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Abstract

The random triangle model is a Markov random graph model which, for
parameters p € (0,1) and ¢ > 1 and a graph G = (V,E), it assigns to a
subset, 1, of E, a probability which is proportional to p/l(1 — p)IEl=nlgtm)
where t(n) is the number of triangles in 7. It is shown that this model has
maximum entropy in the class of distributions with the given edge and triangle
probabilities.

It is proved that a modification of the Swendsen-Wang correspondence
between the Fortuin-Kasteleyn random cluster model and the Potts model is
valid for the random triangle model, i.e. it corresponds to a certain distribution
of “spins” on the set of all triangles of G. Using this correspondence, the
asymptotic behavior of the random triangle model on the complete graph is
examined for p of order n~%, a > 0, and different values of ¢, where ¢ is
written on the form ¢ = 1+ h(n)/n. It is shown that the model exhibits an
explosive behavior in the sense that if h(n) < clogn for ¢ < 3a, then the
edge probability and the triangle probability are asymptotically the same as
for the ordinary G(n,p) model, whereas if h(n) > ¢'logn for ¢ > 3a, then
these entities both tend to 1. For critical values, h(n) = 3alogn + o(logn),
the probability mass divides betweeen these two extremes.

Moreover, if h(n) is of higher order than logn, then the probability that
n = E tends to 1, whereas if h(n) = o(logn) and « > 2/3, then, with a
probability tending to 1, the resulting graph can be coupled with a graph
resulting from the G(n,p) model. In particular these facts mean that for
values of p in the range critical for the appearance of the giant component
and the connectivity of the graph, the way in which triangles are rewarded
can only have a degenerate influence.

1 Introduction

Since Erdés and Rényi introduced the subject in 1959 (see [5]), random graphs
have attracted much attention in various disciplines of science. One class of such
disciplines are the social sciences where random graph models are used for describing
the structure of social networks. See e.g. the book by Faust and Wasserman [6] or the
survey paper by Frank [8]. For instance, an edge between two vertices could mean
that the corresponding individuals are friends. It is this example that provides the
background for this paper.

It is a well recognized property of such “friendship graphs” that they exhibit so
called transitivity, i.e. that “a friend of a friend of mine is often also a friend of mine”.
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Therefore one wants to study random graph models which, unlike the simplest model
with edges present or absent independently of each other, reward transitivity. In
terms of the graph structure rewarding transitivity means that we must create a
model where the probability that a certain fixed edge is present given the absence
or presence of all other edges is larger if its end vertices are second neighbours than
if they are not. There is a number of different random graph models for which
this holds. Two examples of such models which have been used in a social network
context are random hypergraph models (see [12] and the references therein) and the
random intersection graph model (see [13]). Both these examples, however, exhibit
some undesirable properties in the conditional probability that a certain edge is on
given the rest of the graph.

So what #s the “most natural” prototype for a random graph model with tran-
sitivity? If we drop our desire for transitivity and just want a model where the
probability for edge presence is p, for some p € [0, 1], then the the model with inde-
pendent edges seems to be most natural in some sense. Likewise, if we want a model
with a fixed number of edges, we let these spread out uniformly. These two models
have in common that they are in some sense the most random ones under the cor-
responding conditions. Mathematically speaking they maximize the entropy in the
corresponding classes of random graph distributions, i.e. they maximize the function
— >, 1(s) log p(s) where p ranges over the possible random graph distributions and
the sum is over the possible outcomes.

In the present situtation it is therefore natural to look for a maximum entropy
model with the property that the probability that a given triangle is present takes
on some desired value which is strictly higher than the product of the three corre-
sponding edge presence probabilities. (We define a triangle as a set of three edges
such that each two of these have a common end vertex.) It turns out that the model
we are then looking for is the following.

DEFINITION. Let G = (V, E) be a finite graph. The random triangle measure
on P(FE) is given by

1 _
Ham) = Z5gp™ (1= p)=1 gt (1)
t,G
where t(n) is the number of triangles in 7 and Zf, 4 is a normalizing constant. We
require that p € [0,1] and ¢ > 1.

Consider for a moment the case where G is the complete graph and let A, be the
event that {e € Y} where Y is understood to be a random graph chosen according to
,uf,’g; and e is some given edge, and let A; be the corresponding event for some given
triangle ¢. Since the probabilities 1 (A.) and ¢ (A;) are continuous functions of p
and g it is easily seen that for any a and b such that a € [0,1] and a® < b < a, we can
find p and ¢ in (1) such that pf'¢(Ae) = a and pf¢(A;) = b. In fact this property
holds for all transitive graphs, GG, e.g. a finite part of a d-dimensional triangular
lattice with the proper torus convention.

The desired property of maximum entropy is the result of the following proposi-
tion.

PrRoPOSITION 1.1 The entropy of uf”g; 1s maximal in the class of probability mea-
sures, ft, on P(E) with u(A.) = pyé(Ae) and p(A;) = pid(Ay) for alle € E and all
tefT.
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Proof. Regard this as a sampling situation where the set of “individuals” is the
set of all edges and triangles of G. Choose a sample from this set of individuals by
picking each edge with probability p and each triangle with probability ¢/(¢ + 1)
independently for different individuals. Denote this sample X. It is clear that X
has maximum entropy in the class of sample distributions on this set of individuals
with the given inclusion probabilities.

Now, by conditioning on the event that the triangles resulting from our choice of
edges exactly coincides with the triangles that were actually chosen in the sample,
we get the random triangle measure. Let Y be the indicator of this event and use
the standard entropy formula:

HX,Y)=H(Y)+HX|Y =0)Pr(Y =0)+ H(X|Y = 1)Pr(Y = 1)

where H denotes entropy. Since Y is ¢(X)-measurable we have that H(X,Y) =
H(X) and since H(X) is maximal, changing the distribution of X on {Y = 1}
without changing the edge and triangle probabilities cannot increase H(X). The
result follows. O

Now imagine for a while that we replace ¢(n) of the definition (1) with k(n), the
number of connected components of the graph. Then we get the so called random
cluster model. This is a well known model from statistical mechanics and some of
the methods used to ananlyze it will turn out helpful for us, so let us take a closer
look at it.

2 Preliminaries on the Random Cluster Model

The random cluster model can be seen as a third example of a random graph model
which has an element of transitivity but which shares the drawback of the random
intersection model mentioned above. The precise definition is the following.

DEFINITION. Let G = (V, E) be a finite graph. The random cluster measure
on P(FE) is given by

PaQ(

1

n =z

zZ%1
where k(n) is the number of connected components in 7. The numbers p and ¢ are
the parameters of the model and are to be chosen so that p € [0,1] and ¢ > 0. The
number Z%? is a normalizing constant.

Note that letting ¢ = 1 yields the ordinary model with independent edges. As
mentioned, the random cluster model arose in a completely different context than
social networks. It was introduced in the 70’s by Fortuin and Kasteleyn [7] because
of its correspondence, for ¢ = 2,3, ..., with a g-state Potts model, which for ¢ = 2
is the Ising model, which is in turn a mathematical model of a ferromagnet at a
microscopic level. For an introduction to the use of the random cluster model in
this context we refer to the survey paper by Haggstrom [9]. The Potts model and
the correspondence will be described below.

The transitivity of the random cluster model is captured by the following propo-
sition.
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PROPOSITION 2.1 Fiz an arbitrary edge e € E and let Y, = Y N (E \ {e}) for a
random subset, Y, of E, distributed according to the random cluster measure. Then

P if the end vertices of e are connected in Y,
He'(e € YYe) = { m otherwise. !
By inspecting this expression one can see that the probability of having an edge
between two vertices is larger if they are already connected in some way than if they
are not, so the model indeed exhibits some transitivity.
The random cluster model clearly gives an intricate dependence between the
edges. This makes it hard to analyze directly, but by using the correspondence with
the Potts model one can often get around this difficulty.

DEFINITION. Let ¢ € {2,3,...} and let G = (V, E) be a finite graph. The

g-state Potts measure on {1,...,q}" is given by
1
V() = a1 - )"
G

where d(£) is the number of neighbours, u and v, such that &(u) # £(v) and UZ? is
a normalizing constant.

Usually one replaces the parameter p by another parameter § given by 1 —
p = e ?#, where 3 is called the reciprocal temperature of the model. The value
&(u) is called the spin of the vertex u. The correspondence between this model
and the random cluster model is captured by the following coupling, which was
explicitly introduced by Edwards and Sokal [4] but was earlier implicitly introduced
by Swendsen and Wang [15].

PROPOSITION 2.2 Define a probability measure on P(E) x {1,...,q}V by

PEI(n, &) = %p"'(l —p)/Em L, (n, €)

where A is the set of outcomes such that £(u) # £(v) implies that u and v belong to
different connected components in 1. Then the marginal distributions on P(E) and
{1,...,q}V are ub" and vB%? respectively.

In words, the measure P%? is given by letting the edges be present with probabil-
ity p independently and letting the vertices have spins chosen by uniform distribution
on {1,..., ¢} independently and then conditioning on that no two vertices with dif-
ferent spins have an edge between them. A proof of Proposition 2.2 can be found
e.g. in [9, page 6]. An immediate consequence of this result is that if one generates a
subgraph of G' according to the random cluster measure and then assigns all vertices
in the same connected component the same uniformly chosen spin, independently for
the different connected components, the resulting spin configuration is distributed
according to the Potts measure. Vice versa, if one generates a spin configuration
according to the Potts measure and then puts edges only between neighbours with
the same spin with probability p independently of each other, the resulting graph
is distributed according to the random cluster measure. The last fact means that
given the spin configuration, the random cluster graph behaves like ¢ disjoint graphs
where the edges are present or absent independently, a fact which is of course help-
ful when studying its structure. This technique rests on the fact that ¢ is integer
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valued, but it can be generalized. Such a generalized technique is used in the paper
by Bollobas, Grimmett and Janson [3], where the structure of the random random
cluster model on the complete graph is studied for p of order n1.

Before moving on, let us also note that the random cluster measure can be
obtained as the stationary distribution of a certain reversible Markov chain, a so
called Gibbs sampler. The transitions of this Markov chain are such that at each
time point one chooses an edge e € E at random. Then, regardless of whether or
not this edge is present for the moment, one lets it be present with probabilty p if
its end vertices are connected through the rest of the graph and with probability
p/(p + q(1 — p)) otherwise. There will be a corresponding Gibbs sampler for the

random triangle model.

3 General Properties of the Random Triangle Model

We saw in the introduction that the random triangle model maximizes the entropy
in the class of distributions with the given edge and triangle probabilities. In this
section we give a few other general properties of the model and devote the next
section to the complete graph case.

Note that, as opposed to for the random cluster model, the nature of definition (1)
is such that the presence or absence of an edge will only depend on edges adjacent
to it. The model is therefore of interest not only as a model for social networks
but also as a proptotype for a “random cluster”-like model with only local edge
dependencies.

The transitivity of the model is described by the following proposition.

PROPOSITION 3.1 Let Y be a random subset of E distributed according to the ran-
dom triangle measure and fix an edge e € E. Let A(Y, e) be the number of triangles
in'Y U {e} of which e is a part. Then

qu(Y,e)

pgre) +1—p

where Y, =Y N (E \ {e}) as in Proposition 2.1.

HEE(e € YIY.) =

The proof is just definition chasing. In the light of Proposition 3.1 we can
construct the Gibbs sampler corresponding to the random triangle model. This is
analogous to the construction of the Gibbs sampler for the random cluster model.
We consider a Markov chain on P(E) where the transitions are done by chosing an
edge e € E at random an then, if 7 is the present state, letting the chosen edge be
present with probability pg®™¢ /(pg®™€) + 1 — p). This Markov chain describes in
a nice way how a random triangle graph emerges dynamically in a population with
fixed individuals and also suggests a method for simulation of the model.

Just as for the random cluster model, the intricate dependence between edges
makes direct analysis hard. Therefore it would be desirable to find a valid mod-
ification of the correspondence between the random cluster model and the Potts
model. We will do this by assigning spins to the triangles of G' rather than to the
vertices. (The term “spin” is of course not really relevant here, but since the concept
is mathematically essentially the same thing, we allow ourselves this small sin.) To
start with, we let the spins take on any value in the interval [0, ¢] independently
for different triangles. Then we let the edges of E be present with probabaility p
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independently and finally we condition on that all edges that are part of a triangle
with spin larger than 1 are present. This procedure yields a probability measure on
P(E) x [0,q]", where T is the set of triangles of G, corresponding to the coupling of
Proposition 2.2. The marginal distributions are the random triangle measure and a
measure on [0, g]” corresponding to the Potts measure:

THEOREM 3.2 Let T be the set of triangles of G and define the probability measure
PP on P(E) x [0,q]" by letting P{§ have density (w.r.t. the product of counting
measure and Lebesque measure)

Pa(n,&) = —p‘"'(l— p) EEM 5 (n, ) (2)

where Z; is a normalizing constant and B 1is the set of outcomes such that all edges,
e, that are part of a triangle t € T such that £(t) > 1 satisfies e € 1. Then
the marginal distribution of Pl§ on P(E) is u}'¢ and the marginal distribution on

[0,q]" is given by the density
1
_pf(f)

T8O = 7

where f(§) is the number of edges that are part of some triangle t € T such that
£(t) > 1.

Proof. For the first part we integrate out &:

BP d__|n|1_ B \nl/
/66[0,11] LG ( S th (m,€)

1
(] — ) El=ll )
=ZP (1-p) .

For the second part we sum out 7:

> hh(n,€) = Zi T pil( — p)E

U t n:(n,€)EB

— — f(§
zr

as the possible 1’s must contain all edges that are part of a triangle, ¢, in G with
) >1.0

Letting the spins have a continuous range was comfortable for the proof, but it
is not comfortable when working with the model. Therefore we will in the sequel

not use the measure 77 of Theorem 3.2 but rather the equivalent measure 1 on
{0,1}" given by

I/f,g(ﬁ) =—(¢— 1)|£|pf(£)

where || = Y,cr &(t) is the number of triangles in G with spin 1 and f(&) is the
number of edges that are part of a triangle with spin 1. The following important
corollary is an immediate consequence of Theorem 3.2.
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COROLLARY 3.3 (a) Choose a spin configuration & € {0,1}T by

(i) Choosing n € P(E) according to .

(i) Given n, choosing spins for the triangles t € T independently so that
&(t) = 0 with probability 1/q if all three edges of t are present in n and
with probability 1 otherwise.

Then & has distribution v;g.
(b) Choose a subset n € P(E) by

(i) Choosing & € {0,1}T according to Vi

(11) Given &, letting the edges, e € E, be present or absent in n independently
of each other in such a way that e is present in n with probability 1 if e
is part of a triangle t € T with £(t) = 1 and with probability p otherwise.

Then n has distribution pug¢.

4 Asymptotics on the Complete Graph

In this section we study the asymptotics for the random triangle model on the
complete graph. This subject has been briefly treated before in [14]. The subscript
G of the y’s and the v’s will from now on be dropped. The principal question here
is how the way in which we reward triangles can affect the structure of the graph
compared to an ordinary G(n,p) graph when the number of vertices is large. The
G(n, p) model is the random graph model with independent edges on the complete
graph with edge probability p. This model has been thoroughly analyzed from
various points of view. The interested reader is urged to dig into Bollobas’ [2] book
on the subject.

Before starting, let us recall some order notation. Let {f(n)}22, and {g(n)}>,
be two sequences of nonnegative real numbers. We write g(n) = o(f(n))if g(n)/f(n) —
0 as n — oo. We write g(n) = O(f(n)) if {g(n)/f(n)} is bounded. In case g(n)
is O(f(n)) but not o(f(n)) we write g(n) = O(f(n)). Finally, g(n) = Q(f(n)) will
mean that f(n) = O(g(n)) and g(n) = w(f(n)) will mean that f(n) = o(g(n)).

Let us begin with asking ourselves what a reasonable value for ¢ could be. Heuris-
tically, we would like each person to have about a constant number of friends so that
p should be of order n=!. However, given that two persons have a common friend
there should be a constant probability that these two persons are also friends. This
implies that we should have ¢ = ©(n). On the other hand, mathematical heuris-
tics tell us that since the total number of triangles in the complete graph is ©(n?)
whereas the total number of edges is ©(n?), we should have ¢ = 1+©(n™"') or some-
thing close to that to avoid that the large number of triangles dominates everything
else and causes the outcome of the model to be degenerate. After all, the complete
graph provides no geographical restrictions, so it might be reasonable that the ten-
dency to make friends with the friends of your friends decreases as the population
increases in such an ideal world.

Obviously, it is not at all evident what ¢ should be. Fortunately the following
result rules in favor of mathematical heuristics and radically limits the possibilities.
To make life a bit easier we will for most of this section assume that p is at most
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of order n=® for some o > 0 and at least of order n~2. This covers most of the

interesting range for p for the G(n,p) model; it covers the appearance of the first
few edges and goes well beyond the critical point for connectivity.

THEOREM 4.1 Assume that p = p(n) = Q(n2) and let ¢ = q(n) = 1 + h(n)/n
where h(n) = w(logn). Then

p(E) =1
as n — Q.

Proof.  'This will follow from direct inspection of the model along with some
combinatorial observations.
Suppose that n € P(E) has at most (”;k) edges, k = 1,...,n/10. These edges

make at most ("gk) triangles so that
n—k n—k

p(n) p"2")g("s")
p(E) = p(3) ()

From ordinary algebra it follows that

() (13- () =257 g

and that

<§> B (n;k) _ @ B (n—k)(n—lgk)(n—Q—k) § nzk

where the last inequality uses the assumption that & < n/10. Inserting into (3)
yields

— p("25)=()4("5)-(5). (3)

:U'f’q(’r’) < p*nkq*nzk/‘l — p—nk — pfnkefnkw(logn)
(PUE) ~ (1+ h(n))n%/4

n

for n large. Since p is at least at least of order n=2, p~™F is at most of order

e?nklogn+0(n) g that the the ratio pf?(n)/pf?(E) has order at most e~™k«(logn),
Now let us check for what integer values, z, it is true that ("_k_l) < (g) —x<

2

(";k) We get
1
—§(k+1)(k+2) (4)
and we see that this is valid for no more than n different values of z. Since these

x’s satisfy x < n(k + 1), the total number of outcomes corresponding to each k is
thus bounded by

n <g) < n1+2n(k+1) < nSnk — enkO(logn)'
n(k+1)) — -
Combining our results we get
() < Il < (%59))
pe(E)

1
nk—ik(k+1)§x<n(k+1)

nkO(logn)—nkw(logn) —nkw(logn)

= € =€
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= o(n—1)
for all k =1,...,n/10. By summation it follows that

() < ol < (7)) _
ae

0'3”) edges has probability

o(1) follows from repeating the arguments in a simplified form noting that for such
outcomes there can be at most (0'9") < 0.8(;‘) triangles. Finally it has to be checked

That the probability for an outcome with less than (

3
that the probability for an outcome, 7, with (’2‘) —-n+2< | < (’21) — 1 edges is
vanishing. This, however, follows readily from direct inspection of the model. O

Observe that the proof holds for the extreme cases p = o(n™2) as well if we put
h(n) = w(logp~'(n)) unless p is of such low orders as o(e™"). (It is, however, not
enough to put A(n) = w(logp1(n)) if p(n) is of order close to 1.) For these extreme
cases it can also be shown that if h(n) = o(logp~'(n)), then p*?(@) — 1 whereas
if h(n) = ©(logp '(n)), then we end up with a distribution which asymptotically
divides its mass between () and FE.

Now, let us instead turn to the nontrivial cases. As mentioned earlier, central
questions about the structure of a random graph are questions about connectivity
and about the appearance of a giant component and also about the nature of the
separate components. For the G(n,p) model it is well known that p = logn/n is a
threshold for connectivity of the graph. It is also well known that if p = b/n for a
constant, b, then the model can behave in three completely different ways depending
on whether b <1, b =1 or b > 1. In the case b < 1, the graph will with probability
tending to 1 consist only of trees and unicyclic components of order at most logn.
If b = 1, a giant component of order n?/ will appear whereas the other components
are still trees or unicyclic and of order at most logn. In the case b > 1, the giant
component will be of order n, while the remaining components are still trees or
unicyclic of the same order as in the other cases. These results were first established
by Erdés and Rényi [5] and have later been studied in more detail by several authors.
For the interested reader we refer to [2] and for a deeper treatment to the paper by
Janson et. al. [11] where a detailed treatment of how the giant component emerges
as the edges are added one by one is given.

Now, in what way can our way of rewarding triangles affect these properties? By
Theorem 4.1, a random triangle graph shows no similarity whatsoever to a G(n, p)
graph for ¢ = 1 4+ w(logn)/n. The following result shows that if ¢ = 1 + o(logn)/n
the situation is quite the opposite, in particular there is no effect at allin the critical
range for these properties. In fact, it is an immediate consequence of this result and
Corollary 3.3 that with probability tending to 1, the random triangle model behaves
exactly like the G(n,p) model for such p and q.

THEOREM 4.2 Assume that ¢ = q(n) = 1 + h(n)/n where h(n) = o(logn) and let
p=p(n) = 0(n"%) for some a > 2/3. Then

v (€] =0) =1

as n — oQ.



10 JOHAN JONASSON

Proof. We are going to use Corollary 3.3 by first choosing 7y according to
and then jump between P(E) and {0,1}7 as indicated by Corollary 3.3. This will
generate random elements &1, 71, &2, 79, ... such that the n;’s all have distribution
p1? and the &’s all have distribution 474,

First, however, let r be the probability that a fixed edge, e € F, is present in 7;,
ie.

r = pb?{e is present}.
Then, as e is part of n — 2 different triangles in G,

p(L+ 5y
)

psr<
p(1+ )2 +1 —p

< peo(logn) — O(n—a)O(nﬁ) — O(n—(a—d))

for arbitrary § > 0. Choose § small enough to ensure that 3 = o — § > 2/3. With
this # we have

il = () = 00 )

Fix a small ¢ > 0. By Markov’s inequality we can pick a constant, A < oo, such
that

i (Imol > An*77) <ee.
Since An?~# edges make at most Bn3~3#/2 triangles (B < co) we get

W9 (t(0) > B %) < e 6
Conditioning on t(ny) < Bn®~3%/2 = Bn? (i.e. v = 3—33/2 < 2) we have for £, that

M) g, _ ologn)

E < B7<B7
|§1|_n+h(n) "

for some 7 < 1. (To be correct, this is, as noted above, a conditional expected
value. We allow ourselves to be a bit sloppy here and for the rest of the proof in
order not to burden the notation.) Combining this with Markov’s inequality and
(5) it follows that for some C' < oo

(& > Cn) < 2 (6)

Next we condition on that |&;| < Cn" and consider m. For n; we have that at most
Cn” triangles automatically follow from & and these triangles consist of no more
than O(n”) edges which in turn can make at most Dn®’'/? triangles, where D is yet
another large but finite constant. Apart from this, new triangles can appear in the
following three ways.

(a) One new edge ties together two of the edges which follow from &; and thereby
produces a triangle.

(b) Two new edges make a triangle together with an already given edge.

(¢) Three new edges make a triangle.
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The expected contribution from (c) is (g)O(n_%‘) = O(n*73%). From (b) we expect
to get at most

300" nO(n **) = O(n'*7"**)

triangles, as Cn? triangles consist of at most 3Cn” edges and each of these edges
can be made into a triangle in no more than n — 2 < n different ways, each with
probability at most O(n™2®). The expected contribution from part (a) is no more
than

30n" )

(% ot = o=

as the number of pairs of edges with a common end vertex is at most

/ ,Y’
min(3Cn" 2n, <302n ))

Since Dn3Y'/? is the dominating contribution it follows that for n large enough
E[t(m)] < (D +1)n*"/?

and in the same way as before that
pp?(t(m) > En®"'/?) < 3¢

for some E < oo. For & we repeat the same arguments as we used for & to see that
for some F' < o0

V(16| > Fn'/?) < de

for some 7" between 7' and 1. Now proceed as we did for 7;; the Fn?"/? triangles
can implicitly make at most Gn®’"/* triangles (G < oo). From (c) we expect at most
O(n®~3) triangles, from (b) at most 3Fn""/?>n0O(n=2*) = O(n3"/2=2®) triangles and
from (a) no more than O(n?"'~®) triangles. The largest one of the exponents in these
expressions is strictly less than 1. Thus we can conclude that for some H < oo and
some v" < 1 we have that

i (t(nz) > Hn'"') < 5e
and by using Markov’s inequality once again we can find J < oo such that

VP& < I 7Y > 1 — 6e

n n

for some ¥ < 1. However, since 7v"" < 1 and € was arbitrary, we are done. O

The technique of the above proof can be used to make further conclusions. First,
we consider the case when p is exactly of order n=%/3. For two finite measures, M;
and My, on Z,, let ||M; — Msl|| be the total variation norm, ie. ||M; — M| =

3 Tkeo [ Mi(k) — My(K)|.

THEOREM 4.3 Let ¢ = 1+ h(n)/n with h(n) = o(logn) and let p = an=2/* for some
positive constant a. Then, for k =1,2,...

() € )~ Poi "y 0

as n — oo, where Poi(a) denotes the Poisson distribution with expectation a. More-
over, the same conclusion is valid if €| is replaced with v(§)/3, where v(€) denotes
the number of vertices which are part of a triangle, t, with £(t) = 1.
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Proof. By letting o = 2/3 in the proof of Theorem 4.2 we would in the last
step end up with a constant J < oo such that

VPI(|&| < Jh(n)) > 1 — 6e.

For 73 this means that the only substantial contribution to ¢(n3) comes from part
(c). In other words, if we fix a small § > 0,
a’n

pR(om) < (1 n™)T) 2 1= Te
for large n, by Chebyshev’s inequality, noting that Var(¢(ns3)) = O(n). (Again, like
in the proof of Theorem 4.2 this is, to be correct, a conditional variance.) This
implies that with probability 1 — 7e, |&,| gets a distribution which is stochastically
dominated by

a’n _ h(n) )

6 'n+h(n)
where B(m, s) denotes the law of the binomial distribution with parameters m and
5.

B((1 +n~%

On the other hand, it is a consequence of Corollary 3.3 that if n is chosen accord-
ing to the random triangle model and 7 is chosen according to the G(n,p) model
with the same p, then

(nl, t(n) = (1], £ (7).

If we generate corresponding elements, £ and é ,in {0,1}T as indicated by Corollary

d .
3.3(a), then £ has distribution /"% and £ > £. Again by Chebyshev’s inequality
) i/ a’n
Pr(t() > (1 —n~) %) = 1 o(1)
so that with probability 1 — o(1), |£| is stochastically larger than

wu—n*%%ggﬁﬁ%ﬁy

By standard Poisson approximation of the binomial distribution noting that n~/* =

o(n*/2) and that n/(n + h(n)) — 1, this completes the proof of the first part.

To show the second part we must show that the triangles, ¢, with £(¢) = 1 are
with overwhelming probability disjoint. However, two triangles can be connected to
each other in two ways; either by sharing an edge and thereby consist of five edges
and four vertices or by sharing a vertex and thereby consist of six edges and five
vertices. Taking this into account it is readily seen that the expected number of pairs
of triangles connected to each other in 73 above is O(n). Since the probability that
both triangles in a specific pair get & (t) = 1 is h(n)?/n? it follows from Markov’s
inequality that the probability that this happens for any such pair tends to 0. O

The moral of Theorem 4.3 is that for p = ©(n=?/%) and ¢ = 1 + o(logn)/n, the
random triangle graph is approximately the union of a G(n, p) graph and a Poisson
distributed number of disjoint, uniformly spread, triangles. Since the G(n, p) graph
for p of this kind is already connected in its own right and contains ©(n) triangles,
the effect of the triangle reward on the edge probability and the triangle probability
is asymptotically neglectible. The same thing is true for the cases o € (0,2/3) even
though we cannot give our statements the same precision as for the other cases.
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THEOREM 4.4 Assume that p = ©(n~%) for some o € (0,2/3) and let ¢ = 1 +
h(n)/n for h(n) = o(logn). Then there is a constant A < oo such that

vp?(l€] > Ah(n)n®~**) — 0
asmn — 0o.

Proof.  This is essentially just a repetition of the proof Theorem 4.2. Again
we generate the sequence 19, &1, 11, &2, .. .. By observing that as soon as o' < a, the
edge probability, 7, is bounded by n=®, we see that with probability 1 — o(1) we
will have |no| = O(n?=%) and (1) = O(n3~3¢/?).

By copying the arguments of the proof of Theorem 4.2 it follows that the con-
tribution of triangles from & to 72’s becomes of lower order than the number of
“spontaneously” appearing triangles. This means that we can, by Chebyshev’s in-
equality, find A < oo such that

A —oQ
H(m) < St ) =1 o(1).
Finally, the central limit theorem implies that
VP (16| > Ah(n)n®~>%) = o(1)

as desired. O

Theorem 4.4 implies that if an n according to the random triangle measure with
p=0(n"%) and h(n) = o(logn) is generated as indicated in Corollary 3.3(b), the
contribution from £ is with overwhelming probability not more than a constant times
h(n)n®>73* triangles. Implicitly this means a maximum of O(h(n)n?>~3%) edges and
O(h(n)3/?n?=92/2) triangles. Since these numbers are of lower order than the spon-
taneously appearing ©(n?~%) edges and ©(n373%) triangles, the edge and triangle
probabilities are not asymptotically different from what they are in the G(n, p) case.

If h(n) = O©(1) the proof can be adjusted to be valid as soon as p = o(1) and
if we try h(n) = o(1), then the technique works even for p = O(1) showing that in
these cases the statement of Theorem 4.4 holds with o = 0.

Thus far we have seen that for p = O(n™®), a@ > 0, our way of rewarding
triangles does not have any essential effect when ¢ = 1 + o(logn)/n whereas if
g =14 w(logn)/n, then every edge will be present. Now, can anything else happen
if g =1+ ©O(logn)/n? Yes, since it is readily verified that the edge probability,
r, is for fixed p and n a continuous function of ¢, it is clear that ¢ can be chosen
in such a way that r assumes any desired value in its range [p,1). However, what
happens is that for such a ¢ the probability mass will just divide between on one
hand the outcomes where the effect of the triangle reward is neglectible and on the
other hand the outcomes where all or almost all edges are present. As a matter
of fact, if we let p = ©(n™?), then this division will only take place when ¢ =
1+ 3alogn/n+ o(logn)/n:

THEOREM 4.5 Letp = ©(n~%) for some o > 0 and assume that ¢ = 1+clogn/n+
o(logn)/n for some ¢ > 0. Let n be chosen by pt'? and let & have distribution VP!
and fix € > 0. Then there is a constant A < oo such that

vP(lg] < An*=**logn) + p!(In] > (1 —¢) <Z>) —1

as n — o0o. If ¢ < 3a, then the first of these terms tends to 1 whereas if ¢ > 3a,
then the second term tends to 1.
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Note. It is a consequence of Corollary 3.3 that the sum of the two terms in the
theorem cannot asymptotically be larger than 1.

Proof. 'We shall first focus on showing that p}¥(n?=*/2 < |n| < p(g)) — 0 if the
constant p has been chosen small enough. When this has been done we can use the
proof of Theorem 4.4 for the outcomes with |n| < n?~*/2 by letting 1y = 7, to show
that givens such an outcome the first term tends to 1. For the other outcomes we
will have to do some more work.

The method to show this is “brute force”. Let us try to bound p"4(|n| = k) for
k=n?>2?2 ., p(g) Write k as p(n) (g), where p(n) is thus either a constant (< p)
or a function tending to 0. Assume for simplicity that p = n~* and h(n) = clogn.
It will be obvious from the expressions below that this does not upset things. For
an outcome 7’ with p(n) (’2‘) edges we have

1 clogn 3/2(n
TP P () < 1 p(m)*(3) 7
(') < nap(n)(g)( + " ) (7)

as p(n) (g) edges make at most p(n)>/? (g) triangles. (Remember that Z*? is the

normalizing constant for the random triangle measure.) As n — oo the right hand
side of (7) is bounded by

L e (3 _ pye)(5) =t (3) (8)

nap(n)(g)
and, since p(n) < p, it is clear that by letting p be small enough the exponent is

less than —3ap(n) (g) There are (p (g();)) different outcomes with p(n) (g) edges.

By Stirling’s formula we have
(n) p(n)(%)

(5) > o) (3) (L \om(3)
<p<n> (3)> =em@r =" )
— (—C \em)(5) = osGEm)e(m)(5)/loan

(p(n)) v

Since p(n) > n~*/2, this exponent is at most ($a+ 1Oén)p(n) (g) < 2p(n) (g) so that

by multiplying with the expression in (8) we get

20 (0] = p(n) (Z>> < ek E)/8 < e,

By multiplying by the number of possible values for k£, which is not more than ,0(3),
it follows that

—a n
2 < ol <)) 0

as desired.
Next, we take a look at how the probability mass is distributed over the outcomes
with more than p(?) edges in case ¢ > 3a. Note first that

clogn (% c(7)/n+o(n?)
(14 =5 )(3) nGs) — pe(3)/n—a(3)+o(n?)

Zg)’qﬂ;tqu(E) = na(g) = na(g) = 9)
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Now, pick v such that p < < 1 and consider an edge configuration, n”, with 7(’2’)
edges. Then

2P (") < " 7e(5)/ne(3)

and since 7¥/2 < v and ¢ > 3a, this expression is for ¥ < 1 — € at least n® times

smaller than ZP?uf(FE) for some § > 0. Since the number of outcomes under
consideration is certainly smaller than total number of outcomes which in turn is

2(3), it follows for arbitrary p > 0 that

w9 p(5) <l < (1-e)(3))
pe (E)
This shows that the mass on the outcomes with many edges is concentrated on the

outcomes where almost all edges are present and thereby proves the first part of the
theorem for the cases ¢ > 3a.

Also, for any outcome 7' with |n/| < 0(’2‘) we know that ¢'@) < n®*()/" and
letting 6 be small enough, this is of lower order than n®” for any fixed § > 0. An
upper bound for ZP4d(|n| < 0(’2‘)) is therefore given by n®?(3)/ as the total

mass for these outcomes for the ordinary G(n,p) measure is of course bounded by
1. Together with the above results this yields for ¢ > 3a

i (nl < (1= 9(3))
pi(E)
as the exponent of (9) is larger than dn? if § is small enough. This proves that the

second term of the sum in the theorem tends to 1 if ¢ > 3a.
If on the other hand ¢ < 3a, then, with v < 1 as before, we have for ' with

'l =~(3)

Zp i (of) < /e G) < o

— 0.

—0

for a small positive 5. Thus Zu??(|n| > p(;’)) — 0 so that since ZP? > 1, the
proof is complete. O

It should be noted that for & = 2/3 or o > 2/3 the stronger conclusions of
Theorem 4.2 and Theorem 4.3 are valid if ¢ < 3a.

Concluding discussion. What we have seen is that for any p = O(n~%) for some
a > 0 the random triangle model is explosive; depending on ¢ we get nothing or
everything. The important moral of this is that for any random graph model with
transitivity not degenerate in this sense, the nondegeneracy relies on the extra, and
perhaps unintended, structure imposed on the graph. For instance, the random
cluster model owes its nondegeneracy to the fact that an edge is more likely to be
present given that its two end vertices are connected through the rest of the graph
no matter how long that connection is.

Is there no way we can have a nondegenerate effect from rewarding triangles in
the complete graph? Yes, if p = ©(1) and ¢ = 1 + ¢/n this will happen. This can
be seen by running the Gibbs sampler for which the random triangle measure is
stationary distribution. If the sampler is started in a state chosen by the G(n,p)
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model it is readily seen that with high probability we will after a while have got
essentially more edges. On the other hand, if the sampler is started in E, we will
soon have lost a large number of edges.

What is the intuitive explanation for the explosiveness of the model? Let us
again consider the model from a dynamical point of view, i.e. by looking at it as the
stationary distribution of a Gibbs sampler. If the sampler is started from a G(n, p)
state, the starting graph will be sparse in the the sense that a vast majority of the
edges of E will be absent. This means that there will be very few potential triangles,
i.e. pairs of edges with a common end vertex. Therefore the Gibbs sampler will stay
for a very long time in states with few edges. Sooner or later, however, it will come
to a state with ©(n?) edges. Once in a state like this, removing a present edge will
with high probability mean to remove O(n) triangles. If ¢ is large enough, the edges
will therefore be very reluctant to be removed. Thus the states with ©(n?) edges are
also very stable. It is however the moral of the proof of Theorem 4.2 that the states
in between these two extremes are not at all stable. Therefore the Gibbs sampler
will spend very little time in these states.

Letting p = ©(1) on a large complete graph does not seem like a realistic model
for a social network. To increase the realism and still have a significant effect from
the transitivity in the random triangle model, it is therefore necessary to impose
restrictions of some kind, such as geographical restrictions or restrictions on the
degrees of the vertices etc. There are several possibilities along these lines. One
is to study the model on graphs where the degrees do not increase too fast as the
number of vertices increase. This line of study is taken up in [10], where the random
triangle model on the two-dimensional triangular lattice is treated with respect to
questions on phase transition and percolation. Another possibility is to make the
model doubly random by looking at the random traingle model on a realization of
a G(n,p) graph. A third way to go could be to simply bound the degrees of the
vertices in some appropriate way. This means to forbid the individuals to have “too
many” friends. For instance one could study an appropriate version of the random
triangle model on an r-regular graph for r = 3,4, 5, . ...
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