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ABSTRACT. We show how it is possible to diagonalize a certain class of
homogeneous linear operators in a biorthogonal wavelet basis. Given
a linear operator and a biorthogonal wavelet basis we construct a new
biorthogonal wavelet basis such that by analyzing a function in the new
basis and multiplying the wavelet coefficients by a scale dependent fac-
tor we get the wavelet coefficients of the transformed function in the
original wavelet basis. Differentiation and integration, the Riesz poten-
tial and the Hilbert transform belong to this class of operators. Finally
we generalize the method to several dimensions including non-separable
bases.

1. INTRODUCTION

_In a biorthogonal wavelet basis we have a wavelet ¢ and a dual wavelet
b such that any f € L*(R) can be written

F= (5 bt

gl
For a given linear operator K we would like to expand K f in this basis. It
turns out that for a certain class of operators we can find a new biorthogonal
wavelet basis, with wavelets ¢ and 9", so that (K f, ;) = £’(f, ¢};). By
diagonalization we thus mean that the wavelet coefficients of K f in the
original wavelet basis equals, up to a scale dependent factor, the wavelet
coefficients of f in the new wavelet basis, i.e.

Kf =) w550t

5l
These new wavelets are simply given by 1’;}‘ = K*{[v and ¥ = K~'4. Both
the original and the new wavelet basis originate from a multiresolution anal-
ysis. This is important because it means that both the analysis of f in the
new wavelet basis and the synthesis of K f in the original wavelet basis come
with fast algorithms. We will consider convolution operators,

Kf=kxf or Kf(w)=h)f(w),
that preserves the characteristics of a wavelet. It turns out that the operator
K has to satisfy the homogeneity condition,

K= E(w)/%(w/?) independent of w.
Differentiation and integration, the Riesz potential and the Hilbert trans-

form are examples of such operators.

This research was partially supported by grants ONR N00014-90-J-1343, DARPA
N00014-94-11163, and DARPA 36197RTDPS.
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This method has already been used to diagonalize the derivative operator
as noted by Lemarié and Daubechies [5]. It is also interesting to compare
this method with the wavelet-vaguelette decomposition by Donoho [6]. He
starts with an orthogonal wavelet basis, applies the operator K as above, and
ends up with a biorthogonal basis. He does not construct a multiresolution
analysis from which this new basis originates though, which is a drawback
since we can not use the fast wavelet transform in the new system any
more. By starting with a biorthogonal system, properly adapted to the
operator, we construct a new biorthogonal multiresolution analysis. We do
this by constructing a new pair of scaling functions for the new biorthogonal
wavelets. In [1] Beylkin, Coifman, and Rokhlin presents a more general
approach for sparse representation and fast computation of a very large class
of linear operators. Since we restrict ourselves to linear operators satisfying
the above homogeneity condition we are able to diagonalize the operators
as well as finding more explicit representations of these.

The paper is organized as follows. First we give the definition of a
biorthogonal multiresolution analysis and discuss the approximation prop-
erties of wavelets and scaling functions. The number of vanishing moments
of the wavelet is especially important since this must be chosen to match the
operator. This background is more or less based on an overview paper by
Jawerth and Sweldens [8]. For a more comprehensive treatment of wavelets
we refer to the book by Strang and Nguyen [9].

Next, we construct the new wavelet basis and find the homogeneity con-
dition on the linear operator so that the diagonalization property holds.
Then we consider the conditions on the wavelets and the operator for the
new wavelets to be well defined and whether these are compactly supported
or not. The crucial step in our construction is taken in section 4 were we
describe how to construct the new scaling functions and thus the new mul-
tiresolution analysis. In section 5 we consider the special and important
examples of differentiation, the Hilbert transform, and ramp filtering. We
conclude by generalizing the technique to several dimensions for both sepa-
rable and non-separable bases in section 6.

2. WAVELETS

In this section we review basic wavelet theory mainly to fix the notation
and we refer to [4] for proofs and more details.

2.1. Multiresolution Analysis. A multiresolution analysis (MRA) of L*(R)
is a sequence of closed subspaces V; of L?(R), j € Z, with the following prop-
erties:

-

/i C Vit

flz) eV, & f(2z) € Vitq,

f@)eVoe flz+1) €W,

. Uj V; is dense in L*(R) and ﬂj v; = {0},

There exists a scaling function ¢ € Vj such that the collection

{¢(x —1): 1l € Z} is a Riesz basis of Vj.
It is immediate that the collection of functions {g;; : { € Z}, with ¢;,(z) =
21/2p(27x — 1), is a Riesz basis of V;. From the definition of the MRA it
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follows that the scaling function must satisfy the dilation equation

(1) o) =22 oz —1) or Bw) = H(w/2)@w/2),
{

where H is a 27-periodic function defined by H(w) = 3>, hje™"*. If the scal-
ing function belongs to L!(R) it is, under very general conditions, uniquely
defined by the dilation equation and the normalization

/go(ac)dm =1 < (0 =1.

We will always assume that this is the case and from (1) we then have
H(0)=1.

2.2. Approximation. The spaces V; will be used to approximate functions.
This will be done by defining appropriate projections onto these spaces.
Since the union of all the V; is dense in L*(R), we are guaranteed that any
function can be approximated arbitrarily close by such projections.

If we want to write any polynomial of degree smaller than N as a lin-
ear combination of the scaling function and its translates then the scaling
function must satisfy the Strang-Fix conditions,

P(0)=1, and
(2) P (2rk)y =0 for k#0,0<p<N.
From (1) it follows that H (w) must have a root of multiplicity N at w = 7.

2.3. Wavelets. By W; we will denote a space complementing V; in V.,
ie.

Vier = V; @& W,
and consequently

Pw; =1’ R).

A function ¥ is a wavelet if the collection of functions {¢(x —{): l € Z} is
a Riesz basis of Wy. The collection of functions {#;; : j,I € Z} is then a
Riesz basis of L?(R). We define P; as the projection onto V; parallel to Ve
and Q; as the projection onto W; parallel to W;. A function f can now be
written as

F@)=>"0,f(2) =) viaiu(x),
J Jil
or if we start from a coarsest scale .J as
f@) =Prf(a)+ Y Qif(x) =D Anppni(a) + Y Y vjatia(e).
i=J l j=J 1

Below we will describe how to find the coefficients A;; and v;;. Since the
wavelet v € Wy C V3

(3) P(@) =2 gp(2e—1) or P(w)=G(w/2)Pw/2),
{

where G is a 27-periodic function defined by G(w) = 3, gre™*.
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2.4. Biorthogonal Wavelets. In a biorthogonal MRA we have a scaling
function ¢, a wavelet ¥, a dual scaling function §, and a dual wavelet ¥
such that any function f can be written

(4) fl@) =Y (fdnen( -I-ZZ Fo i) iz

1 j=J k

For this to be true the scaling functions and wavelets must satisfy the
biorthogonality conditions

(@ ( =) = (&, 0(- =)
(@, 0(- = D)= (W, 9(- - )>=

Expressed in the filter functions H, G, H, and G necessary conditions are
given by

and

HwHW) + Hw+mHw+r) = 1
(5) GWEW) + Gu+mGuw+n) = 1
GWHW) + Gl+rmHwt+r) = 0
Hw)Gw) + Hw+mGw+r) = 0

Now, if we define the modulation matriz M by

H(w) H(w+ )

(6) M(w) = Gw) Glw+m)|’

and similarly for M , then

M(w)M(w)" = 1.
Cramer’s rule now states that
~ ~ H
(7) (w) = G(w+ ) & (w+m)
A(w) A(w)
where A(w) = det M (w).
When constructing wavelets one often starts by defining the low-pass

filters H and H. Then one defines G and G through equation (7) where
A(w) is chosen equal to e~™.

2.5. Vanishing Moments. The moments of the wavelet are defined by
N, = /x%ﬁ(x)dm with p € N,

and similarly for the dual wavelet. We recall that if the scaling function
reproduces any polynomial of degree smaller than N then H (w) has a root
of multiplicity N at w = 7. From (7) we see that this is equivalent to G (w)
having a root of multiplicity N at w = 0. Since F($)(0) = 1 this is also
equivalent to .7-'(%) (w) having a root of multiplicity N at w = 0, i.e. the
dual wavelet has N vanishing moments. By a similar argument the wavelet
¥ will have N vanishing moments if the dual scaling function reproduces
polynomials of degree smaller than N.
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3. THE NEwW WAVELET BASIS

3.1. Diagonalization. In a biorthogonal wavelet basis we have a wavelet
¥ and a dual wavelet ¢ such that any f € L*(R) can be written

£=2 (L v
&l
For a given linear operator K we would like to expand K f in this basis. We
will consider convolution operators,

Kf=kxf or KFf(&) =k,
that preserves the characteristics of a wavelet. If we denote the adjoint of
K by K* we can write K f as

Kf=Y (Kfo0%0="Y (f K™ )b
5l 5l
We will now describe how the coefficients (f, K*lz;m) can be calculated in

a fast and numerically stable way by analyzing f in a new biorthogonal
wavelet basis. We define this new basis by the relations

(8) VK = K*p and X = K™'4,

and in the Fourier domain we have

(9) Po@) = R@)bw) and T (@) = ——B(w).
k(w)

For the moment we assume that the wavelets, ¥ and 12, and the operator K
are such that these new functions are well defined and below we will show
that under certain assumptions these functions in fact form a biorthogonal
wavelet basis. Our goal is to find a condition on the operator K such that
the following relation holds

K™ = Rk,
since then the wavelet coefficients of K f, (f, K*'zzj,ﬁ = k;(f, '~;‘-'l>. The

constant ; is independent of [ since K* is translation invariant. So for this
to hold true K* must be invariant under dyadic dilations, up to the constant
;. Let us therefore define the dyadic dilation operator D; as

Djf(x) =202 f(2z) or Djf(w) =27 f(27w).
The dilation invariance of K* means that
K*D;f=%8;D;K*f
or in the Fourier domain
Fw)2712f (277 w) = 7,272k (2-1w) (27T w).
From this we arrive at the following condition on K
(10) Kj = M is constant.

k(2-7w)

We observe that x; = H{ so if we let & = &y, we have x; = x7. It is now also
clear that the new functions ¥* and ¥* are biorthogonal. To conclude, by
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analyzing f in the new wavelet basis and multiplying the wavelet coefficients
by x’, we get the wavelet coefficients of K f in the original wavelet basis:

(11) Kf=Y & {f )i

i
and this is what we refer to as a diagonalization of the operator K. Examples
of operators satisfying (10) are

1. Differentiation and integration

E(w) = (iw)*, a € Z. Here k = 2°.
2. The Riesz potential

E(w) = |w|* a € R. Here k = 27,
3. The Hilbert transform

k(w) = —isgnw. Here k = 1.

These three types of operators are essentially exhaustive. This follows if we
consider continuous solutions of (10) for positive and negative w separately

since then we must have k(w) = Cw®, for some constant C'.

3.2. Admissibility Conditions. Let us now return to the question of
whether the new wavelets as given by (9) are well defined. Given the op-
erator K we would like to find suitable conditions on the original wavelets.
First we assume that E(w) = |w|™ and that a > 0, since any other choices
of k and a are treated similarly. We know that the new wavelets must have
at least one vanishing moment each and from (9) we then see that ¢ must
have at least o+ 1| vanishing moments. In this case there is no additional
requirement on the number of vanishing moments on 1Z On the other hand
if € W*(R) we realize that ¥ € W*=*(R) so we must have s > a to have
'zZK € L*(R). If @ < 0 the roles of ¥¥ and QZK are simply interchanged.

3.3. Decay and Compact Support. Finally, let us discuss the rate of de-
cay of the new wavelets. In most applications we are interested in compactly
supported wavelets and this corresponds to transfer functions that are finite
impulse response filters. Non-compactly supported wavelets are also useful
in practice if they have rapid decay.

If the original wavelets have compact support we know that their Fourier
transforms are smooth. lLooking at the definition of the new wavelets in
the Fourier domain (9) we conclude that a necessary condition for the new
wavelets to be compactly supported is that E(w) is smooth for w = 0. This
will only be the case when the operator is differentiation or integration.
Indeed when this is the case it is obvious that the new wavelets are also
compactly supported.

When « > 0 is not an even integer we have, after a moment’s considera-
tion,

(12) 3% e NI+ (R),

where NN is the number of vanishing moments of the dual wavelet. Now,
if the Fourier transform of ¢* and its derivatives were also in L'(R) the
Riemann-Lebesgue lemma would give us the following estimate on the rate
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of decay of 1];K
(13) 2" (z) = 0 as |z| — oo, for 0<n<N-1+4(al.
Let us therefore find out when this is actually the case. We assume that
the dlial wavelet 9 € CM(R)jnd that it is compactly supported. It follows
that 1/)(m) € L' for0 <m < M and

Whh(w) =0 as  |w| — oo, for 0<m< M.
From this it follows that there is a constant C' such that

) < C+ )™

Actually, this holds for all derivatives of the Fourier transform of gb since
ac%/;( ) and its M first derivatives are in Ll( ) for all p € N, i.e.

| ( ) <Cl+lwh™  for peN.

From the definition of ¢ and (12) we get

| ()|<C(1+|w|) for 0<p<N-—-1+4[a].

That is, 81)@( € L'(R) if a — M < —1. So the decay estimate (13) holds
when M > 1+ «. Rewriting the decay estimate we have thus arrived at

(14) |1ZK(39)|§C(1+|$|)1_N_[Q] if M>1+a where ¢ oM,

For the wavelets ¥ and ¥* a similar argument as above gives ;b?( e oN-1-1a] (R),
where N is the number of vanishing moments of the wavelet. The rate of
decay of the wavelet ¥* is then given by

(15) |P"(2)| < C(1+ |ac|)1_ﬁ"'LcYJ if M>1—-—a where o€ cM,
We see that the number of vanishing moments of the original wavelets de-

termines the rate of decay of the new wavelets. Again, if @ < 0 the roles of
»¥ and ¥ are interchanged.

4. Tue NEW MULTIRESOLUTION ANALYSIS

We will now describe how to associate a multiresolution analysis with the
new biorthogonal wavelet basis. We will do this by defining a new pair of
scaling functions. It is natural to try with

—

(16) Flw) =

|

~ — LIPS

(@)@(w) and (W) = =—F(w),

tw)

where 7 is an unknown function. Biorthogonality of the original scaling
functions then implies biorthogonality of the new scaling functions ©* and

=K

®

o~

(B, 05— 1)) = (Fo(-— D) = &

The scaling functions must also be biorthogonal to the wavelets

(@ (=) = @5, (=) =0,
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which, expressed in the filter functions, amounts to

IEK(w)GK(w) + HY¥w+7)GX(w+7) = 0 and

G*(w)HX(w) + G(w+m)HX(w+7) = 0.
From the dilation equation for @ and (16) we get

S = L9 F SR ) = (o)

Piw) = =—==H(w/2)¢"(w/2) = H" (w/2)§"(w/2),

Uw/2)
and by similar arguments we get the following expressions for the new filter
functions

cro) = L) o - @)

H (w)_Z(Qw)H( )s G*( )_E(Qw)G( )

i) = 29 i (), G (w) = F2) ).
l(w) l(w)

Biorthogonality between @ and ¢"(- —[) is then equivalent to

0(2w) () 0(w) oo+ /(2w + 2r) (w4 ) U(w+7)

(w) k(2w) Uw+7) k(2w + 27)

—~~

Gw+ ) =0.

)

Since H(w)G(w)+ H(w+ )G (w+ 7) = 0 this is equivalent to
(2w) 1

~

k(2w)

(2w + 27)
75(2(.0 + 27) .

-~

This means that £(w) must be chosen so that

(17) m(w) = A—) is 27-periodic.

-~

If we can find such an £(w) all of the biorthogonality conditions will be satis-
fied. It is still not clear how we should define this function though. However,
we have not considered the approximation properties, or the Strang-Fix con-
ditions, of the new scaling functions. If we substitute (17) into (16) we get

(18)  m@)Fw) = k@)pw) and k@)@ (@) = m@)@w).

Since we know that g’/EE(O) = AK(O) = 1 we must have

= —lasw—0.
k(w)

From this we see that we must find a 27-periodic function m(w) that matches

k(w) at w = 0, i.e. it should have the same number of zeros at w = 0.
We make the following more or less canonical choice

(19) m(w) = k(=i(e™ - 1)),
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since —i(eiw —1) = w4+ o(w) as w — 0. This is indeed a natural choice
because the determinants of the modulation matrices of the original and
new system will only differ by a multiplicative constant

(20) A(w) = k(i)2AK (w).

This choice implies that m(w) is a sort of discretized version of /k\:(w) From
(18) we then see, via the Strang-Fix conditions, that the approximation
properties of the new scaling functions are exactly related, as they should
be, to the number of vanishing moments of the new wavelets. If we write
the Fourier series of m(w) as

m(w) = Zmze_”‘“
!
we see that

(21) K*G(e) = Y gt (@ +1).
{

For K being the derivative operator this becomes

F(2)=¢"(x) - ¢ (x - 1),
i.e. differentiation in the original system corresponds to a finite difference
in the new system.

At this point we have constructed a new biorthogonal multiresolution
analysis with the wavelets ¥* and ¥ and with the scaling functions *
and @*. This means that we can decompose any function in this new basis
using the fast wavelet transform. We also know the relation between the
wavelet coefficients of f and K f in the new and original basis, respectively.
In a numerical computation we always stop the decomposition at a coarsest
scale and we are thus also interested in finding a relation between the scaling
function coefficients of K f and f. Expanding K f in the original basis we
get

Kf(z) =Y (f, K Grden(@) + D3 (f K9 0().
j=J 1

{

Using (21) it is easy to verify that

(22) KBy = w0 (f, Fi)-

We note that this formula can be seen as a discretized version of the operator
K acting on the subspace V;.

Summary. Before looking at some examples we summarize our results.
Given a function f such that

Fla) =" A (@) + 0> vuh(e),
k

j=J k

we can find the expansion of K f

Kf(z) = Z Agipai(z) + Z Z Vi (@),
k =7 &
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by the relations
K _ Jn.
Vin = KV
XS =7 A
Jil— K MpAJil—n-
n

With our choice of m(w) the new filter functions become

wie = HEE ), 6 = e Gt)
W) = (),  Gw)=Fh(—i(e - 1)G(w)
k(e + 1)

Remark. A more elegant way to derive the choice of m(w) was pointed out
to us by Patrik Andersson. We start with a biorthogonal system and first
find a new pair of scaling functions as follows. Begin with the identity

eiw -1 0 ei2_~7w 41

Our operators satisfy E(wlwg) = E(wl) k(wy) and if we apply k to the left
and right hand side of the identity we get

F(=ie e+ 1)
SR

since E(Q) = /175(1) and where we have assumed that k(l) = 1. By a repeated
application of (1) we can write the scaling function as the infinite product

and it follows that

k(mi(e® = 1) o T RETORD
e =] H(279w).

That is, if we define a new scaling function by

0 k(=i(e - 1)

X (w = w),
o (w) @) B(w)
it will be associated with the filter
ke +1
) = L+ D)
K

and this is exactly the filter we got with our choice of m(w) above. Similarly,
we get the same filter for the dual scaling function. Now we can define the
new wavelets from equation (7) and instead of the standard choice of the
determinant of the modulation matrix we define A¥ through equation (20).
Then it is easy to verify that new wavelets are the same as before.
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5. EXAMPLES
5.1. Differentiation. For the derivative operator we have

- d Sx d —1 _ ‘
K—%, K =-a K _/ dy,

—00
and the new wavelets are thus given by

@)= -da), @)= [
Since /k;(w) = iw we have m(w) = €™ — 1 and

F(a) = F(2) - Fa - 1).
We also note that the new wavelets and scaling functions are compactly

supported if the original wavelets and scaling functions are.

5.2. The Ramp Filter. We consider the Riesz potential operator with
« =1 as an example, i.e. the ramp filter. Now

K7 =lolft) and KTT70) = 7).
Since /lg(w) = |w| we have
. 4
m(w) _ |e—7,w — 1| and m; = m

In this case E(w) is not smooth for w = 0 so the new wavelets and scaling
functions will not have compact support. If we start with a biorthogonal
basis where the wavelets have several vanishing moments the new wavelets
will decay fast though.

5.3. The Hilbert Transform. In the case of the Hilbert transform we
have

— ~

Kf(w)=—isgnw f(w) or Kf(z)= % p.v./ xf(_yl,dy

We note that E(w) = —i sgnw = —iﬁ—| 80
e — 1 1
m(w) Py and  my 0172

We make the interesting observation that we have a convolution with m; =
1/(m(l 4+ 1/2)) acting on the V; spaces, i.e. a discretized version of the
Hilbert transform. Just as for the ramp filter the new wavelets and scaling
functions will not have compact support but if the original wavelets have
several vanishing moments the new wavelets will decay fast. See figure
1 and 2 for an example where the original scaling functions and wavelets
where chosen from the 6/10 factorization of the maxflat Daubechies halfband
filters.
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In this section we will generalize our method to higher dimensional spaces
and convolution operators. If both the basis and operator are separable it
is easy and straightforward to extend our results of the previous sections.
What is interesting though is that we can generalize the diagonalization

6. DIAGONALIZATION IN SEVERAL 1)IMENSIONS

technique to the case of non-separable wavelet bases.

6.1. Separable Bases and Operators. For a separable multidimensional
wavelet basis in R™ it is easy to see that the previous ideas can be generalized
in a straightforward way if the convolution kernel & is also separable, i.e. if

k(w) = ki (wi) - Enlwn),

where w € R",
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and all the k;:s satisfies the diagonalization condition (10). In a two-dimensional
separable wavelet basis we form the scaling function ® and the wavelets ¥,
by tensor products of a one-dimensional scaling function ¢ and wavelet 1)

P=pRp, VYi=9pR¢Y, VY=9®ep, and V3= @7

Similarly, we define a dual scaling function ® and dual wavelets U, if we
want a biorthogonal two-dimensional wavelet basis. Starting from such a
basis we define the new wavelets analogously with the one-dimensional case

UK = K*¥, and WK =K"u,.
We will form the new scaling functions by defining new one-dimensional
scaling functions for each coordinate direction, i = 1, 2,
1

Frwi) = Lw)P(wr) and  oF (wr) = =—=P(wr),
li(w;)

~

where each £;(w) is derived from k; trough (17) and (19) as before. The new
scaling functions ®¥ and ®X are formed by taking tensor products of the
new one-dimensional scaling functions

OF =@ F; and OF = @ ¢

6.2. Non-separable Bases. It is possible to construct non-separable wavelet
bases in several dimensions although fairly few such bases have actually been
constructed. Non-separable bases are of interest in for example image pro-
cessing since they are more isotropic than a separable basis, which is strongly
oriented along the coordinate axes. For a separable basis in R” the underly-
ing structure is the integer lattice Z™ and the dilation is the same along all
coordinate axes. This is not the case for a non-separable basis where we have
some other lattice and/or another dilation. Two examples for which non-
separable wavelet bases have been constructed are the hexagonal and the
Quincunx lattice. Cohen and Daubechies [2] have constructed symmetric
biorthogonal wavelets with compact support and arbitrarily high regularity
on the Quincunx lattice. The two-dimensional biorthogonal wavelets on the
hexagonal lattice by Cohen and Schlenker [3] have symmetry under 30° ro-
tations, compact support and some regularity. For a class of lattices with
certain tiling properties Strichartz [10] constructs n-dimensional orthogonal
wavelets with arbitrarily high regularity but not with compact support. In
a forthcoming paper Jawerth and Mao [7] present a general method for the
construction of wavelets on lattices.

6.3. Lattices. For a standard separable basis in R™ the underlying struc-
ture is the integer lattice Z"™ and the wavelets are generated from 2™ — 1
mother wavelets ¥, v =1,2,...,2" — 1,

where D = 21 is the dilation matrix.
To construct non-separable wavelet bases we start with a lattice T' and
dilation matrix D. A lattice in R™ is defined as T' = I'Z", where I" is a
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nonsingular n-by-n matrix. With

1 -1
r= 2
(0 §>

we get the hexagonal lattice in R?, see figure 3. The integer lattice has T =T
and so has the Quincunx lattice. As we will see it is the dilation matrix that
distinguishes these lattices from each other. Given a lattice I' the dilation
matriz D has to satisfy the requirement DI’ C T'. Moreover, all eigenvalues
of D must have modulus greater then one so that we are expanding in all
directions. We will refer to the lattice DI' = DI'Z"™ as the subsampling
lattice of T'. The subsampling lattice of the Quincunx lattice, see figure 4,

is defined by
1 -1 1 1
D_(l 1> or l)_(1 _1).

From the conditions on D it follows that m is an integer and if we let
m = |det D| we will see that we get m — 1 different mother wavelets. For a
detailed treatment of the interrelation between the matrices I' and D, and
the wavelet construction see [7].

6.4. Multiresolution Analysis. We define a multiresolution analysis of
L?(R™), associated with the lattice T' and the dilation matrix D, as a se-
quence of closed subspaces V; of L?(R"), j € Z, such that

1. V; C Vi,

2. f( )€V e f(Dz) € Vjt,

3. f(z) eVo& flz+7) € Vo, VY €T,

4. J; Vj is dense in L*(R"™) and [, V; = {0},

5. There exists a scaling function ¢ € Vj such that the collection

{¢(z —v):v €T} is a Riesz basis of Vj.

It is immediate that the collection of functions {¢;~ : v € I'}, with ¢ (z) =
m?/2p(Dix —7), is a Riesz basis of V;. As usual, the scaling function satisfies
a dilation equation

(23) p(z)=m>  hyp(Dr — 1),
~el

and the transfer function of A, is defined by H(w) = 3_ p hye="r¥. To
proceed we have to be able to do Fourier analysis on the lattice group T'.
We then need to define the dual group of I'. The dual lattice of T is defined
as

(24) "={y"e€R":v-7" €2, VyeT},
and the dual group of T is then the quotient group R”/2xT*. From this def-
inition it easy to verify that T* = I'"TZ", where I'"T denotes the transpose

of the inverse of the matrix I'. Since D™y* .y = ~v*. D~ for every v € T and
~* € T* we have DT C T*. From the definition of H we notice that for

any v* € I'*
(ot 2m77) = 3 e e = 3™ b e = H (W),
~v€el ~el
since v -v* € Z for any v € I'. In other words, H (w) is 2rI'**-periodic.
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For the standard integer lattice Z™ the dual lattice is also Z”. The dual
lattice of the hexagonal lattice is the hexagonal lattice rotated 30° and it is
shown in figure 3, where also the Voronoi cell of 27T around 0, i.e. the
set of points closer to 0 than any other v* € 27I'*, is shown. This is the
smallest possible set on which H (w) is completely determined since it is a
representative of the quotient group R”/27T*.

Having defined a multiresolution analysis let us now introduce wavelets.
In the separable case we need 2" — 1 different W; spaces, and the same
number of mother wavelets, to complement V; in V;;1. In the non-separable
case we need m — 1 dlfferent mother Wavelets which follows from the fact
that the order of the quotient group I'/DT is m. Each mother wavelet v,
will satisfy a scaling equation

¢D(m):ngu,7¢(um_7)a v=1,...,m—1,
~eT
where the transfer function of each g, is defined by G (w) = > G e T,
The wavelet basis is obtained by taking D-dilates and I'-translates of these
mother wavelets v, ;- (z) = mi/2qp,(Diz — ) for j € Z and y € T. Let
us find the conditions on the filters in order to obtain an orthogonal MRA.
First ¢ and its I'-translates have to be orthogonal

1 -~ —iyw
50,v=<so,«,a( M=o / () e do

- Z / w)|%e Y

= 27r'y
-3 / Blw + 2177 Pem "o
*EI‘*
= / Z |P(w + 27y )|2 =Y
’7 *er*

where V(27v*) are the Voronoi cells of the lattice 27, This gives us a
necessary orthogonality condition on the scaling function

(25) Y 1B +2my)? =

V(o)

We will now find out the corresponding condition on the filter function H.
In the Fourier domain the dilation equation (23) becomes

(26) Plw) = H(DTTw)B(D™w).

Let T = {r},..., 7} } be a representative of the quotient group I'*/ DT so
that every v* € I'* can be written uniquely as v* = v + 77, where 75 € '



16 FREDRIK EKSTEDT AND MARTIN LINDBERG

and 7§ € D'T*. We then have
Yo+ = > DY Bt 2my)
~y*er* vy €LY v*EDTT* +~¢

= > 13w+ 27Dy + 2m5)
vy €ELg v*er*

= 3 [ H(DTw 4 2D

1 €L
X Y le(D™w + 207" + 20 D7)
,V*GI‘*
1
= S H(D W + 22D )
V)] 2.
Yo €Lg

by (25), (26) and the 2rI*-periodicity of H(w). Just as in dimension one
this leads to the orthogonality condition

(27) Y IH(Dw +2xD7g))P = 1
1 €rg
By similar calculations as above we see that orthogonality for the whole

multiresolution is equivalent to the m-by-m modulation matrix M (w) being
unitary, where

M(w)y=H(w+2rD™r)) I=1,...,m,
M(w)y41,1 =Go(w+ 27 D7Try) v=1,...,m—1.
In the same way, biorthogonality requires that

M(@)M(w)" =1.

6.5. Diagonalization. Now when we have introduced the appropriate frame-
work and notation for non-separable multidimensional wavelets it is fairly
straightforward to generalize the previous diagonalization technique. Let
us therefore assume that we are given a biorthogonal wavelet system in
R™ with scaling functions ¢ and @, m mother wavelets 1, and 1,7;”, and an
n-dimensional convolution operator K. Just as before we define the new
wavelets as

(28) 1’51}/( = (*1;1/ and ¢§ = I(_I@bu-

As before a necessary condition on the operator K to obtain diagonalization
is that K commutes with dilations

&
(29) K= AL independent of w.
k(D~"w)

The wavelet expansion of K f is then given by

(30) KF=3 3" W it

v=1 jEZ I€T
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Again we try to find new scaling functions by setting

——~ ~ '~

F@) = 03w and Fw)= ——3w),

tw)
which gives us the new filter functions
ko) = @) Koy = @) o
H ( )_Z(DTQJ)H( )’ Gu( )_E(DTQJ)GU( )7
i@ = i), e =M, ),
w) w)

By calculations identical with those in the one-dimensional case we see
that we get biorthogonal filters if m(w) is 27T™-periodic where, m(w) =
E(w)/?(w) In order to make the right choice of m(w) we state the Strang-
Fix conditions for a scaling function defined on a lattice I'. That is, if we
want to write any polynomial of degree smaller than N as a linear combi-
nation of the scaling function ¢ and its I'-translates then

P21y =0 for 4*eT*\ {0} and 0<p< N.
As in one dimension m(w) must be chosen so that

()

— =1 as w—0.

m(w)
For simplicity we consider the two-dimensional case only. In analogy with
the one-dimensional case we try to write

(31) m(w) = k(—iA(w), —iB(w))

where A(w) and B(w) are 2rI™*-periodic functions such that A(w) = iwy +
o(|w]) and B(w) = iw; + o(Jw|) as w — 0. Let 77 and 72 be the column
vectors of I and try with

Alw) = al(em'w -1)+ ag(ei”"” -1)
=i(a171 + azy2) - w + o(|w|) as w — 0.

We now chose ay and ay such that (a1 + az7v2) - w = wy, i.e such that

"(0)= )

and similarly for B(w). This can be written in the condensed form
(32) m(w) = k(=i (7Y = 1)),

where the exponential of the vector I'"w is taken element wise. This choice
can be thought of as a one-sided difference approximation of k in the di-
rections vy and 79. That is, if k£ is a directional derivative in one of the
directions ~;, then m will be a one-sided difference approximation in that
direction.

Acknowledgements. We would like to thank Bjérn Jawerth for proposing
the problem and for financial as well as moral support during our visit at
the University of South Carolina. We would also like to thank Jéran Bergh
and Patrik Andersson for useful comments and discussions.



18

FREDRIK EKSTEDT AND MARTIN LINDBERG

X X
X X X
x X X x x
X X
X X X
X X x x
X X
x X x X X X
X X
X X x x x
X X X
X X
x X X x x
X X X
X X

Ficurke 3. The hexagonal lattice and its dual with a Voronoi cell.

) © 5} ®
© ) e}

° [} [} )
° [} [}

° ° [} )
) I} I}

) ) I} )
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