Propositions 6 and 9.(ii)
show that Assumption 1 and 3 hold with ((t) = U—rt, while Proposition 2 yields

Assumption 2. A trivial calculation finally gives A(z)=e="*. O

11. The L?-norm of Brownian motion. Let {W(s)};>0 be standard Brownian
motion and define £(t) = f; . W(s)?ds where 0€[0,1). Then £(t) is self-similar with
index k=2, and so the associated stationary process is given by X (t)=e~2¢ (et).

Of course, the quantity £(t) were first studied by Cameron & Martin (1944).

Theorem 10. Writing £'(1) = W(1)2—0W (0)? we have

P{SUPte[o,u Et)>u} ~ (ku) PE{E (DT Q) >u P{E(1) >u}  as u—oo.

Proof. We prove the theorem by application of Theorem 7: Writing

A(B) = sup{A>0: cot((1—0)VA)=6/VA},
Lemma 2 in Li (1992) states that there is a constant K (6)>0 such that
(11.1) P{(D)>ul ~ K(0)u Y2e 7%/2M0) a5 4.

Thus G € D(I) and (1.1) holds with w(u) = 2X(0). Defining q(u) = (1Vu)~!
we further get By =Ps5 = (2A(#))~!, and so Proposition 2 yields Assumption 2.
Further, since by Albin (1995, Eq. 2.17) we have

S 1
lim lim

PE Y P EEGnY <ul =
al0 uta a P{€(1) > u} P{SuptE[O,aq]X(t)>u+U’ X(O)_U} 0 for o>0,
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eq. (9.3) holds. Consequently Proposition 6 proves Assumption 3.
The fact that (7.1) holds follows using (11.1) in the calculation

460
= Pl u}P{
SP{§ P{S“pse[ou W (s)| > \/mu?’/‘*}

P{f() u}P{S“Psew bat.0) 00 |W () =W (0)] > 3/2A(0) u/4}

W (s)ds - / W (s)2ds + qt[W (1) —0W (6)2]
6—0qt

>€e

/GIW(s)2ds>u}

(W (s)*-W(0)?]ds —/1_ t[W(s)2—W(1)2] ds

> 25)\(9)}

6—0qt

' mp{wpseﬂ—qm] gt [W(s)-W(1)| > §/2eA@) u 4}
< srmsm PV > 1y )

+ Bra=m PV O > 3/2eX0) ()20

- ﬁ)} {N (0,1) > 1/2eA(0) (qt) %/ u—3/4}
50 as u—oo.

Tn order to prove (7.2) we observe that [by (11.1)]

P{g€ ()" P> | £()>u} < P{gW(1)?>Va/2} | PLE() > u}
<2P{N(0,1) > 2/*/u/2} | P{&(1) > u}
<z7?2 for z>z9 and u>1,

for some choice of xy>1. Hence it follows that
B{lo¢' )P >0 | €0>uh = [ P{ag ) P>2 | €0)>u} <zt .

Now recall that £(1) =£ Y p—; Ak NZ where Ny, Na,... are independent A(0, 1)
and A1 >X2>...>0 [e.g., Li (1992)]. But in the first part of the proof of Albin
(1992b, Theorem 4) we show that the density for such a sum satisfies (7.3)! O

12. Totally skewed log-fractional a-stable motion. We write Z € S, (o, 3)

when Z is an a-stable random variable with characteristic function
E{exp[i0Z]} = exp{—|0|*c*[1—iB tan(Z)sign(0)]} for HER.
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Here a€(1,2], the scale 0=0z >0 and the skewness f=(z €[—1,1] are param-

eters. Also let {M (t)}+cr be an a-stable motion that is totally skewed to the left,

so that M(t) has stationary independent increments and M (t) € Sy (|t|*/*, —1).
Given an neZ" and functions heL*(R) and heL®(R) we define

a 1/a 7 — 7 n . a—n
o= (el (@) da)7* and (b B = i ha)" sign(h(e) Ih(a) " o
When h, heL*(R) the random variable (Z,Z) = (fg hdM, fRildM) satisfies
02+02 € Sa(10h+0hllas - (Ji, sign(Oh(x)+oh(x)) [0h(z)+oh(x) | d) /|0h+ohS).

and each R?-valued stable random variable (Z, Z ) has the representation ( fR hdM,
I iAsz) in law for some choice of h and h. When >0 a.s. and (h, h)q o< o0,
Corollary 2.2 of Albin (1997) further states that

(12.1) E{(Z-2)*|Z>u}

_ /“[((ﬁ—h, Bz (h=h, h>3,1> /oo (a=Dzfz(2) , (A=W, ¥ f2(y)
u Ik ez /)y PlZ>u} 1R3> P{Z>wu}

Kasahara et al. (1988) first noted that the process

(1) E/Ooo(ln(t+x)—ln(a:)) dM (z) :/Oooln(l—l—t/x) dM (z)

is self-similar with K=1/a. Here (¢ =—1 so that {(t) is totally skewed. More-
over £(t) is unbounded a.s. on every interval when a <2 (e.g., [S&T], Example

10.2.6), but as we shall see below, it is bounded above a.s. with very light tails.

Theorem 11. Writing &'(1) = [;° (1+2) ' dM(z) we have

P{sup,cjo 11 £(t)>u} ~ (ku) T E{&'(D)Y|£(1)>u} P{E()>u}  as u—oo.

Proof. The proof goes via Theorem 7: According to e.g., [S&T], p. 17, we have

(12.9) P{S.(0,~1)>u} ~ A() (E)_a/z(a—l) exp{—B(a) (E)a/(a—ﬂ}

g g

as u — oo, for some constants A(a), B(a) > 0. Hence G € D(I) and (1.1) holds
with w(u) = B(a)_laé_((f)/(a_l)(1\/u)_1/(0‘_1). Taking ¢(u) =w(u)/u we further
obtain PB4=P5=1, so that Assumption 2 follows from Proposition 2.
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Since by Holder’s inequality (h—h, hy% . < (h—h,hYa2 ||R||Z, (12.1) combines

with (2.3) in a straightforward calculation to show that

(12.3)  E{(Z-2)*|Z>u}

(h—h, h)a.2 (<h hy h)a ) [ (a—1) 2 fz(2) dz y%(y)}
< : 241 an d
1AllS ||h||°‘ P{Z>u} P{Z>u}
(h—h,hYa.o ((h h, h)a > [, / [2ay — (a—1)u] P{Z >yu} ]
= - 241 w2+ dy
1AlS ||h||“ I 1 P{Z>u}
<B—h,h)az<<h hyh)a ) /1 o P{Z>9 u}dgj}
< : 241 |u+2a K
1Al ||h||°‘ I 0 P{Z>u}
R R S
< {h ”Z’”{? 2 <<h |Z||Z + 1) u?+ %(u)] for u sufficiently large.

Noting that 0 < In(14x)— In(1—t+z) < 2t(1+2z)~! for 0<t<1, we thus get
P{¢(1)> u+(A+v)w, £(1—qt) <u+tvw} /P{&(1) >u}
<E{[¢M)-€£(1-g))?|€(1)>u} / (Aw)?

004221 1 —1\1a—2 004221 1 —1\1a—2 2 4
e ) dx(/ ¢ (12 )] dmﬂ)“ +daw/u
0 (I+z)? o8y, 0 (1+z)?0g,) (Aw)

Here w™2¢?u?=1 so that (8.1) holds, and so Proposition 3.(i) gives Assumption 3.

In order to prove (7.1) we observe that 0 < In(1+z) —In(1—t+z) — t(1+z)~!
t2(1+x)"2 for 0<t< % By another application of (12.3) we therefore obtain

5 { (5(1—3)15)—11 - 5(13}—u N qtim)Z mm}
[ [ ) e

=0(¢®) as u—oo.
In a by now familiar manner we deduce (7.2) from the [(12.3)-based] esimates
B{lg¢/(1)/ul?| £(1)>u)
< q_ ©Cn(14+z~ )]"_2 i (/OO [ln(l-l—av_l)]a_2 o+ 1) <u2+ M)
0

w? Jo  (1+2)?0g,, (1+2)*ogy u

[ [ ),

Te(1)
Since a-stable distributions are unimodal (e.g., [S&T]| p. 574), (7.3) holds. O
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13. Totally skewed linear fractional a-stable motion. Define M(¢) as in
Section 12 and choose an H €(0,1—1/«). Then the process
0

£(t) = /R ((t+a) ") - ()| dM (z) = /

—t

(t+) " dM () + / () =™y dM (2)

is self-similar with index H+1/«, and for a=2 it is fBm. (e.g., [S&T], Eq. 7.2.7).
Theorem 12. We have P{supte[o,l]f(t) >u} ~P{E(1)>u} as u—oo.

Proof. By (12.2) we have GeD(I) and (1.1) holds with w(u)zB(a)—lagg{ (a—1)
(1Vu)_1/(a_1). Taking q(u) = (1\/’u,)_a/[(a_1)(H°‘+1)] we further have B, =5 =00,
and in view of Theorem 4 it only remains to verify Assumption 3.

Now recall that (e.g., according to [S&T], Property 1.2.15)
P{S4(0,-1)<—z} < Ci(z/o)™® for >0, for some constant Cj>0.

Writing € =1—(1+3Ha)/(1+Ha) we therefore obtain

at -1 Mw (1+Ha) Yo\~
H 1

S 01(02)\ t—(H/2+1/a))—a

for some Cs>0. Defining

(1—gt+z)i—zH 0<x (1+x)H—2H 0<2
hz)={ (1—gt+z)T | gl —1<z<0 h(z)={ 1+2)" | ¢t —1<z<0
0 , r<qtt—e—1 0 , r<qgtt—e—1

an analogous calculation shows that

tlme—1
P{&(l—qt)>u+ )\—w,/q (1—qt+a:)HdM(x)>)\—w}
q

3 t—1 3
2> P{/Rh(x) AM (@) >u- "2 }P{ A </j1_5_1(1+$)HdM($) HUESIEY }

x>
Il

1

P{£(1)>u—3kdw} P{S, (1, —1) > Cok At~ (H/2F1/@)}

o

>
Il
—

Moreover it is an elementary matter to prove h(z) > h(z)+(t=5—1) (h(z)—h(z)) >
0 for x€R and t>1, and it follows that

P{/Rh(;v) dM(a:)>u+(§,\+y)w,/

h(z) dM(x)gu+(§A+y)w}
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< P{Sa(||h+(t_5—1)(h—71)||a, -1) >u+(t—€—1)§,\w} < P{&(1) >u+gt " Iw}
for ¢t small. Adding things up we now readily conclude
P{¢(1—gt) >u+A+v)w, {(1) <utrvw}

< Z P{¢(1) >u—%k)\w} P{S.(1,-1)>Csk )\t_(H/2+1/a)}
k=1

+P{/h(:c) dM(a:)>u+(§)\+y)w}01(02)\t—(H/2+1/a))_a
R
+P{{(1)>ut 5t M}
< CaaetHe2pLe(1)>u}  for t>1, for some constants Cs,e>0.

Hence (8.2) holds and Proposition 3.(ii) yields Assumption 3. [

14. Smooth stable and Gaussian moving averages. Clearly the process
() =t" / f(n(t)+z)dM(z) is self-similar with index &
R

for each feL*(R) [where M(t) is defined as in Section 12]. The proof of the next

theorem is a simple adaption of the proof of Theorem 11 and is left to the reader:

Theorem 13. Take a non-negative absolutely continuous f€L*(R) such that
R+ E€LP®) with limt (1=t f (=4 ) +(sF O+ (), F()) =0,

Writing &'(1) = [;°(kf(z)+ f'(z)) dM(z) we then have

P{SUPte[o,1] Et)>u}l ~ (ku) TE{ ()T ‘ E1)>u} P{E(1)>u}  as u—roo.

15. Kesten-Spitzer processes. Take aj,az€(1,2] and (i, B2€[—1,1] and let
{M (s)}ser be an a;-stable motion with skewness ;. Thus M (s) has stationary
independent increments and M (s) € S, (|s|'/*1, B1). Further let {N(s)}s>o be an

ap-stable motion with skewness (2 that is independent of {M(s)}ser, and define
£(t) = / _ Li(@)dM(@)  where  Ly(a) = lim 21_5 Ot Tocnse (N(s)) ds

is the local time of N(s) at = up to time ¢: By Boylan (1964), L.(x) exists and can

be choosen as a continuous (random) function [0,00)xR> (¢,2) — Li(z) €[0, 00).

The process {£(t)}+>0 were introduced by Kesten & Spitzer (1979) and is self-

similar with index k = (v1ae—a1+1)/(@12) > 1/04.
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Theorem 14. When ;> —1 the Kesten-Spitzer process £(t) satisfies the hypoth-
esis of Theorem 1 and Corollary 1 with G€ D(IT) and q(u)=

Proof. According to e.g., [S&T], Property 1.2.15, we have
P{Sq,(0,51)>u} ~ Coy g, (u/o)™* as u—oo, for some constant Cy, g, >0.

Hence G € D(II) follows from the easily established fact that E{ [ cr Lt(2)” dz} =
E{||Lt||2} < o0 for a€(1,2] [e.g., Kesten & Spitzer (1979, Remark 1)] implies

P{¢(1)>u} = P{Sa, (| Lellar: B1) >u} ~ Clay o) B{IILello) } .

Given a (1 >—1 and non-negative functions f1,..., fn, € L*(R) with ||fi]a,
>0, Theorem 4.1 of Samorodnitsky (1988) states that

T
/fl dM(m)>} A

lim P{ / fi(x)dM (z)>u

U—r 00

When specializing this result to our specific setting it is readily seen that

UIL%P{Q{WXQ}‘&(I)NL}

= Bl A () My A A ) /00

and so Assumption 1 holds. Further the fact that Q=1 implies Assumption 2.
Since the finite dimensional distributions of {Li(x)—Li_¢(z)}zer coincide with

those of {L;(z+N(1—t))}zer, where L;(z) is the local time of an independent

copy {N(s)}szo of {N(s)}s>o0 that is also independent of {M(s)}scr, we have

P{¢(1)>u+(A+v)u, E(1—t) <utvu} < P{E(1)—&(1-t) > Au}

= P{/ﬂCERﬁt(HNu—t)) dM (z) >)\u}

= P{t”/ Ly(z) dM (z) >)\u}
zER
< 2Cq, g B{IL][G7 27 (Au) ™

for t=*Au large. Hence (8.1) holds and Proposition 3.(i) yields Assumption 3. [
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16. Rosenblatt processes. Let {B(t)}icr be standard Brownian motion and
t

R(?f)EKf/ /[(s—x1)+(s—x2)+]_(1+7)/2dsdB(a:l)dB(arz) for ¢t>0.
z€R2J0

Here v€(0,1) and K., >0 are constants such that Var{R(1)}=1. The process
R(t) has stationary increments and is self-similar with index 1—y. Using a different
(but equivalent) definition, it was introduced by Rosenblatt (1961) [and named after
him by Taqqu (1975)].

For the convenience of the reader we now supply a result from Albin (1998 *):

Theorem A. There exist constants C,c>0 and j€Z such that

P{R(1)>u} ~ Cu?/? exp{—cu} as u—ooc.

Theorem 15. For the Rosenblatt process {R(t)}s>0 we have

.- P{supte[o’l]R(t)>u} wnd T P{SUPte[o,u R(t)>u} c =
Fares P{R(1)>u} u—oo u¥/ (=N P{R(1)>u} '

Proof. Only the upper bound requires a proof. But by Theorem A the distribution
function G of R(1) satisfies (1.1) with =00, w(u)=c™! and F(z)=1—e"7,
and so G€D(I). Taking q(u)=(1Vu)~ =7 we further obtain

P{R(1)>u+(A+v)w, R(1—qt)<utvw} < P{R(1)—R(1—qt)>Iw}
=P{R(1)>c 'At" u}.
Hence Theorem A shows that (8.1) holds, so that Proposition 3 proves Assumption

3. Consequently Theorem 3 combines with (2.1) to give the upper bound. O
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