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Abstract

A new approach to Markov chain Monte Carlo simulation was recently
proposed by Propp and Wilson. This approach, unlike traditional ones,
yields samples which have ezactly the desired distribution. The Propp-
Wilson algorithm requires this distribution to have a certain structure
called monotonicity. In this paper an idea of Kendall is applied to show
how the algorithm can be extended to the case where monotonicity is re-
placed by anti-monotonicity. As illustrating examples, simulations of the
hard-core model and the random-cluster model are presented.
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1. Introduction

In many situations, it is important to be able to sample from some, often very
complicated, multivariate probability distribution 7. One approach is the Markov
chain Monte Carlo method, which originates from statistical mechanics (METRO-
POLIS et al. 1953), and which currently is very fashionable in statistics (GILKS,
RICHARDSON and SPIEGELHALTER 1996). The idea is to define an ergodic
Markov chain with stationary distribution 7, to start the chain in some arbi-
trary state, to run it for a long time, and to output the final state. Ergodicity
of the Markov chain guarantees that if it is run for long enough, then the distri-
bution of the final state is close to m. A problem with this approach is that it
is often very difficult to determine how long is “long enough”. For this reason,
much of today’s Markov chain Monte Carlo practice lacks rigorous theoretical
justification. This is of course highly unsatisfactory, and has even caused some
controversy (see e.g. the tandem discussion papers GELMAN and RUBIN (1992)
and GEYER (1992)).
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During the last few years, some attempts have been made to remedy this sit-
uation through the construction of algorithms involving the running of a Markov
chain for a certain random amount of time (a stopping time) defined in a clever
way so that the output of the algorithm has ezactly the desired distribution 7.
The first such algorithm is due to ASMUSSEN et al. (1992), and has been fol-
lowed by other, simpler, algorithms e.g. in LOvAsz and WINKLER (1995) (see
Propp and WILSON (1997) for a short survey). These algorithms work for any
irreducible finite state Markov chain, but have astronomical running times for all
but the very simplest chains (i.e. those with very few states) and are therefore of
limited practical value.

In contrast, PROPP and WILSON (1996) recently devised an algorithm for
exact sampling which is fast enough to be useful in practice. The price they have
to pay for this is that the Markov chain (still with finite state space) has to possess
a certain monotonicity structure. This leads to a similar restriction on the set of
distributions 7 that the algorithm is applicable to. This monotonicity structure
does hold for many important models, such as the ferromagnetic Ising and Potts
models and certain random tilings. The Propp-Wilson algorithm provides the
first computationally tractable way of obtaining unbiased samples from these
models. In KENDALL (1996) and HAGGSTROM et al. (1997), the algorithm has
also been successfully adapted to point process settings (this direction is currently
being pursued further in KENDALL and M@LLER (1997)). Another direction of
generalization was recently considered by MURDOCH and GREEN (1997).

The ProppWilson algorithm will be carefully described in Section 2. It is
based on so called coupling-from-the-past. By a coupling, we here mean the joint
construction of two or more realizations of the Markov chain; see LINDVALL
(1992) for a broad treatment of coupling methods in probability theory. “From
the past” means that we run the chain from a distant point of the past up until
the present, and the distance to the past is a kind of “backwards stopping time”
which is determined during the running of the algorithm.

Our contribution is to demonstrate how the Propp—Wilson algorithm, via a
simple modification, can be used for discrete systems which are anti-monotone
rather than monotone. The modification is based on an idea that KENDALL
(1996) came up with in a point process context. The anti-monotone setting
contains several interesting and important examples, such as the hard-core model
and the Ising antiferromagnet. We believe that the need for efficient simulation
algorithms may be even greater for anti-monotone than for monotone systems, the
reason being the following. For monotone systems, several powerful mathematical
tools, such as Holley’s Theorem and the FKG inequalities, are available (see
Section II.2 of LIGGETT, 1985, for an overview). At present, these tools do not
have counterparts for anti-monotone systems. Therefore, it is more difficult to
obtain theoretical results for anti-monotone systems, for which one thus has to
resort to computer simulations to a larger extent.

After circulation of the preprint for the present paper, M@LLER (1997) has
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developed the idea of anti-monotone coupling-from-the-past further. Whereas
the state space in our setup is finite, he is able to handle unbounded state spaces.
Also worth mentioning is the work of FILL (1997), where an alternative to the
Propp—Wilson approach, using “strong stationary times” rather than coupling-
from-the-past, is presented. Fill’s algorithm works both in monotone and anti-
monotone situations.

The examples that we will consider are mainly motivated by problems in
statistical mechanics. As we already pointed out, Markov chain Monte Carlo
methods are widely used also in statistics. This is particularly true in Bayesian
statistics where such methods are used to sample from posterior distributions in
order to estimate means etc. (see GILKS et al. 1996). It is quite conceivable that
coupling-from-the-past methods may in the future become an important tool for
getting better such estimates; see MURDOCH and GREEN (1997) for a pioneering
application in this direction.

In the remainder of this section, we will define monotonicity and anti-mono-
tonicity, and give some important examples of anti-monotone systems. In Section
2 we present the algorithms: the original Propp-Wilson algorithm, as well as our
modification. In Section 3 we discuss the special case of Markov random fields
on bipartite graphs. Finally, in Section 4, we present some simulation results.

Our setup involves a finite set V' of locations, and a finite set S C R of values
attainable at each location. The state space of the whole system is then SV. We
write &, 7, etc. for fixed elements of S, where W C V. We furthermore write
X, X, ... for S¥-valued random variables. We let < denote the natural partial
order on S" i.e. £ X nif £(v) < n(v) for each v € W.

Definition 1.1. A probability measure © on SV is said to be monotone if for
each v € V and each s € S we have

(X (v) <s|X(V\{v}) =¢) = n(X(v) <s|X(V\{v}) =1n)

whenever £ <X, 1(X(V\{v}) =€) >0 and n(X(V \ {v}) =n) > 0. If on the
other hand

m(X(v) <s[X(V\{v}) =& < m(X(v) <s|X(V\{v}) =n)
for all such v,s,m and &, then 7 s said to be anti-monotone.

In other words, 7 is monotone (resp. anti-monotone) if the conditional distribu-
tion of the value at a site v given everything else is stochastically increasing (resp.
decreasing) in the configuration on V' \ {v}.

We consider three examples of anti-monotone systems. First, we need some
graph notation. Let G' be a graph with vertex set V' and edge set E. The edges
are undirected, and loops and parallel edges are not allowed. For v,w € V', we
write v ~ w if there is an edge e € E that has v and w as its end-vertices. In
all of the examples, the most common choice of GG is a large portion of the cubic
lattice Z¢, with edges connecting nearest neighbours.
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Example 1.1: The hard-core model. The hard-core model (see e.g. GEORGII
(1988) and VAN DEN BERG and STEIF (1994)) was introduced in statistical me-
chanics as a crude model for a gas whose particles have non-negligible radii. It
has also been studied in operations research, where it arises in the study of cer-
tain communication networks, see KELLY (1985). Each vertex of the graph G
can be in one of two states, 0 and 1. In the gas interpretation of the model, a 1
represents the presence of a particle at a vertex, and a 0 means that the vertex is
not occupied by a particle. When two 1’s occur on neighbouring sites, we think
of the particles as overlapping each other, and therefore such configurations are
disallowed. A configuration £ € {0,1}" is called feasible if no such overlaps
occur (i.e. & is feasible if £(v)&(w) = 0 whenever v ~ w). The hard-core measure
7& for G with activity a > 0 is the measure on {0, 1}V which to each £ € {0,1}"
assigns probability

a(§) = Zl_g [T,y ¥ if € is feasible
0 otherwise,

where Z¢ is the appropriate normalizing constant making ¢ a probability mea-
sure. In other words, 7¢ is obtained by letting the vertices independently be in
state 1 (resp. 0) with probability - (resp. —7), and then conditioning on the
event that the arising configuration is feasible. It is immediate from the definition
that if £ is feasible, then

a+1
0 otherwise.

me(X(0) = 1[X(V\{v}) = &) (1)

{ 4 if &(w) =0 for all w ~ v
Since the right hand side is decreasing in &, we have that the hard-core model is
anti-monotone.

Example 1.2: The Ising antiferromagnet. One of the most studied models
in statistical mechanics is the Ising model, in which each vertex v of G can
be in state 1 or —1 (see e.g. GEORGII (1988) and LIGGETT (1985) for general
discussions). In the original interpretation of the model, the vertices are thought
of as atoms, and the two states represent two different spin orientations. A
number of other interpretations have since been suggested in various physical
and engineering contexts. The Ising measure v, for G with coupling constant
J € (—00,00) is the measure on {—1,1}" which to each £ € {—1,1}V assigns
probability

1
v (€) = 77 exp{—H (§)}
G
where
HE) = 27 ) Lewzew) (2)
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is the so called energy function and ZZ is a normalizing constant. In (2), each
pair {v, w} with v ~ w is counted only once. It follows that

1

ve(X(w) =1[X(V\{v} =¢)) = T 2 =ry)

where k. (resp. k_) is the number of neighbours w ~ v for which £(w) = 1
(resp. £&(w) = —1). This conditional probability is an increasing function of &
when J > 0, and decreasing when J < 0. Hence, the J > 0 Ising model is
monotone whereas the J < 0 Ising model is anti-monotone. The J > 0 case, in
which neighbouring vertices tend to take the same value, is usually referred to
as the Ising ferromagnet, while the anti-monotone case J < 0 is called the Ising
antiferromagnet. The ferromagnetic case has received most of the attention, but
also the antiferromagnet has attracted a fair amount of interest (see e.g. VAN DEN
BERG (1993) and some of its references).

Example 1.3: The g < 1 random-cluster model. Another name for the ran-
dom-cluster model is the FK model after its inventors FORTUIN and KASTELEYN

(1972) (see e.g. GRIMMETT (1995) and HAGGSTROM (1996) for up-to-date dis-

cussions). The model lives on the edge set rather than the vertex set of G, and

should be thought of as dealing with random subsets of E. Each edge can be

in one of the states 0 and 1, where a 1 (resp. 0) represents the presence (resp.

absence) of an edge. The random-cluster measure pf:? for G with parameters

p € [0,1] and ¢ > 0 is the probability measure on the set of subgraphs of G given

by

1 e —nle
u’é;q(n) _ ZTE;’q { Hpn( )(1 _p)l 7( )} qk(n)

eckE

for allm € {0,1}*. Here k(n) is the number of connected components of 7 (includ-
ing isolated vertices), and Z%? is a normalizing constant. Note that omitting the
factor ¢*(, or taking ¢ = 1, gives i.i.d. edges with probability p of being present.
Other values of ¢ give rise to dependence between edges. The random-cluster
model is not only interesting in its own right, as a nice parametric model for
random graphs with dependencies between edges, but also because it has proved
to be an important and useful tool for studying Ising and Potts models. The
definition implies that for any edge e € E, and any configuration 1 € {0, 1}2\e},

P if the end-vertices of e
. are connected in
pe(e is present |n) = g (3)
er(l%p)q otherwise.

This conditional probability is increasing in 1 when ¢ > 1, and decreasing when
g < 1. Hence, the random-cluster model is monotone when ¢ > 1 and anti-
monotone when ¢ < 1. The random-cluster model is reasonably well understood
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in the monotone regime of the parameter space, but much less so in the anti-
monotone regime (although see GRIMMETT (1995) and HAGGSTROM (1995) for
some results).

2. The algorithms

2.1. The Gibbs sampler

A building block of the Propp-Wilson algorithm, as well as of our modification,
is the so called Gibbs sampler which we now go on to describe. It is the most
famous and frequently used of all Markov chain Monte Carlo algorithms. Its
name was introduced by GEMAN and GEMAN (1984), who used it for analysing
Gibbs distributions on lattices. In statistical physics the method is also known
as the heat bath algorithm.

As declared in the introduction, we are interested in drawing samples from
7, where 7 is a probability measure on SV. Let X be a random variable which
takes its values in SV, and which is distributed according to 7. Suppose that we
know m(X(v) = 4| X(V\ {v}) = &) forallv € V, alli € S and all £ € SV\¥}
with P(X(V '\ {v}) = &) > 0. (In all three examples of the previous sections
these conditional distributions are readily available, as opposed to the joint dis-
tributions which involve the computationally intractable task of calculating the
normalizing constant.) We can then make use of the Gibbs sampler, which is
simply a discrete time Markov chain {X;} with state space S¥ and evolution as
follows. At each time step, a location to update is chosen from V. If at time ¢
the chosen location was v, the new state of the chain, X;,, is obtained from the
old, X}, using the following rules:

= X;(w) for w # v
Xi(v) 2 7| X(V\ {o}).

This can be realized concretely by letting U; be an independent random variable
uniformly distributed on [0, 1], and setting

Xip1(v) =max{s € S: (X (v) > s| X(V\{v}) =& > U},

with € = X;(V \ {v}). The resulting Markov chain {X;} is ergodic if it satisfies
the following conditions:

(7) the set of elements of SV that have positive m-measure is connected (i.e. can
reach each other via successive coordinate changes) and

(73) the choice of update location is sensible.
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By sensible, we mean that all locations are visited every now and then. This can
e.g. be accomplished by for each ¢ choosing the location to update at random ac-
cording to uniform distribution on V', or by sweeping through the set of locations
one after the other in a deterministic order. We have chosen the former approach,
partly because it simplifies notation as the Markov chain then becomes time ho-
mogeneous. It will be evident that the algorithms in the following subsections
can be adapted to other updating schemes.

It is obvious that the Markov chain has 7 as its stationary distribution. Note
that condition (i) is satisfied for the three examples mentioned in the introduction,
for any choice of G.

2.2. Monotone coupling-from-the-past

We next describe the Propp-Wilson algorithm, which can be used to produce
samples with the desired distribution 7 in cases where 7 is monotone in the sense
described in the introduction.

The two main features, apart from the monotonicity, is the use of couplings
and the fact that the chains are run from the past into the present. This is
summarized in the term coupling-from-the-past. Each chain is a version of the
Gibbs sampler above. How far away in the past they need to be started is
determined by the algorithm itself.

The state space SV contains two particular elements 0 and 1, with 0 < ¢ < 1
for every ¢ € SV. For instance, in the Ising ferromagnet case, 0 is the state where
all locations have spin —1 and 1 is the state where all locations have spin 1. Let
{Ut}t=—1,—2,.. and {W;},=_1 o .. be independent i.i.d. sequences such that U; is
uniformly distributed on [0, 1] and W; is uniformly distributed on V. If the chain
at time ¢ is in state £ € SV, let the next state be given by ¢(&, Uy, W;), where the
(deterministic) function ¢ : S¥ x [0,1] x V' — SV is defined by letting (&, u, w)
equal ¢ at all locations except w, where it gets value

max{s € S : 7(X(w) 2 s| X(V\{w}) =V \ {w})) = u}.

This yields transition probabilities identical to those of the Gibbs sampler in the
previous subsection. The monotonicity of 7 now implies that if & < &', then
o€, u,w) = ¢, u,w) for any u and w.

The idea is to start one chain in 0 and one in 1, and to couple them by
letting them evolve at each time subject to the same random variables U, W;.
For t; < ty <0, define

‘Dif (57 (u7 'w)) = ¢(¢(---(¢(§,ut1; wt1)7ut1+17 wt1+1), ey Uty —2, wt2—2), Uty—1, wtg—l)

where (u, w) is short for ((...,u_9,u_1), (..., w_2, w_1)). By the monotonicity of 7
we have that if ®}2(0, (u, w)) = ®?(1, (u, w)), then &2 (&, (u, w)) must also equal

their common value for all £ € SV, and the same thing must then consequently
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hold for ®2 (¢, u, w) whenever t < t;. The Propp-Wilson algorithm consists
of running these coupled Markov chains from time —¢ to time 0 for larger and
larger ¢ until the two chains produce the same value at time 0, and to output this
common value. PROPP and WILSON (1996) prove that this gives an unbiased
sample from 7; below, we shall give a slightly different proof of this fact (Theorem
2.1).

At first sight, one might think that the Propp—Wilson algorithm is unneces-
sarily complicated, and that one could instead run the two chains from time 0 up
to the random time 7" when the two chains coalesce, and to output their common
value at time 7. Since the value at time 7' is then the same regardless of the
starting value, we have in some sense “reached stationarity”. If T" were a fixed
time, this would indeed yield unbiased samples from 7, but since 7" is a random
stopping time, this is in general not the case. See PROPP and WILSON (1996)
for further discussion.

Let us now assume that 7 satisfies (i) and that 0 and 1 both have posi-
tive probability, and argue that we can then a.s. find a 7' (depending on U =
(..., U_2,U_1) and W = (..., W_y, W_;)), such that if the two chains are started
at time —7', then they will have coalesced by time (. The assumptions on 7 imply
ergodicity of the Gibbs sampler, which in turn implies that there is an L such
that for all states & and £, there is a positive chance of going from £ to &' in L
steps. Now we have for each ¢ that P(®: ,(0,(U,W)) = & ,(1,(U,W))) is
positive. The events {®°, (0, (U, W)) = ®°, (1, (U, W))}, {®~L (0, (U, W)) =
<I>:§L(i, (U,W))}, ..., are independent and they all have some positive probabil-
ity € > 0 of occurring. Hence with probability 1 at least one of them will occur
and this implies that a large enough 7" with the desired property can be found
a.s.

We will now describe in more detail how the algorithm dynamically determines
the value of T'. At first the chains are started at time —1 and they are both
updated once. If they are then in the same state, the procedure is ended and the
common state is given as the output. If they are not equal, the two chains are
started at time —2 and both are updated twice. At time 0 the current states of
the chains are compared. If they have not coalesced by then, they are started
anew at time 2 - (—2) = —4. This procedure is continued. Whenever time 0 is
reached without the two chains being equal, the starting time is doubled. The
procedure is ended when at some time the two chains are found equal. Their
common value at time 0 is then given as output. Let 7, denote the smallest 7" for
which ®°,(0, (u, w)) = ®° (1, (u, w)). For the sake of obtaining an unbiased
sample, it does not matter at what time we start our chains, as long as it is
earlier than —7,. However, for the sake of not having to wait too long, one
could wonder how well the method of successively trying T'=1,2,4, 8, ... works.
Propp and Wilson argue that this is not too far from optimal: Let us say that
we have observed coalescence when starting at —7', where T' = 2*. The number
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of simulation steps needed for one of the chains then equals 1+ 2 +4 + ... + 2%,
so the total amount of steps needed are 2(1 + 2 + 4 + ... + 2F) < 2572 We know
that T, must exceed 2¥~1, otherwise we would not have had to increment T to
2% By this we see that the number of steps needed to verify that 7, is such that
3%, (0, (u, w)) = ®° 4, (1, (u,w)), is at least 2 - 25~! = 2%, Hence the proposed
procedure comes within a factor 4 of the optimal one.

Propp and Wilson give the following pseudocode for the algorithm, which can
be found in Figure 1.

T+1
repeat
upper + 1
lower < 0
for t=-Tto —1
upper < ¢(upper, us, wy)
lower < ¢(lower, uy, wy)
T+ 2T
until upper = lower
return upper

Figure 1: Pseudocode for the monotone algorithm.

The random generation of the (u;, w;)’s is implicit in the code. An important
thing to note is that it is essential that for each ¢ the same choice of (uy, wy) is
used each time the iterated repeated loop reaches t.

Let us finally give a proof that the algorithm does produce unbiased samples
from 7.

Theorem 2.1. Suppose that the probability measure ™ on SV is monotone, sat-
isfies (i) above, and assigns positive probabilities to 0 and 1. Then the Propp—
Wilson algorithm terminates a.s., and produces an unbiased sample from .

Proof. The a.s. termination of the algorithm has already been established, so it
only remains to show that 7' = m, where 7’ is defined as the distribution of the
output. Recall the concept of distance in total variation ||u — p'|| between two
probability measures p and ' on SV:

I = wll = max |u(E) — u'(E)].

Fix ¢ > 0, and pick ¢ so large that P(7, > t) < e. Suppose that the random
element X € SV is picked according to w, independently of (U, W). Since
7 is invariant for the Gibbs sampler, we have that ®°,(X, (U, W)) also has
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distribution 7. Furthermore, ®°,(X, (U, W)) = @°,. (1, (U, W)) on the event
that 7, < t. Hence,

7 ="l < P@%(X,(U,W)) # e (1, (U,W)))
< P(T,>1t)
< €
and since € > 0 was arbitrary, the proof is complete. [

2.3. Anti-monotone coupling-from-the-past

In this subsection, we show how the coupling-from-the-past approach of Propp
and Wilson can be adapted to the anti-monotone setting. The Propp-Wilson
algorithm relies crucially on the fact that the mapping ¢ respects the ordering
<, i.e. that

A&, u,w) <X A&, u,w) whenever & <&

This holds when 7 is monotone, but not e.g. when 7 is anti-monotone.

The idea for anti-monotone systems is to have the two “chains” look at each
other’s configurations on V' \ {w}, rather than their own, when updating the value
at w. A similar exchange of configurations appears in an algorithm of KENDALL
(1996) for simulation of a certain class of spatial point processes, and Kendall’s
work was in fact the main source of inspiration for the present paper. We write
“chains” in quotation marks for this variant of coupling-from-the-past, because
although the two processes together form a Markov chain, they interact in such
a way that the Markov property is lost when one of them is viewed separately.

In order to make this more precise, we first generalize ¢ to the function

¢d:8Vx S x[0,1]xV =SV
by letting ¢(€, &', u, w) equal & at all locations except at w, where it gets value
max{s € S: (X (w) > s| X(V\{w}) =&V \{w})) > u}.

Note that (13(5 & u,w) = ¢(€,u,w). Define the SV-valued function &)if inductively
by letting .
(I)wtti (65 fla (ua w)) =¢£
and, for k=1,2,...,
(e, € (u,w)) =
(5 (&)24»,671(6’ ’Ela (U, 'lD)), (iii+k71(€,’ ga (ua w))a Uty +k—1, wt1+k—1) -
The anti-monotone coupling-from-the-past algorithm now consists of generating

the (us, w;)’s randomly in the exact same manner as in monotone coupling-from-
the-past, and computing ®° (1,0, (u,w)) and ®° (0,1, (u,w)) for larger and
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larger values of 7" until the two functions give the same answer. Their common
value is then given as output. The algorithm can be found in pseudocode in
Figure 2.

T+ 1
repeat
upper + 1
lower < 0
for t=-Tto —1
upper' < upper
lower" < lower
upper < ¢ (upper’, lower’, uy, wy)
lower + ¢ (lower', upper’, ug, w)
T 2T
until upper = lower
return upper

Figure 2: Pseudocode for the anti-monotone algorithm.

One may want to apply anti-monotone coupling-from-the-past to systems
where not all elements of SV have positive m-measure, such as the hard-core
model. It is then necessary to define the conditional probability 7 (- | X (V\{v}) =
€) also for configurations ¢ € SV\M¥} that have zero probability under 7. (For
monotone coupling-from-the-past we did not need to worry about this, because
each chain is a realization of the Gibbs sampler, which never leaves the set of
configurations that have positive m-measure.) For such £ € SVMY we need to
define 7(- | X (V' \ {v}) = £) in such a way that 7(X (v) < s| X(V \{v}) = ¢) still
is increasing in &, and it seems natural to set

T(X(0) < s[X(V\{o}) =€) = maxa(X(v) <s|X(V\{v}) =¢)

where the maximum is taken over all ¢ € SV M} which have positive 7-probability
and satisfy & < €. For the case of the hard-core model, this means that (1)
extends to non-feasible &.

Conditions under which we can guarantee convergence of the algorithm are
given in the following theorem.

Theorem 2.2. Suppose that m is a probability measure on SV which is anti-
monotone and which assigns positive probability to at least one of the elements
0,1 € SY. Then the anti-monotone coupling-from-the-past algorithm terminates
a.s., and produces an unbiased sample from m.
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To prove this result, we shall make use of the following lemma, which contains
the essence of the exploitation of the anti-monotonicity structure. An alternative
proof of Theorem 2.2 in a more general situation can be found in M@LLER (1997).

Lemma 2.3. Let m be anti-monotone, and let &,,&],&,,&, € SV be such that
& & and & = &. Then, for each ti, to and (u, w),

éif (gla g{a (ua w)) j éz (62, géa (u7 w))

Proof. Set k =ty —t;. For k£ = 0 the result is trivial. For £ = 1, the assertion
is that

é(élv 617 U’tl’wtl) = é(é-Qv géﬁ Uty s wtl)'

That this domination holds at all locations v € V' \ {w, } is immediate from
the assumption that & =< §,, whereas the domination at w,, follows from the
assumptions that & > &, and that 7 is anti-monotone. This proves the result for
k = 1. Note also that

é(é{, 615 utlawtl) = &(é-éa 62: Uty s wtl)'

by the same argument. The cases k = 2, 3, ... now follow by induction.
[ ]

Proof of Theorem 2.2. Note that 0 and 1 play completely symmetric roles in
the algorithm, and that it therefore is sufficient to prove the theorem for the case
7(0) > 0. Lemma 2.3 implies that if

~ ~

ci(iT(O’ i’ (’U,, w)) = (i)(iT(la 0’ (u’ w)) (4)

then we have for any ¢, ¢ that ®°,.(¢, ¢, (u, w)) equals their common value. The
same thing consequently holds for @Qt(g, &, (u,w)) whenever ¢t > T. Hence, the
algorithm terminates whenever we can find a T for which (4) holds. Write S
for the minimal element of S. For W C V, write s)V. for the element of S where
every v € W has the value s, so that in particular 0 = 5. . Since 7(0) > 0,
we have for each v € V that the conditional 7-probability that X (v) = S, given
the event that X (V \ {v}) = s&}iv} is positive. By anti-monotonicity, we thus
have

(X (0) = smin | X(V\ {v}) =€) >0

for every v € V and ¢ € SVM¥. It follows that we can find an L (taking L
equal to the cardinality of V suffices) and an € > 0 such that the two processes,
starting from arbitrary states, have probability at least € of both reaching state
0 after L time units. The a.s. existence of a T such that (4) holds (and hence the
a.s. termination of the algorithm) now follows by the same argument as in the
monotone case.
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It remains to show that 7’ = 7, where 7’ is the distribution of the output of the
algorithm. Write 7, for the smallest 7" for which (4) holds with (u, w) = (U, W).
Fix ¢ > 0, and pick ¢ so large that P(7, > t) < e. Suppose that the random
element X € SV is picked according to m, independently of (U, W). Since

¢(€, &, u,w) = ¢(§, u,w) and 7 is invariant under the ¢(¢, U, W) evolution, we
have that ®°,(X, X, (U,W)) is distributed according to 7. We have already
argued that ®° (X, X, (U, W)) = ®°,, (0,1, (U, W)) on the event that T, < t,

whence

”ﬂ— - ﬂ—l“ < P(é(lt(Xa Xa (U’ W)) 7é é(1T* (65 j—a (Ua W)))
< P(T,>1t)
< €
and since € > 0 was arbitrary we have that |7 — 7’| = 0, and we are done.

3. Markov random fields on bipartite graphs

In this section we will show that for a certain class of systems, namely anti-
monotone Markov random fields on bipartite graphs, anti-monotone coupling-
from-the-past can be viewed as “isomorphic” to monotone coupling-from-the-past
for a related class of systems.

A bipartite graph is a graph G whose vertex set V can be partitioned into two
setS (Veven, Voda) in such a way that each edge of G has one of its vertices in Veyen
and the other in V,4q. We will now give a formal definition of a Markov random
field and for that we need the concept of a boundary of a set. For W C V| we
define the boundary of W to be the set

oW ={veV\W : Jw e W such that v ~ w}.

Definition 3.1. Suppose G is a finite graph with vertex set V and that S is a
finite set. Let X be a random element taking its values in SV. Now X is said to be
a Markov random field on G if for each W C V', the conditional distribution
of X(W) given X (V\W) depends on X (V \ W) only through its values on OW .
That is to say, if ™ is the underlying probability measure, X is a Markov random
field if for allw € SV, W' € SY\W and " € SV such that " is the restriction
of W' to OW and m(X(V\W) =w') > 0, we have

T(XW)=w | X(V\W) =) = a(X(W) =w | XOW) = ")

We will allow ourselves to identify the system with its underlying probability
measure, in saying that 7 is a Markov random field, when 7 is the probability
measure of a Markov random field.
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Let us suppose that the set S C R of attainable values is symmetric about
zero. We do not lose anything in generality by this assumption, since any finite
S can be given this property by a monotone transformation. Let X, be an S'-
valued random variable and let m, be the corresponding probability measure.
Suppose that 7, is anti-monotone and in addition that X, is a Markov random
field. We introduce a function ¢:S% — SW, where W is any subset of V, with
the interpretation that if £ = ¢(&), then

! _ §(U) v € Veven
) = { —£(v) v € Vogq.

Note that p(¢(£)) = &.
Let us construct a new S"-valued random variable X,, from X, by letting
X = ¢(X,). We will now show that the distribution 7, of X, is monotone.
Suppose that & < n and let v be an even vertex (i.e. v € Veyen). We get

T (Xm(0) < 8 [ X (VA {v}) =€)
= ma(Xa(v) < 5| Xa(V\A{v}) = 0(§))

Ta(Xa(v) < 5[ Xa(V\ {v}) = 0(n)) (5)

= (X (v) < 5| X (V\{v}) =n).

The conditional distribution of the value at location v only depends on the status
of the neighbours of v, which all sit in V,4q. The fact that 7, is anti-monotone in
combination with ¢(70ad) X ¢©(&aa), explain the inequality above. 7,qq4 and &yqq
are to be interpreted as the projections on S'edd of the configurations n and ¢
respectively.

Similarly if v is an odd vertex we get

T (Xm(v) < 5[ Xm(V\{v}) =&) = 7a(Xa(v) 2 —s| Xa(V \ {v}) = ()
= 1=m(Xa(v) < —s| Xa(V\{v}) = 0(£))
> 1=m(Xo(v) < —s| Xa(V\{v}) = 0(n))
= Tm(Xm(v) < s[Xn(V\{v}) =n)

whenever & < 7. The inequality is explained by the same argument as above, on
noting that ¢(&even) < ©(Meven). Here Eeven and Neyen have the obvious meaning.
Since s was arbitrary, we have shown that 7, (X, (v) < s| X, (V \ {v}) = &) is
decreasing in £ for all v and all s, and thereby that m,, is monotone.

Examples of anti-monotone Markov random fields on bipartite graphs are
the hard-core model and the Ising antiferromagnet on the cubic lattice. An
interesting thing to note is that by flipping the values on the odd lattice of an
antiferromagnet system, an Ising ferromagnet is obtained.

The fact that m, is monotone means that if we want to sample from =,
we have the following alternative to anti-monotone coupling-from-the-past: Run

Ta v

~— ~—

v
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monotone coupling-from-the-past on 7, and expose the output to ¢. An obvious
question now is which of the procedures is preferable as far as running time is
concerned. The answer is that it does not matter which one we choose! We
formulate this loosely as follows:

Applying the anti-monotone algorithm to an anti-monotone Markov
random field ©, on a bipartite graph gives the same result, and takes
equally long time, as applying the monotone Propp—-Wilson algorithm
to the system m,, that is obtained from m, by flipping the values of the
odd vertices.

To make this more precise, let us couple the two algorithms by at each time
step subjecting them to the same random variables U, and W;. Let ® be defined
as in Section 2.3 with 7, as the underlying probability measure. Under the
assumptions of Theorem 2.2 we know that there a.s. exists a T, such that

A A

(i)(iT* (0, i7 (u,w)) = &)QT*(L()’ (u, w)). (6)

Under the assumptions of Theorem 2.1, with ® defined as in Section 2.2 with
respect to m,,, we also know that a.s. a T, can be found, for which

@gTL(Ov(uvw)) = @gTL(iv(uvw)) (7)

holds. We want to show that T, = 77 and that the final state in (6) equals that
of (7), when the latter has the values on Vqq flipped.

We introduce the random variables X ™ UPPer X 10Wer | x&upPPer ;i x o lower
which will represent, from left to right, the values of the upper and lower elements
of the monotone algorithm at time ¢ and the values of the upper and lower
elements of the anti-monotone algorithm at time t. We note that at each starting
time ¢ the following equalities hold:

Xioven = Xileven

Xoaa™" = o(Xpa™) (8)
X = Xiewen

Xoaa ™ = QX ™)

The crucial observation is now that if these equalities hold at time ¢, this must
also be the case at time £ + 1. To see this, we look at what happens when
the four variables are updated. Each vertex in X" "PP* looks at its neighbours,

t,even
which sit in X357, and each vertex in X;".on looks at the neighbours of the

a, lower
Xt, odd -

Now since we have that X[, 8" = (p(XZ’Olgger) and we subject ® and ® to the

same values of (U, W), we get that X/V\"ove, = X;1 oven- Here we used the first

corresponding vertex in X'°"*" These neighbours sit in the odd lattice,
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equality of (5). Similar arguments in the three other cases lead to the conclusion
that the equalities of (8) of time ¢ must also be true at time ¢ + 1.

Having thus convinced ourselves that the equalities remain throughout the
evolution of time, we observe that (8) further implies that

) 11 3 3 ) 11
XSUPPE — TIOWer i and only i X UPP = X oW

and we are done.

One implication of all this is that in the bipartite Markov random field case,
results proved for monotone systems concerning e.g. speed of convergence (see
Propp and WILSON (1996)), translate directly to anti-monotone systems.

4. Some simulation results

We will now show how the algorithm performs on some instances of the hard-
core model and of the random-cluster model. We have chosen not to include any
simulations of the Ising antiferromagnet. Readers interested in this particular
example may turn to PROPP and WILSON (1996), where the Ising ferromagnet is
studied, and translate the results to the antiferromagnetic case using the methods
of Section 3.

The implementation of the algorithm was done in the programming language
C. In all our simulations we have used square portions of Z? (with free boundary,
i.e. without the torus convention) as the graph G, and we refer to the side-length
of the square as the size of the system. Our estimates of mean running time are
all based on 20 replicates and we measure running time in number of iterations
of the inner loop in the pseudocode needed to reach coalescence.

When our aim has been to investigate the time to coalescence for different
parameter values, we have used the naive “coupling-to-the-future” variant of
the algorithm, mentioned in Section 2.2. Instead of starting further and fur-
ther back in time until coalescence is reached at time 0, we start at time 0 and
run forward until coalescence occur. Recall that 7, is the smallest ¢ such that
3°,(0,1,(U,W)) = d°,(1,0, (U, W)) holds. Let T* denote the smallest ¢ such
that ®(0, 1, (U, W)) = ®4(1,0, (U, W)) holds. The actual number of iterations
needed in the algorithm comes within a factor 4 of T}, as argued in Section 2.2.
It is easy to see that 7T, and 7™ are governed by the same probability distribu-
tion (see PROPP and WILSON (1996)) and hence we can concentrate on 7* when
studying running time. The pictures of the various configurations were, however,
of course accomplished using the correct coupling-from-the-past protocol.

4.1. Hard-core examples

We have studied the behaviour of our algorithm for the hard-core model on square
subsets of Z? of various size and with various choices of the activity parameter
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Figure 3: Running times for the 4-neighbour hard-core
model. Left diagram: Mean number of iterations
versus size. Right diagram: Mean number of itera-
tions versus activity.

a. As the diagrams in Figure 3 clearly demonstrate, the running time of the
algorithm depends heavily on both the size of the system and of the value of the
activity. That the running time should increase with the size seems obvious. To
get some intuition for the dependence on the activity, we can look at formula
(1) for the conditional probability of a vertex having value 1 given the values
of its neighbours. As the activity gets higher, there is at each vertex a greater
probability of having the value 1, given that all neighbours have value 0. This
results in a high level of dependence between the values of the vertices — if there
is a 1 at a vertex in let us say the even lattice, then all its neighbours, which sit
in the odd lattice, of course must have value 0 and moreover it is very likely that
there will be 1’s at many other vertices in the even lattice even some distance
away from the first vertex. Figure 4 demonstrates this phenomenon. The value
of the activity is 1 in the left picture and 4 in the right picture. Both simulations
were carried out on a 50x50 lattice. The longer running times for large a may
also be related to the phase transition phenomenon which occurs for large a, see
e.g. GEORGII (1988).

In the systems studied so far, every interior vertex had 4 neighbours (north,
south, east and west). This makes the graph bipartite, so these 4-neighbour sys-
tems can be translated into monotone systems by the arguments in Section 3. To

17



Figure 4: The 4-neighbour hard-core model on a 50x50 lat-
tice. The value of the activity is 1 (left diagram)
and 4 (right diagram).

see what happens in a genuinely anti-monotone situation we have also studied
systems where diagonal edges are included so that every vertex in the interior of
the set have 8 neighbours; the bipartite structure of the lattice is then removed.
This turned out to be much more demanding as far as running time is concerned.
We only managed to simulate 20x20 lattices and at relatively low values of ac-
tivity, see Figure 5. That it should take longer for the algorithm to terminate in
the case of 8 neighbours seems natural enough, since the graph in this case has a
higher degree of connectivity.

4.2. Random-cluster examples

Another example of a genuinely anti-monotone system is the ¢ < 1 random-
cluster model, since it lacks the Markov random field property necessary for the
arguments in Section 3. We have chosen to simulate the random-cluster model
for values of p and ¢ on the so called self-dual curve p = 1-{\(1/(_1’ see WELSH (1993).
we have that p+ p’ = 1 for these values of p and ¢. Recall

If we let p' = m,
from (3) that p’ is the conditional probability of an edge being present given
that its two end-vertices are not connected in the configuration and that p is the
conditional probability of an edge being present given that the two end-vertices
are connected. By means of the self-duality of the quadratic lattice (well known
in percolation theory; see GRIMMETT (1989)), one can argue intuitively that
approximately half of the edges will be present in these graphs, although with
different dependence structures for the different values of p and q.

Let us now study Figure 6. It contains four examples of random-cluster models
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Figure 5: Mean number of iterations versus activity for the
8-neighbour hard-core model on lattices of size 20
and 10 respectively.

on a 70x70 lattice. The upper left configuration is an instance of a monotone
random-cluster model with ¢ = 4 and p = % It shows clear signs of clustering.
This is explained by the fact that values of ¢ greater than 1 favour configurations
with a high number of connected components, or alternatively by the fact that
the conditional probability in (3) that an edge e is present tends to be larger the
more edges around e that are present. In the upper right configuration the edges
are present independently of each other, the parameter values being ¢ = 1 and

p = % This is simply independent bond percolation with bond-probability %

The lower left configuration is anti-monotone with ¢ = 0.6 and p = 1%' This
was the lowest value of ¢ we managed to simulate on the given size of lattice. The
structure is notably more ordered than in the two configurations above. There is
even more order in the last of the four pictures. It is a realization from the uniform
spanning tree measure, which arises in the limit of ¢ — 0 on the self-dual curve
(see HAGGSTROM (1995)). The configuration was produced using the famous
random walk algorithm described e.g. in PEMANTLE (1995) and implemented by
SEGERBERG (1994).

As opposed to the case of the hard-core model, the evaluation of the condi-
tional probabilities in the random-cluster model is computationally non-trivial.
We have used a slightly simplified version of an algorithm by SWEENY (1983) to
determine the connectivity necessary to evaluate (3). The algorithm relies on the
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fact that we are dealing with Z2, since it uses the dual lattice. Each connected
component in the ordinary lattice is surrounded by a loop in the dual lattice
and each of these loops is given a name. To determine if the two end-vertices of
an edge chosen to update are connected, only a comparison of names is needed.
However, if the algorithm decides to change the presence of the edge, new loops
may develop or disappear and new names will be needed. The process of changing
names takes different amounts of time depending on the length of the loops in the
dual lattice, that is the size of the components in the ordinary lattice. Thus the
time used for each iteration of the loop may differ. Nevertheless, we have only
recorded the number of iterations used for the algorithm to terminate, and not
the actual time used. This is because we feel that only the number of iterations
of the loop has general relevance to the Propp-Wilson algorithm.

p=0.43

p=0.57
p=0.48
p=0.52

mean number of iterations
2*10"5 4105 6+10"5 8*10"5 10”6 1.2*10"6

0

0 20 40 60 80 100
size

Figure 7: Plot of mean number of iterations versus the size

for different parameter values on the self-dual curve
_ V4
P= 1

Figure 7 plots observed mean running “time” versus size for four pairs of
p and p' values: Ia) p = 0.43 and p’ = 0.57, 1b) p = 0.57 and p’ = 0.43,
2a) p = 0.48 and p' = 0.52 and 2b) p = 0.52 and p’ = 0.48. The systems
la) and 2a) are anti-monotone and the other two are monotone. A priori, one
might think that 7a) and 1b) would be about equally difficult to simulate, as
would 2a) and 2b). However, as Figure 7 shows, the anti-monotone case is more

21



demanding, the effect being hardly noticeable for p and p’ taking values 0.48
and 0.52, but increasing drastically as p and p’ move away from 0.5. We do
not know whether this reflects some general fact about anti-monotone simulation
being more difficult than monotone, or if it is just a particular feature of the
random-cluster model.

4.3. Concluding remarks

There is almost certainly room for refinement of our methods. In most cases a
very large number of iterations were needed to reach coalescence. One question
that arises is if the running time can be reduced by using some other method
of choosing the location to update, e.g. to use a deterministic sweeping scheme
rather than selecting the location at random. Another potential speedup of the
algorithm might be to use the ideas of M@LLER (1997), where the upper process
is started in some “dominating chain” rather than in the maximal state.
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