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Rosenblatt processes arise as functional limits in non-central limit theorems for
strongly dependent Gaussian sequences. Using local central- and x2-limit techniques
we show that the marginal distributions of these processes belong to the Type I-
domain of attraction of extremes. This in turn makes it possible to obtain bounds
on local extremes for Rosenblatt processes.

1. Introduction. A random variable Y is Rosenblatt distributed provided that
E{eY) = exp{i %/ |a:1—a:k|_271’£[ \zj—xj_1]|7%" daz} for HeR,
—2 z€[0,1]k j=2
where v € (0, 3) is a parameter, and then we write ¥ € R(v). These distributions
were introduced by Rosenblatt (1961), and named after him by Taqqu (1975).

Let 1 be an N (0, 1)-distributed random variable. Then the Hermite polynomials
H,(z) = (-1)"e” /22" ¢=7"/2 form an ON-basis in L?(R,n) = {G € L°(R) :
E{G(n)?}<oco}. Writing J,,=E{G(n)H,(n)} we thus have E{[Zg:m JnH, ()
—G(M)]*} =0 as N—oo for G € Gn={Gel?(R,n) : Jo=...=Jp_1=0}.

Theorem A. [TAQQU (1975), DOBRUSHIN & MAJOR (1979)]. Let {X;}icz be

a stationary zero-mean Gaussian sequence. Assume that the covariance
r(N) =E{XyXo} =0 and YL 30 r(i—j)*~L(N)* as N—oo,

where L is a reqularly varying function with index ~v. Writing {B(t)}+cr for stan-

dard Brownian motion and choosing a G €Gy, we then have

1 [Ni] J2 s=t
- X, o V(e Y F]—(147)/2 B B
L(N) i:1G( i) = 2K, /wew /s=0 [(s—21)" (s—z2)7] ds dB(z1)dB(z2)
= /> £(t) weakly in D([0,1]) as N — oo,
2K,

where K2 = Var{£(1)}. Moreover K 't""'&(t) € R(vy) for each t>0.

In Sections 2 and 3 we prove the following theorems:
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Theorem 1. The distribution function F of a Rosenblatt distributed random vari-

able Y €R(vy) has a density function f such that
limy, s oo w(u) flu—w(u)z)/F(u) = e * for xR, (1.1)

for some non-negative function w. Thus F belongs to the Type I-domain of at-

traction for minima with auxiliary function w, i.e.,

limy, oo Fu—w(u)z)/F(u) = e * for zeR (1.2)

Theorem 2. The distribution function F' of a Rosenblatt distributed random vari-

able Y €R(vy) has a density function f such that
limy oo W f(u+Wz) /(1-=F(u)) = e ® for z€R, (1.3)

where W = sup{s eR: E{eY} < oo} € (0,00). Thus F belongs to the Type

I-domain of attraction for mazxima with constant auziliary function W, i.e.,
limy oo (1—F(u+Wz)) /(1—F(u)) = e ® for z€R. (1.4)

The proof of (1.1) and (1.3) is an adaption of the method of Feigin & Yashchin
(1983) and Davis & Resnick (1991). Their idea is to derive a so-called strong
Tauberian result by proving a local limit theorem for a suitably normalized and
Esscher-transformed version of the distribution under consideration.

Strong Tauberian theorems origin in the asymptotic treatment of convolution
kernels by Hirschmann & Widder (1955, Chapter V). Feigin & Yashchin (1983) gave
a generalization to more general Laplace transforms (than convolution kernels), but
under rather restrictive technical conditions. As did Davis & Resnick (1991) in their
study of sums of non-negative random variables, we found that these conditions are
not met by our framework. Thus a treatment adapted to the specific situation is
required. But the scheme of Feigin & Yashchin (1983) remains the main inspiration.

Application of results from extreme value theory requires belongance to a domain
of attraction: Methods in statistics for extremes are directly linked to these domains
[e.g., Resnick (1987)], and extremal theory for stochastic processes also relies on
attraction [e.g., Berman (1982) and Albin (1990, 1998)]. In Section 4 we show how
Theorems 1 and 2 combine with a results of Albin (1998) to yield bounds on the

probability of a local extrema for the Rosenblatt process £(¢) in Theorem A.
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Theorem A suggests that R(v)-distributions are related to x>-distributions: Let-
ting 71,72, . .. denote independent N (0, 1)-variables the precise statement becomes
[Taqqu (1975, Section 6), Dobrushin & Major (1979, Proposition 2)]

Y=, i)\j(nf—l) where Ai=...=Xj;>X;;+1>...>0 and il)\; <oo. (1.5)
j= j=

In (1.5) we have Z]Oil Aj=oo0. This is important since otherwise we could write
Y=, ||IA’||2—Z;”;1 A;j where YV = > o1 V/Anje; is Gaussian with values in the
Hilbert space spanned by an ON-basis {e; 521. But then the fact that ¥ belongs
to the Type I-domain of attraction would follow from the corresponding result for
|V [e.g., Albin (1992, pp. 139-140) and Albin (1996, Proposition 1)].

Now note that in view of (1.5) the Laplace transform ¢ of Y is given by

o) = Bloxpl-sY1) = exp{ - 3% (n(142159) = Ay9)} for s (~(22)™,00).

2. Proof of Theorem 1. The Esscher-transform Y, of Y at s€(—(2A;)71, 00)
is a random variable with distribution dFy, (z) = e **dF(z)/¢(s). Here we have

m(s) = E{Y,} = ZH% and o(s)? = Var{Y,} = Zm

J_

The normalized variable Z;=(Ys—m(s))/o(s) has characteristic function
ps(z) = E{explizZs|}

= ¢(s—iz/o(s)) exp{—izm(s)/o(s)}/d(s)

~er{- 2[5 ) ]| o e

Jj=1
Since lim,_ o0 s0(s) = 0o it follows readily that
lim () =e /2 for zeR, so that Zs—cN(0,1) as s—oc. (2.1)

§—00

To proceed we observe the easy fact that

LS (s e for z€R 2.2
|us(z)| = exp _Z; n| 1+ (1525520 (5)? or zeR (2.2)

Choosing a ¢>0 such that In(1+y?)>cy? for |y|<1, we therefore get

lim s ()| dz
870 J K<|x|<s0(s)
[0 1 — )\2 2 o L s
gslggo . 2exp{—zz 142, )20 )2}dx§/K 2exp{—§ca: }dx—)O

(2.3)

Jj=1
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as K — oo [recall that so(s)—oo]. Invoking the trivial facts that

oo oo
/1 (1+422) " da < (1+g)1—v/0 (1+42®) " de =T ()" for v>1,

and that n(s) = #{j: A\js>1} = oo as s—o00, we further obtain

/ 1o ()] do
|z > so(s)

> 4 2 1 AN2 22
SO’(S) $ O-(S) {jiAjssl} O-(S)

oo IN2g2 1/2
)

<9 3
<2 rhs
J=1

\/gﬂ' 1—n(s)/4
< T(LQB) )/ ( sn(s)+ [ 2 Azs? exp{—ic 3 )\252})
{7:2;s<1} {7:2;s<1}
—0 as s—oo. (2.4)

Since (2.2) shows that |pus(-)|€L!(R), Z; has a density fs given by the invers
Fourier transform of ,us(-) Combining (2.1) and (2.3)-(2.4) we thus conclude

exp{ } 1 /Oo —iyT 1.2
sup | fs = su e s(x)—exp{—zz°}) dx
1 2
< o | ‘,Us(l' —exp{—3z }| dx
—0 as s—o0. (2.5)

Since Z, has a density, Y has a density f that satisfies
f(m(s)+za(s)) = o(s)"" ¢(s) exp{s(m(s)+z o (s))} fs(x). (2.6)

Choosing =0 and using (2.5) we now obtain

f(m(s)) ~ (2m) Y2 0(s)" ¢(s) exp{sm(s)} as s—oc. (2.7)
Combining (2.5)-(2.7) we get [again recalling that so(s)— oo]

f(m(s)—z/s) = o(s)"" ¢(s) exp{sm(s)} e fs(z/(s0(s))) ~ e™" f(m(s))
as s—o00. Another application of (2.5) therefore yields

e~ T sF(m(s)) N sF f(m(s)—y/s) Ooe_y fi(y/(sa(s)))
Fm(s)—/s) / f(m g W ‘/0 £(0)

as §— oo. Consequently (1.1) holds with w(u) = (m=!(u))~!.

dy — 1

The fact that (1.1) implies (1.2) is well-known and follows e.g., from an applica-

tions of the theorem by Scheffé (1947). O
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3. Proof of Theorem 2. Let Y, be a variable with density fy (x) =e™%® (z—
m(s))2f(z)/ (V(s)d(s)) for s€(—(2A1)~*, 00). Then we have

) =BT} = m(s) - V/(5)/V(s) =R
5(s)2 = Var{¥.} = V(s) + V"(3)/V(s) — V'(s)/V(5)? ~ 3 2F2 (59

(2M) 7 +)?
as s} —(2A1)7!, where V(s)=o(s)?. It follows that

V(s—iz/6(s)) ~ (jo/2)/ (1— zm/\/jo/T—l—) as s)—(2A1) L.
Further the normalized variable Z,=(Y;—rn(s))/6(s) has characteristic function
fro(2) = BlexplinZ,]}

= (V(s—iz/6(s))/V(s)) (¢(s—izx/6(s)/d(s)) exp{~iz1i(s)/5(s) }
= (V(s—iz/5(s))/V(s))

(= - 2 ) )
= (1—izo/2+2) "9 expl—iz\fio/2+2} as sl—(2A)"" (3.3)

for z€R. Consequently Zs —¢ (x2(jo+4) — (jo+4))/v/2jo+8 = x.

To proceed we observe the easy fact that

X exp

s @)
@ @ o T )e"p{‘igm(” Enased)
o/ 2V (5)

~ ((2M) 7 +8)2 422 /6(s)?

" (Z <<2Aj>—11/+(i;(i):v)2/&<s>2) eXp{‘i ‘ 1“(” %)}(34)

1>90

Here (3.2) combines with the fact that V(s) ~ (jo/2) /((2A1) " +5)? to give

m [ Jo/(2V (s))
-G /K ((2M1) 7 45)2+22/5(s)? d
= lim Jo6()/(2V(3)) [E - arctan( K/&_(S) )] —0 as K—oo.

si—2x)-t (2A1)"14+s [ 2

5



As s —(2X1)7! we further have

é(s) s o(s 7
/ > 1/(2V (s)) _ o) )3 (L -0 (3.6)

k2 (@) 492 a2/6(s)2  V(s) &2 (12)9)°
and
L:>(J§<<2A> T )‘”‘p{ 12 1”(” 1)
<70 (Z <1—ij§m2) /100(” <1?2J§;fs>2>_1"””
— 0. (3.7)

Since (3.4) shows that |fis(-)|€L'(R), Z, has a density f, given by the invers
Fourier transform of fis(-). Combining (3.3) and (3.5)-(3.7) we thus get [cf. (2.5)]

Fo0 =50 = 5 [ (o) Blexpl—inn}) dr > 0 as s1-(2h)"

21 ) _ o

Since

A~

f(in(s)) = f5(0) d(s) €™ (ii(s) —m(s))? (V (s5)/6(s)),

and [cf. (3.1)-(3.2)]

V)

3(J0/242) (m(s) —m(s)) ~ 1iu(s) ~ V/jo/2+2V(s)/5(s)
it follows that
F(1(s)) ~ fx(0) §(s) /242 =M EN) (o /24-2) /2)% 1in(s) 72 (jo/2+2) /2 1 (s).
But here ¢(s) ~ Ci(s)7/? for some constant C' >0, and thus we conclude
f(u) ~ £, (0) C uio/? gio/2+2 g=u/(2M1) ((jo/2+2)/2)% u™2 (j0/2+2)_1/2 U as uU—00.
Now (1.3) and (1.4) follow from elementary computations. O
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