Abstract

Discrete-velocity models provide a way for constructing conservative ap-
proximations of the collision operator in numerical methods for solving the
Boltzmann equation. This paper discusses the convergence of a discrete-
velocity collision operator to Boltzmann’s collision integral for known con-
servative models and a new model which is based on Carleman’s representa-
tion of the collision integral. For this model we prove a convergence result
for continuous distribution functions and give error estimates depending on
their regularity. In Carleman’s variables, integration over the sphere in the
collision term is replaced by integration over planes in R3. The resulting sim-
plification in the structure of the quadrature formula which corresponds to the
discrete-velocity model, allows us to prove the convergence using elementary
properties of plane lattices. The proof is substantially simpler than for the
earlier models which use approximate integration over the sphere.
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Introduction

The nonlinear Boltzmann equation is the basic equation of kinetic theory. It is used
to describe the evolution of a gas which is considered as a collection of interacting
particles. The model is physically relevant when the gas is rarefied and the binary
collisions of particles prevail. The Boltzmann equation has a number of applications
in various fields of natural science, such as high-speed aerodynamics, gas kinetics,
and semiconductor physics. We refer to the books of Cercignani [17], Cercignani,
lner, and Pulvirenti [18], and Truesdell and Muncaster [52] for the physical back-
ground and the mathematical theory of this equation.

The kinetic theory approach uses a distribution function f (¢, z,t) which depends
on the molecular velocity &, and space and time variables x, t. This function repre-
sents the mass density in (£,z)-space at time ¢. The physical parameters of a gas,
such as mass density, mean velocity, and energy can be obtained easily if the distri-
bution function is known. However, to determine these parameters from the kinetic
description, the equation for the distribution function has to be solved, and this is a
difficult problem. Firstly, the dimension of the problem is increased compared to the
fluid-dynamic description, since the dependence on the molecular velocity is taken
into account. Secondly, the collision terms of the kinetic equations are given by
high-dimensional integrals, and their computation in a numerical method requires
a huge amount of calculations.

Currently, the most efficient methods for solving the Boltzmann equation use
stochastic techniques to overcome these difficulties. The most widely used methods
of this group are known as the particle simulation methods. They use a stochastic
simulation of the collision process with properties either derived from molecular
dynamics or from the Boltzmann equation. The evolution of the particle system is
described by a Markov process and its averages are considered as an approximation of
the solution to the Boltzmann equation. The most successful realizations of particle
methods are Bird’s scheme [5]-[7] and its variants, which are usually referred to as
Direct Simulation Monte Carlo schemes (DSMC), and also the Nanbu scheme [39]
later modified by Babovsky [2]. The practical efficiency of these methods is due
to the fact that the amount of computations for these schemes grows linearly with
the number of particles, whereas for the majority of other schemes this growth is
quadratic. Other variants of the DSMC method were introduced by Belotserkovskiy
and Yanitskiy [4], Deshpande [24], and Ivanov and Rogazinsky [34].

The initial formulation of these methods was purely heuristic, and their con-
sistency with the mathematical theory of the kinetic equation remained an open
problem for a long time. The relation of these methods to the kinetic equation
for a system of N particles was studied by Ivanov and Rogazinsky [34]. The first
proof of convergence to the Boltzmann equation for the Nanbu method was given by
Babovsky and Illner [3], and for Bird’s method by Wagner [53] (see also the paper
by Pulvirenti, Wagner, and Zavelani Rossi [42]).
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The main drawback of the particle simulation methods is that they lead to large
statistical fluctuations for the approximate solutions, which is especially noticeable
if the number of particles in a computation cell is kept small. This is why the interest
in alternative methods, and first of all in the ones that give less fluctuations, remains
high.

We will concentrate here on the discussion of methods which are characterised
as deterministic. The common feature of these methods is that they start from
the Boltzmann equation (or some other kinetic equation) and combine the stan-
dard methods of approximating the equation (like finite difference, finite element
or finite volume schemes) with a suitable discretization of the collision term. The
development of these methods was initiated in the fifties by Nordsieck and Hicks
[40], and further progress was made by Hicks and Yen [29], and Yen and Lee [58].
Their method combines a finite difference scheme for space and time variables with
Monte-Carlo evaluation of the collision integral. A similar approach was developed
by Cheremisin [19]-[21], who used the splitting method and conservative finite-
difference schemes for approximation of the free-flow and relaxation parts. For the
collision term, different types of Monte Carlo procedures, as well as regular quadra-
ture methods, were used, and the error in conservation laws was corrected on each
time step by multiplying the distribution function by a polynomial in &.

An approach combining the use of Hermite polynomial expansion for the distri-
bution function, and a Gaussian quadrature for evaluating the collision integral is
developed by Chorin [22]. Although an accurate solution to the model problems is
obtained using this method, the computational costs are high. A faster method was
suggested by Sod [49], but its limitations are connected with the use of Hilbert’s
expansion for the distribution function. More recently, Ohwada [41] applied an ap-
proach based on Laguerre polynomial expansion of the distribution function in the
axially symmetric geometry, obtaining an efficient numerical solution to the shock-
wave problem. This method is, however, geometry-specific.

Another type of methods is connected with the theory of the discrete-velocity
models (DVM). These models approximate the distribution function by a function
defined on a finite set of velocities and they consider a finite-dimensional system
of quasilinear hyperbolic equations with quadratic interaction terms, instead of the
Boltzmann equation. Such models were actively developed after the work of Broad-
well [13] who considered a six-velocity model when analysing the shock wave prob-
lem. Several authors studied this and other models of the same type afterwards, and
obtained numerical results for physically relevant problems, as well as some analyt-
ical solutions. The development of this theory is presented in the series of lecture
notes by Gatignol [26], Cabannes [15], and Monaco and Preziosi [38]. The main fea-
ture of these models is that they have a structure similar to the Boltzmann equation
and satisfy the discrete analogues of its basic macroscopic properties, expressed by
the conservation laws and the entropy condition. Therefore, the advantage of these
models is that no correction procedures are required to avoid a systematic error



in numerical computation, as opposed to the methods which use nonconservative
Monte Carlo or deterministic approximation for the collision term. The discrete-
velocity models can also be easily adapted to more complicated physical situations
involving the description of chemical reactions and gas mixtures.

The problem which was unsolved for a long time, was whether the discrete-
velocity models reproduce the Boltzmann equation as the number of discrete points
in the velocity space grows to infinity. The use of discrete models with a large
number of velocities to approximate the Boltzmann equation started from the works
of Aristov [1], Tan et al. [50], Bobylev and Dolgosheina [8], Inamuro and Sturtevant
[33], and Goldstein and Sturtevant [27]. The latter used a discrete-velocity model
in the context of particle simulation. Numerical experiments with these models, for
different numbers of velocities, showed that if this number is sufficiently large, the
results are close to each other and are in a good agreement with those obtained
by other methods, at least on the level of macroscopic parameters. However, there
was no theoretical proof of convergence, and even the question of constructing the
DVM which satisfy the conservation laws, using large number of velocities, remained
unanswered.

In order to overcome the difficulties of constructing convergent DVM, Illner,
Rjasanow, and Wagner introduced the random discrete-velocity models [30], [32],
[31]. In these models, the set of velocities and their weights in the approximation of
the distribution function changes randomly in the time evolution. For such models
the proof of consistency with the Boltzmann equation in the case of spatially uniform
relaxation was given [54], but the original model failed to satisfy the conservation
of momentum and energy and was inapplicable in the numerical computations. A
modification of this model, for which all conservation laws were fulfilled, was given
in [31]. The further investigations led to the development of generalized particle
simulation methods [45].

More recently, progress was achieved by Rogier and Schneider [46], who con-
structed a fully conservative discrete-velocity approximation for the Boltzmann col-
lision integral with two-dimensional velocity space, and gave a convergence proof for
it. Generalization of this scheme to the case of three dimensions was given later by
Michel and Schneider [36]. Buet [14] developed an O(N)-scheme based on the three-
dimensional model, which was analogous to the one used by Sturtevant et al. [33],
[27]; and he also gave a heuristic argument of why the convergence of this scheme
should be expected. The rigorous convergence analysis of this scheme, presented by
Bobylev, Palczewski and Schneider in [9] required the use of very recent and exact
results from number theory concerning the distribution of integer points on spheres.
Mischler [37] proved weak L;-convergence for the solution to the Cauchy problem
for DVM to the DiPerna-Lions solution of the Boltzmann equation.

In this paper we consider a discrete-velocity model with a similar structure to
the one of Rogier, Schneider and Michel, and Bobylev, Palczewski and Schneider.
This model is also conservative, satisfies an entropy condition and has only physical



collision invariants. To obtain this model we follow the same procedure, as in [9], but
use a different representation of the collision term, which is due to Carleman [16].
In this representation, integration over the sphere in the collision term is replaced
by integration over planes in R3. This leads to a significant simplification in the
structure of the quadrature formula and allows us to prove the convergence result,
which is analogous to the one presented in [9], [10], but using quite elementary
arguments. The Carleman transform adds a singularity in the region corresponding
to small velocity changes in the collision. We study the effect of such a singularity
on the accuracy of the quadrature formula and find the condition when it can be
neglected. The error estimate for the quadrature formula was found to be between
Ch'/* and C.h'~* for Lipschitz continuous and Lipschitz differentiable distribution
functions under certain assumption on the collision cross-section. This model was
suggested to the author by A. Heintz. An analogous model with two-dimensional
velocity space was previously considered by B. Wennberg and F. Golse [55].

1 The Boltzmann equation

The classical Boltzmann equation for a gas of identical particles with radially sym-
metric interaction has the form

U ieVi=QU.N) @)EDCR xR (e, (1.1)

where the collision integral Q(f, f) is given by the expression

QD =Q (1. =Q (£, f). (12)

Here
o= [ 1&)90 BE-nw)dodn, e, (L3

o sto
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and
Q (£9)€) = 1(©) [ gn) [ Ble—n,w)dwdn, ¢eR. (15)
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Expressions (1.3) and (1.5) are called the “gain” and the “loss” term respectively,
and represent the effects of production of particles with the given velocity and their
scattering in the collision process.



The function B(u,w) is of the form

B(u,w) = By <|u\, |(u|;c|u)|> ueRwe 5D, (1.6)

It contains the information about the binary interactions of particles and reflects
the physical properties of the model. The condition B(u,-) € Li(S®),u € R® is
usually assumed to obtain the convergent integrals in (1.3), (1.5). If the particle
interactions are modelled by inverse power forces with angular cut-off, then

By(r,z) = r7b(x), (1.7)

where v € (—3,1], and b € Ly(]0,1]). In the case of "hard sphere” molecules,
By(r,z) = rz.

Important properties of the Boltzmann equation are conservation of mass, mo-
mentum and energy, and entropy condition

1
/Q(f, (&) ( 552 ) dé =0 (1.8)

[ QU E) log £(6) d€ > 0. (1.9)

They can all be deduced from the following identity expressing the symmetries of
the collision integral:

[ QU@ ds = ~% [ (= L)W + 6, — ¥ — b)) Bdwdn ds,
R3

R3xR3xS(2) (110)

which holds for all functions 1 for which the left-hand side is defined. Here we used
the notations f' = f(&'), fi = f(&}), etc.

It is well-known that all the functions ¢ for which [ Q(f, f)¥ d§ = 0 are given
by linear combinations of 1, £, and £2. All equilibrium distribution functions, that
is those which satisfy Q(f, f) = 0, are Maxwellians:

P £ vl
f(f)—mexp (— SRT ), (1.11)

where p, T > 0, and v € R?® are the density, temperature, and mean velocity of the
gas, and R is an absolute constant.

In the homogeneous case the H-theorem follows from (1.10), (1.9):

d
= [ fentog fle,tydg <, (1.12)
R3
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showing that the entropy S(f) = — [ flog f d¢ can only increase in the time evolu-
tion. In the inhomogeneous case in the absence of boundaries the same result holds
for the mean entropy:

% / F(€,2,0) log f(€,z,) dE dz < 0. (1.13)

R3xR3

The properties (1.8), and (1.12)—(1.13) are important when constructing the numer-
ical schemes for the Boltzmann equation, since otherwise a systematical error on the
macroscopic level will be introduced.

2 The splitting method

The most common approach to the solution of the nonstationary problems for the
Boltzmann equation (and stationary ones, if using the relaxation method) is to
apply the splitting procedure, in which the solution process is decomposed into two
phases: free-molecular flow and time relaxation. For the first phase the homogeneous
transport equation is solved:

6fn+1/2
ot

+ £V = (2.1)
fn+1/2(0) — fn,

and for the second one the problem of time relaxation is solved using the initial data
obtained in the previous step

n+1
= QU ) (2.2

fn+1 (0) — fn+1/2

Here we assume that the finite time interval [0, 7] is subdivided into the intervals
[tn, tnr1] of the same length At, and that f,, is the approximate solution at the time
to.

Schemes of this type are widely used in situations when the right-hand side
operator of the equation is the sum of two operators of a simpler structure, and
there is an extensive literature considering these methods [56], [35]. Bogomolov [12]
proved convergence of scheme (2.1)—(2.2) to the solution of the Boltzmann equation
in the limit At — 0 for the Cauchy problem in the case when there is a smooth
classical solution. Recently the convergence of this scheme for the DiPerna-Lions
solution of the Boltzmann equation was established by Desvillettes and Mischler
[25].

The splitting procedure gives a base for using DSMC and other particle simula-
tion schemes. In these methods, the standard approach involves the subdivision of
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the physical domain into cells and considers the relaxation phase in each cell sepa-
rately. During the time relaxation the collision process is modelled for the particles
which are in a given cell. In the free-flow phase the particles are moved into new
locations corresponding to their current position and speed, thus modelling the par-
ticle exchange between the cells. Also in the free-flow stage the boundary conditions
are taken into account.

In the deterministic setting some discretization of the distribution function in
velocity and space variables is introduced, and numerical schemes for the equations
(2.1) and (2.2) are constructed based on this discretization. The solution of the
transport phase is the easier of the two problems. Here standard methods such as
finite differences, finite volumes or finite elements can be applied. Initially, since only
the simple geometry problems were considered, and the requirements on accuracy
of the method were relatively low, a first-order, upwind, explicit, finite-difference
scheme was mainly used, see [19]-[21]. A higher order explicit scheme was applied
in the method proposed by Tan and Varghese [51]. In the numerical solution of
problems with model kinetic equations such as the BGK model, the use of high-order
non-oscillatory schemes of the type used in gas dynamics is common [57]. The finite-
volume and finite-element discretizations applied to the solution of the Boltzmann
equation [14], [46] have the advantage of easier adaptation to the geometry of the
physical domain.

The most time-consuming step of the scheme is the relaxation phase. The two
main goals in constructing a numerical scheme for this stage are thus reducing the
computational cost and keeping the conservation properties of the scheme. The
standard difference scheme used for the equation (2.2) is the first order forward
Euler scheme

= ALQU™ ), (2.3)

which is both conservative and positive for sufficiently small At. However, there is
still a problem with the choice of a conservative and numerically efficient calculation
procedure for the collision integral. In the work of Buet [14], this problem is solved by
applying a randomization procedure to a discrete-velocity model. By these means
the number of multiplications in the computation of the collision integral for an
N-velocities approximation is reduced to O(N), while a direct calculation requires
O(N?) multiplications.

Another way of improving the scheme performance at this stage would be the use
of implicit schemes for the relaxation problem, which overcome the restrictions on
the length of the time step At for (2.3). Applying such methods to the Boltzmann
equation, however, presents certain difficulties, and the use of the implicit Euler
scheme, for example, was introduced only recently [11].
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3 Discrete-velocity schemes for the collision term

The main advantage of using the discrete-velocity models for calculation of the
collision integral is that they satisfy exactly the conservation laws. However, con-
structing the models which retain these properties and approximate the Boltzmann
equation, is difficult. The positive answer to the question of existence of such mod-
els was given recently in the works of Bobylev, Palczewski and Schneider [9], [10],
Michel, Rogier and Schneider [46], [36]. The question of convergence for solutions to
DVM to the Boltzmann equation was studied by Mischler [37]. We outline the clas-
sical approach of DVM and consider two models for which the convergence results
were proved.

In discrete-velocity models it is assumed that the velocities of gas particles belong
to a finite set ¥V C R3. The distribution function f(£), £ €R3, is replaced by a finite-
dimensional approximation f;, & € V, and the following system of equations is
considered for f;:

%—i-&'vfi:Qi(f,f)a (#,t) EDCR xR, &€V, (3.1)

ot
Qi(f, f) = A (fufi = fify), (3.2)
il

where Af} are constant coefficients, and the summation is taken over all indices
corresponding to the discrete velocities in V. If the coefficients Af} satisfy the
conditions

Kl _ qlk

g

Aicgl = Ag’ (3'3)
and if
A #0 only if §+& =& +& and & +& =&+, (3:4)
then it is easy to see that the analogue of the relation (1.10) holds:
1
> Qilf, i = ~1 DAY (fufo = Jifs) (n + v — i — ), (3.5)
i€Z3 1,5,k

and thus, as in the case of the Boltzmann equation, the conservation laws and the
entropy condition are satisfied:

1
& | =0 D Qif, f)log fi <O0. (3.6)
& :

However, the question of the form of equilibrium solution is not so simple. It is

known, see e.g. [26], that all solutions of the equation @Q;(f, f) = 0 are described by
the condition that log f is a collision invariant, that is

log f € { | i + v — v+ v = 0 if A 0},
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There are models for which collision invariants other than the classical ones exist,
and the form (1.11) of the equilibrium state is not preserved. That is why the
property of having only the proper collision invariants is important.

We describe here a model which has all the conservation properties and which ap-
proximates the Boltzmann equation. It was used in numerical computations in [27],
[33], [14], and analyzed in [9], [10]. This model is based on a regular discretization
of the velocity space: for some positive h the set

2y, = hZ? = {h(ir, i, is) \ ir.3 € 2} (3.7)

is considered, and a function f defined on R? is approximated by a function on Z:
f(&) = fi, & € Z,. From now on, let us agree to use letters i, j, k, [ to denote
vectors in Z®. When writing & € Z;, we mean & = hi, i € Z3, etc. We use the same
convention for functions on Z,.

Replacing the integration over R® in (1.3), (1.5) by a rectangle quadrature ap-
proximation, we obtain

QUENE =B Y [ (1€ 1)~ FE) F(&)) BE &) do.

The idea of approximating the integrals over S®) is to use those points of the velocity
space which fall on the sphere ¥;; with the diameter |§; — &;| passing through the
points & and §;. It is based on the fact that for fixed & and §; the velocities after
the collision & and &; run twice over all pairs of opposite points on this sphere, as
w runs over S?. Thus, assuming that the distribution of the points of 2, on such
spheres is close to uniform when A is small, we can write

| (£€) £€) = £1&) 1(6) B(& — &) dw

S(2)
_ 8 ! no_ , _ B(& — &, w(0)) o
= @-P&/j (1(€)7(6) — 16 1) = iy
~ o T (e -re o) omt e

where 0 is the angle between & — §; and w, and S;; is the set of all indices k, | such
that &, & are on the sphere Y;;. Thus, setting

B3 8t B(& — &, wfh)
Al = Si| | cos O

0 otherwise,

k+l=i+]

ey

we obtain a model of the type (3.2) with the properties (3.3), and (3.4). It is known,
see [14], that this model has no other collision invariants except mass, momentum,
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and energy, and thus, its equilibrium solutions have the form
fi=exp(A&? + (B,&) +O), & € 2. (3.9)
The convergence theorem for this model is due to Bobylev et al. [9], [10]:

Theorem 3.1 Suppose f is a continuous function on R® decaying faster than |€]~3
as €| — oo, and q(u,w) = B(u,w)/ cos@ is continuous and satisfies

0<q(u,w)<a+blu, veR wes?.

Then
Qf, (&) — Qi(f, f) 30

uniformly with respect to & on compact subsets of R3.

Suppose now that f and q are smooth (C*>*, o> 0) functions, and f and all its
derivatives up to the order 8 decay at infinity faster than |£|~°. Then for sufficiently
small h,

‘Q(‘f’ f)(fz) - Qz(f, f)‘ < Csh1/17575

with the same uniformity condition with respect to &;.

The main difficulty of the proof consists in establishing the consistency of ap-
proximation (3.8) for the integrals over the spheres. The convergence of formula
(3.8) for continuous integrands is connected with properties of distribution of inte-
ger points on the spheres of large integer radius, and the proof here is based on recent
results from number theory (see references in [9], [10]). Notice also that the proof
of Theorem 3.1 given in [9], [10] is not applicable to the analogous two-dimensional
model used in computations by Inamuro and Sturtevant [33].

There is an alternative approach by Schneider, Michel and Rogier [46], [36], which
works in the two-dimensional as well as in the three-dimensional situation. It uses
the same velocity grid Z;, but changes the order of sphere and space integrations.
First, a grid for calculating the integral over the sphere is defined as a central
projection of the set

Fy = {(p17 ., Pa) € Zd| pil <N, g.c.d.(pr, .., pa) = 1}

onto S@. In the two-dimensional situation there is a natural interpretation of this
set in terms of Farey series, see [46], which provides the weights for the quadrature
formula. The generalization to the three-dimensional case, done in [36], involves
introducing the subdivision of the sphere into the set of cells R(p) centered around
the points p € F¢, and defined in the following way:

x x
R(p) ={z e 8V | |p,,~~ — p,| = min |¢n—2 — ¢n|, n=1..d},
() = { [Py = pal = min g — g }
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where m is such that |p,,| = max(|p1|, .., |p4|)- Now the quadrature formula

QU ) (E) ~ Zf: R(p) / = J(&) 1)) Bl& =, ) dn 510

can be applied for the integration over S©). A quadrature formula of the type (3.2) is
obtained by using only those values of 7 in (3.10), for which &', ' belong to Z;,. Using
(1.4) we obtain that for fixed w = ﬁ, "lies on the line & +Rp = {& + ap | a € R},
and 7' lies on the plane & + (Rp)*, and thus, it is possible to give the following
quadrature formula:

[ (@) 160 = 1(6) F0) Bl | )~ hpf Y 23 rp+m>,%>

x (£(&+hrp) f(&+hm) —£(&) f(&+ h(rp+m))).  (3.11)

Here we used (1.4) to obtain n = & + 1’ — &, and h?|p|? stands for the volume of
the fundamental cell of the integration lattice

{h(rp—i—m)‘rEZ,m€Z3,p-m:0}.

By combining the expressions (3.10) and (3.11) the equations for the discrete
model of the type (3.2) are obtained, with the coefficients Af} given by

WK IR B — &, o), it 700

0 otherwise,

where p Lis a Vector with relatively prime components in the direction of the collision
parameter w . Now it is easy to see that the symmetry conditions (3.3) are satisfied.
Further, smce

(k—1) L({-1) . . k+1=i+j
{j=k+l—i if and only if K24 2= 24 2, (3.12)

the condition (3.4) is also true. In view of (3.5) this provides the conservation
properties of the model. The proof that the equilibrium solutions have the form
(3.9) is the same as in the case of the previous model, since it uses only symmetry
properties of the velocity space and the conditions (3.3), (3.4). For the model
considered, the convergence result of the type of Theorem 3.1 is obtained in [46], [36],
and the convergence estimates C.h' "¢ in the two-dimensional case, and C.h5/™ ¢ in
the three-dimensional one are proved.
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4 A discrete-velocity model using Carleman’s
variables

In this section we introduce a discrete-velocity model based on the Carleman repre-
sentation of the Boltzmann collision integral. The motivations for considering this
model are the difficulties in proving the consistency of the integral approximation
(3.8) over the sphere and the weak error estimate for the model analyzed in [9],
[10]. In Carleman’s variables the integration over spheres in the collision term is
replaced by integration over planes. Thus, after applying the rectangle formula for
the integral over R?, the question of uniform distribution of integer points on the
domain of integration becomes trivial. However, the quadrature accuracy for the
plane integrals is not uniform with respect to the plane parameter, and so, some
averaging is required in order to prove that the approximation of the collision term
is consistent. In contrast to the proof in [9], [10], all the steps of the analysis of this
model are quite elementary.

We begin by introducing the Carleman representation for the collision term [16].
It consists in the change of variables

(77’ CU) = (p:§—w(w,§—n), q:77+w(wa§—77))-

For fixed values of £ and p, ¢ runs twice over the plane Ep,, containing £ and
orthogonal to £ — p, when w runs over the unit sphere. The functional determinant
of the inverse transform is |£ — p| 2.

It is convenient for our purposes to modify these new variables as follows:
u=p—§ w=g—¢
Let us also use the notation E, for the plane orthogonal to u:

Eu:{wERE"(u,w):O}.

In the new variables the “gain” and “loss” terms of the collision operator are
transformed as follows:

QT (£9)€) = [ fE+w) [ gl +w) Blu,w)dwdu, B,  (41)

and

Q (19 =1© [ [ 9€+u+w) Bu,w)dwdu, B,  (42)

R3 Ey

where

B(u,w) = 2 |u| 2B, (m %) : (4.3)
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We see that the function B(u,w) has a singularity at u = 0, even if By is smooth.
This singularity produces an additional source of error when using a regular quadra-
ture formula for approximating the integrals. We restrict ourselves by considering
only the kernel functions B of the form

B(u,w) = |u| " B(u, w) (4.4)

with some positive 3 such that B(u,w) is a globally continuous function. In the
case of “hard spheres”, this assumption is satisfied, since E(u,w) = 2|u|™!, and
we can take 3 = 2 and B(u,w) = const. However, the assumption (4.4) is rather
restrictive when considering kernels of more general form. In the case of kernels
(1.7), for example, this condition is true only if certain relations between 7 and b(x)
are fulfilled. We refer to Section 8 for the further discussion of admitted collision
kernels. Notice that for all v and b(z) in (1.7), for which the assumption (4.4) can
be satisfied, the value of the parameter 3 can be chosen in the interval (0, 2].

We introduce the following notations for the integrands in the expressions (4.1),
and (4.2):

F*(&,u,w) = f(€ +u)g(§ + w)B(u, w), (4.5)
F (&, u,w) = £(€)g(€ +u+w) Bu, w), (4.6)
Gigﬂg::/zﬂ%gUdew. (4.7)

Since the functions F*, F~ and G, G~ have similar properties, we will use the
notations F' and G where either of these functions can be used. Notice that G*
and F* are not defined for u = 0. It is convenient, though, to assign certain value
at this point to allow the use of 0 as a node of the quadrature rule. Thus, we set
G*(-,0) =0, and B(0,-) = 0, so that F=(-,0,-) = 0.

To construct the discrete-velocity model we use the same velocity space Z), de-
fined by (3.7) as in the two models considered above. Recall that the letters i, 7,
k, | always denote vectors in Z3. Using them as the indices of velocity variables,
we always mean multiplication by h: & = hi, etc. When considering functions
on Z,, the lower index is used to denote the value at the corresponding point:
fi=f(&) = f(hi), i € Z°.

To introduce a quadrature formula which uses the values of the distribution func-
tion only at the points of Zj, for approximating the integrals in (1.3) and (1.5), we
follow the same procedure as in [14], [10]. First, the integrals over R?® are approxi-
mated by the three-dimensional rectangle formula:

/CQMMzMZG@WL (4.8)

kez3

and then the values of the integrand at the points of Z, lying on the planes E,,
are used to calculate integrals over the planes. To give an expression for this last
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approximation, let us consider the set £,, » which is the intersection of the discrete
velocity space and the plane E,, for some fixed k € Z3, k # 0:

Lun®E By 0 Zy={hl € R® | (uy,1) =0, | € Z*} = by, (4.9)
where
Ly={lez® | (k1) =0}, (4.10)

that is the set of the solutions of the linear Diophantine equation (k,l) = 0. This
last set forms a lattice of rank 2 in Z3, i.e.,

Ly ={eim + ean ‘ e, e € Z% m,n € L},

where the vectors e; and e, are linearly independent over R as the vectors of R3.
Then the standard lattice rule [48] can be used for calculation of the integrals over
Ey

e

leLy,

/F(f,uk,w) dw ~ RO, S F(€, ug, w), (4.11)
Bu,

where Ay is the area of the fundamental cell of Ly, that is, of the parallelogram
spanned by the base vectors of Ly: Ay = |e; X es|. Notice that though the basis of
the lattice can be chosen in different ways, A does not depend on this choice [28].
Intuitively, one can interpret this quadrature formula as follows: each basis of the
integration lattice Ly, defines a splitting of the plane E,, into the set of equal par-
allelograms centered around the corresponding lattice points. They all are obtained
by shifting the fundamental cell. Summing up the values of the integrand at the
points of the lattice times the area of the cell gives the approximation (4.11).

Combining (4.8) and (4.11) we arrive at the following expressions for the discrete
“gain” and “loss” terms:

Qi (f,9)(&) =8> fl&+u)A Y. Birg(& +w), & € 2,
kez3 IELy, (4.12)

Qn (£,9)(&) = P F(E)Y° A Y Bjrg(& + up +wy), & € 2y,
kezZ3  lEL; (4.13)

where Ejk = E(uk, ’LUl).
Using (4.12), (4.13), and the relation (3.12)it is easy to obtain the expression for

the discrete collision term in the form (3.2). The definition of the coefficients A%/ is
now the following:

k4 l=i+

5 B,
h Ak—sz—z,l—Za k2+ l2: i2+j2, (414)

kl
0, otherwise.
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From this form of the discrete collision operator the symmetry conditions (3.3)
can be observed easily. Clearly, (3.4) is also fulfilled. The proof of the statement
that the equilibrium states have the form (3.9) can be easily adapted from the one
for the two models considered in the previous section. Formally, the only difference
that arises is that the values of Af]l for kK =1 and ¢ = j are put equal to zero in our
model. However, this does not change the proof, since these coefficients correspond
to the cases of “trivial” collisions which do not give any contribution to the collision
term.

Thus, the obtained discrete-velocity model for the collision term satisfies all
the conservation properties discussed above. We summarize these properties in the
following theorem.

Theorem 4.1 The discrete-velocity model defined by (3.1), (3.2) with the velocity
space (8.7) and coefficients defined by (4.14) satisfies the discrete mass, momen-
tum, and energy conservation laws as well as the entropy property, expressed by the
conditions (3.6). All positive solutions to the equation

Qh(faf):()

are given by the discrete Mazwellians

(&) = exp(AG + (B,&) +C), &€ 2,
where A,C € R, and B € R® do not depend on i. This means that there are no

other collision tnvariants except the classical ones.

In the next three sections we give the convergence analysis for the discrete col-
lision term of the model.

5 A convergence result for the discrete-velocity
model

In this section two convergence theorems are formulated. We make a distinction
between the cases of the continuous integrands, when no estimates are available,
and the Lipschitz ones, for which convergence estimates are obtained. Denote by P
the set where the kernel function B(u,w) is defined:

’P={(u,w)€R3xR3‘uJ_w}.

We consider P as a submanifold of R?* x R® and denote by C™ b1(P), m > 1,
the space of C™ !-functions on P having the locally Lipschitz m-th derivative.
The notation Cj" _1’1(’P) is used for compactly supported functions with the above
properties.

The main theorems can now be formulated as follows:
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Theorem 5.1 Assume that f, g € C5"~ "' (R?) for some m > 1, and the kernel B
defined by (4.3) satisfies (4.4) with B € C™ 1(P) and 3 > 0. Then, for sufficiently
small h

where
r=min (= G m/(m 3+ 20 ), (5:2)

and the bound (5.1) is uniform with respect to & on compact subsets of R®.

Theorem 5.2 Assume that f, g € Co(R?), and the kernel B satisfies the assumption
(4.4) with B€ C(P) and 3> 0. Then

uniformly with respect to & on compact subsets of R3.

Remark. We notice that the third term in (5.2) can be omitted when m > 3.

It is convenient to reformulate the assumptions on f, g, and B in terms of the
functions F'* and G* from (4.5)—(4.7). Since these functions have a singularity of
the form |u|=3*# at u = 0, we introduce the new functions

F*(€,u,w) = [u PF(€, u,w), (5.4)
G*(&,u)= [uf~PG* (¢, u), (5.5)

where this singularity is removed. If f, g are compactly supported continuous func-
tions, then F~ and F* have compact support in P, and the support bound is
uniform, with respect to & on any compact set K C R®. Further, if f, g, and B
are continuous or C™ bl_functions, then F~ are continuous or C™ '-functions,
respectively. For a fixed compact K let us denote by R and L the global bounds for
the support and the Lipschitz constant of these functions:

R= sup{|u| + |w| ‘ FE(E u,w) #0, (u,w) €P, €€ K} < 400, (5.6)

L =sup Lip Vmﬁi(g, “ ) < 4o00. (5.7)
¢eK P

Evidently, the constant R provides a bound for the support of G(&,-) for £ € K.

The first step in the proof of the convergence theorems is to consider the two
possible error sources, namely, space and plane discretizations, separately. The
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difference in (5.3) is estimated as follows:

Q* (£,9)(&) — Qi (£, 9)(&)

= //Fi & u,w) du dw — h5ZAkZF (&, g, wy)
R3 E, kezZ3 leLy
s/wgdwmzﬁgm
keZ3
+ > h3< /Fi &y u, w) dw — W20y F* §Z,uk,wl)>‘
keZ3 leLy
—| T 866" h‘ S B Ry (&, F* h)‘zS—HR, (5.8)
|k|<R/h |k|<R/h

where

Ru(e, B, 1) = [ P& uyw) dw—h2De 3 F(Eue,w),

R
E"}}k lEL,C

SK(€, G, h) = / G(€, u) du—h3G(€, uy).
By,

Here By is the cube of size h around uy, and L,}f and Efk are the intersections of L
and FE,, with the ball or radius R centered at 0. Now, the term R represents the
total error due to the discretization of the plane integrals, and § is the error of the
three-dimensional rectangle formula on the function G. In the next two sections we
give the bounds for each of these two terms.

6 Approximation of the integrals over planes

First, we focus our attention on the problem of approximating the integrals over the
planes FE, using the lattice formula (4.11). For a fixed k € Z?, and a basis for the
integration lattice Ly p, the plane E,, is splitted into a set of equal parallelograms
{Dk,}ieL,, centered at the lattice points. We estimate the local approximation error
on each parallelogram cell, by using a standard approach based on the Bramble-
Hilbert lemma (cf. [43]). Then, summation over all cells lying on the plane gives an
estimate for the plane quadrature, which is subsequently used to estimate the total
error given by the term R in (5.8).

The further analysis is based on the following lemma.

Lemma 6.1 Let 2y C R" be an open bounded set with Lipschitz boundary, such
that || = 1. Let A be a linear invertible mapping on R, and Q = A(Qy). Let
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g€ W), m=1,2, p€ (n/m,oo], and
E(g) = [ gdz — |019(0). (6.1)

Then

E(9)] < CIQ1||A™|g

m,p,2s (62)

where C' does not depend on Q and g, ||A|| denotes the matriz norm of the mapping
A, q is the conjugate exponent to p, and

1/p
mpQ = ( Z /Q|8ag|1’ da;), P <00, |glmoon= ﬁiﬁ ess. sgp 0] (6.3)

|a|=m

g

Proof. We give only a sketch of the proof, referring to [43] for the details. Let
us define the function go(§) = g(AE), & € o, which evidently belongs to W)™ (£).
Then since |det A| = ||, we find that

Blg) = [ol@)dz = 129(0) = 2/ ( [ 90(6) d = 9(0) ) = 2B (90).

E can be considered as a linear bounded functional on Wj", which vanishes on all
polynomials up to degree one. Thus, for the reference domain the inequality

[E(g0)| < Clgo

m,p,$2o

can be obtained as an application of the Bramble-Hilbert lemma. Now by using the
inequality

o < CIOITPIA™|glmp 0 (6.4)

‘90

(see [23]), we obtain the estimate (6.2). O

The application of this result to the case of the integration lattice Ly, j is straight-
forward: a square of the unit area D, can be considered as the reference domain
(2o and the fundamental cell Dy, | = 0 as 2, with Ay ,: Dy — Dy, being a linear
bijection transforming Dy into Dy ;. Then using Lemma 6.1 the following bound for
the error of plane integration can be obtained.

Lemma 6.2 Let K C R? be a compact set, and assume that Fis such that F(§,-,-) €
Co' (P), and conditions (5.6) and (5.7) are satisfied. Let R and L be the constants
defined by these conditions. Then

(Ri(&, F,h)| < C(R,L)|| A, (6.5)

and C(R, L) does not depend on k and h and is uniform with respect to £ on K.
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Proof. Using the previous lemma we get the estimate

Re€. P = | [ F&ouw)dw— B0y 3 P u,w)
Ef

R
leLf

S Z /F_(ﬁ,uk,w)—h2AkF_(§,uk,wl)

R
l€Ly’ Dy,

F(gauk:') ,00,

+ S CLR*||Apall,

R
leLk

which proves the lemma. [J
Evidently, if F(&,u, w) = |u| 3P F(&,u, w), then

(6.6)

Remark. For functions of the class W;"(€2) with m > 3, an estimate of the form
(6.2) can be obtained for

E,, /gdaz—m\g > daloe /8“

2<]a|<m—1

with a suitable choice of the coefficients d,. This can be easily proved by applying
the inequality (6.4) in the original arguments given in [43]. So if the function F in
the formulation of Lemma 6.2 is of the class Cj* "' (P), then the bound (6.5) can
be changed to

[Re(&, F, h)| < C(R, L)|| Appl™ (6.7)

Lemma 6.2 expresses the fact that the quadrature formula (4.11) converges,
whenever the linear size of the cell, given by the norm of Ay, tends to zero as
h — 0. In the case of the lattice (4.10), the value of the norm can be expressed in
terms of the length of the maximal base vector. If {e1, e} is a basis of Ly, that is
{he1, hea} is the one of Ly, we have (taking spherical norm for definiteness)

|Ax || = hmax(|e; + ez, |e1 — e2|) < 2hmax(|e], |ea]). (6.8)

A bound for the norms of the base vectors for the lattice defined by a linear
Diophantine equation may be obtained using a rather elementary argument, which
we consider in the next lemma.

Lemma 6.3 Let a € Z>, (a,z) = 0 be a linear Diophantine equation. Then the
basis of solutions {e1,ex} of this equation can be chosen so that

erllez] < /3 lal. (6.9)
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Proof. Let L, be a lattice of solutions to (a, x) = 0. Then det(L,) = |a|/(a1, as, a3),
where (a1, az, a3) is the greatest common divisor of a;, as, as. This can be easily
checked directly using the expression of the solution with parameters obtained by
the Euclid algorithm, or it can be obtained as a corollary of a more general fact:
[47], Lemma 4C, Ch.1. Now the inequality (6.9) follows from the Hermite’s bound
for the reduced basis of a lattice: [28], p.71. O

Remark. In the case of a two-dimensional lattice, which is considered in Lemma 6.3,
Hermite’s bound

lea[es] < /% det L. (6.10)

can be proved using simple geometrical arguments. Namely, since det(L,) is the
area of a basis parallelogram, det(L,) = |e1||es| sin(eq, e3), and the condition (6.10)
is equivalent to sin(ej,ep) > \/ﬂ = sin(7/3). Then, if the angle between the
vectors of the original basis is less than 7/3 , we can complement one of the vectors
e1, es by either e; — e or e + e2 to a new basis, for which this angle is greater than
7/3, and thus the required condition is satisfied.

The inequality (6.9) implies that for the vectors of the reduced basis, the bound
le;| < \/g la| is valid. In fact, the constant in this estimate can be improved to give

lei| < |al, (6.11)
so that the norm of the linear mapping Ay, can be estimated as

[Aknll < 2h|K| = 2[uy|. (6.12)

We see that this bound does not provide convergence of the norm to zero as
h — 0. It is easy to verify, that indeed there is no uniform convergence for all k.
To show this, consider for example the integer vectors k of the form (k, k2, 0), with
ki, ko relatively prime and |k| > 1/(2h). For such k, ||Agnl = 2|ug| > 1. Thus,
the quadrature formulas over different planes do not converge uniformly. However,
using the inequality (6.9) we can show that the fraction of points uy, for which
|| Ak n|| remains large, becomes small as h tends to zero. We use this in the next
lemma to prove that the error of the integral plane quadrature tends to zero.

Lemma 6.4 Let F(€,u,w) = |u| P F(&,u,w) with F being a Cy* (P)-function,
which satisfies the conditions (5.6) and (5.7) on every compact K C R®. Let R and
L be the constants defined by these conditions. Then for sufficiently small h

> WRe(, Fob)| < C(R, D)W (6.13)
keZ3
with .
. 28
T = min (Z, 1/<4+ @)),

and this estimate is uniform with respect to & on compact subsets of R3.
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Proof. Let us fix a compact K C R, and put N =N(h)=R/h for R defined by
(5.6), and A = {k € Z3‘ k| < N} Then the sum over Z2 in (6.13) can be replaced

by the sum over Aj,.

By Lemma 6.3 there is a basis {61 ,eg )} of integral solutions to (k, z) = 0, satisfying

(6.9) and (6.11). Let el) and ™) be the base vectors with maximal and minimal
Euclidean norm, respectively.

Take some constant o € (0,1) (to be fixed later).

If the inequality |e*) | > |k|® holds for some subset B, = By(a) of Ay, we get by
(6.9) that |elk) | < \/;|k|1 @, Hence, by (6.11)

||Ak h,|| < 2h|6m3x| = C|U |1 ape (614)
Then,
S R RL(E F h)| < C(R,L)R Y h¥juy| 7>t
kEBp reB,
< C(R, L) [ [u*7~du = O(R, L)h".
lu|<R

For the remaining part of the indices k& we have
Ah\Bh = {k‘ € -Ah ‘ ‘egfl)n| < ‘k|a} C {k‘ c -Ah ‘ ‘eg;)n‘ < Na} def D,.

Now, it is easy to estimate the number of points in Dy, and hence in Ay \ By,. Simple
geometrical arguments show that

#{je 2| |j| <n} <Cn?, (6.15)
#E, N {j € 2*||j| <n} < Cn?, (6.16)

where # denotes the number of elements in the set. Using (6.15) and (6.16) we

conclude that the number of different vectors ef,’fi)n satisfying the inequality |e§f1“2n| <

N is estimated by C N3, and the number of vectors k € A, on each plane {k €
A ‘ ") k) = 0} is estimated by CN?2. This gives that

#Dh < CN2+3Q7

and thus, if g > 2

Z h3Rk(§,F,h)‘ < C(R,L) Z h3\uk\*2+ﬁ

k€eDy, keDy,

243
5) — C(R, L)k .

< C(R,L)R*R** .

N
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By setting o = 1 we get both parts of > h3Ry(&, F, h) estimated by C(F)h'/4.
JEAR

If 3 < 2, then |u;| 2*# is unbounded on Dy, and the contributions of “large” and

“small” k£ should be considered separately. For this purpose let us take some o €
(0,1) and split the above sum in the following way:

Z h3|uk|_2+ﬁ§ Z h3|uk|—2+ﬂ+ Z h3|uk|—2+ﬁ

keDy, k<Nl-o keDy,
Nl=-o<k<N
R 243
<C / lu| =% du 4 b3 (—> max |uy| 2P
h N1-0<k<N
|u‘SR1—o'ho'
<C ) ( a(1+8) h173a70(27ﬂ)) .

Thus, if 0 = o/(1 + ), anda—l/( —ﬁ) we find

S BR(E, F, h)‘ < C(F)he.

kEDy,

By combining the estimates for B, and D}, we complete the proof of the lemma. [

Remark. For the functions from the class Cj' "' (P) the estimate of Lemma 6.4
can be improved. By applying inequality (6.7) instead of (6.5), we find that for

m = 2 the value
. 1-8
7 = min 2/15+ — ),
(Z2/(+12)

can be obtained, and for m > 3,
m
T m+3
since the source of unboundedness disappears in the sum over Dj,.

The proof of the convergence for continuous functions is obtained by analogy to
the Lipschitz case.

Lemma 6.5 Let F(¢,-,-) € Co(P) satisfy the conditions (5.6) and (5.7) for every
compact set K CR®, and F(&,u,w) = |u| 3P F(&,u,w). Then

3
Z h :Rk(é-,F,h) mo

keZ3

uniformly with respect to & on compact subsets of R3.

Proof. Let us consider £ in a fixed compact set K C R?, and define the sets Ay,
and for some fixed « € (0,3), By and D, as in the proof of Lemma 6.4. Since the
function F(&,-,-) is umformly bounded on P with respect to £ € K, we clearly have

sup ‘ka & F, h)| < R?sup sup F(&,-,-) < C. (6.17)

{eEK EEK P
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Thus, for any fixed positive € we can choose a sufficiently small § such that

hsgzk g: F: h S C h3 Uk —3+8 S C Uk —3+8 du < €.
>
k<d/h k<d/h lul<b (6.18)

Denote by A2, B2, D¢ the intersections of Ay, By, and Dy, with the set {k € Z3||k| >
d/h}. According to (6.14), the sizes of the cells of the integration lattices tend to
zero uniformly for & € Bj. We show that on B} the quadrature error for the function
F tends to zero uniformly:

sup sup ‘iRk £ F, h)‘

£EK keBd h—>0

(6.19)

In order to prove this, fix some u® € R® and consider A,o_,, € SO(R?), which is
the rotation map with respect to the line orthogonal to both u° and u, and which
transforms E,o into E,. It is easy to see that if |u| > 4, then for a fixed w € R®,
u > Ayo_y,w is a continuous function. Then,

Ri(€, F, h) = / F(E, up,w) dw — h2Ap S F(E, up, wy) (6.20)

Euk lELk

= / F_(ga Uk, Au0—>ukw0) dwo — det Ak Z F_(§’ Uk, Au0—>ukwl)7

E o wiEA

w

where Ay is a lattice on E,o, and the size of its fundamental cell |A| is the same as
for hL;. Consider now the function

F(E u,A) =det A DY F(& u, Ayoy,wy).
w;EA
It converges to the value of the integral in (6.20) as |A| — 0 pointwise for all &, .
In order to prove (6.19), it suffices to show that F converges uniformly if £ € K,
u € {u € R |6 < |ul < R}. This holds if F is uniformly equicontinuous in (£, u)
with respect to |A| — 0: [44], p.29-30. This last property follows easily from the
uniform continuity of F. Now,

S WR(, P 1) < sup sup [Re(6, Fo )| 3 ] 77

sup
{eEK kEB‘; EeK kEB‘s k€B6
< CR*sup sup | Ry (&, F, h)]| = 0. (6.21)
§EK kel

To show that the sum over the set DJ converges to zero, it suffices to use the bound
(6.17) combined with a simple maximum estimate:

sup| S BARy (€, F, h)‘ < [Pl sup Re(&, 7, h)|
LeK keD]
R 2+3a
< C§3HAp3 (—) — 0. (6.22)
h/) h—=o0

Combination of (6.18), (6.21), and (6.22) proves the lemma. O
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7 Approximation of the integrals over R’

In this section we consider the approximation error of the quadrature formula over
R3, which is given by the term § in (5.8). Let F be such that F (£, u,w) =
lu| 3B F(&,u,w) with F(E,-,-) € Co'(P), and let F satisfy the assumptions (5.6),
(5.7) on every compact set K C R®. Consider

G u) = /Eu F(& u,w) dw (7.1)
and
G(€,u) = [u]*PG(E, u) = /E (e u,w) duw. (7.2)

Our aim here is to prove that the three-dimensional rectangle formula has sufficient
accuracy when applied to the function G(&,-). The difficulty which occurs here,
is that G has a singularity at v = 0, and the standard argument of the type of
Lemma 6.2 can not be applied. Nevertheless, the bound of Lemma 6.1 applied to
the local error on each cubic cell B, can be used to show that the total quadrature
error is small.

In order to obtain the estimate for the local quadrature error, we give a Lipschitz
condition for the function G.

Lemma 7.1 Let K C R® be a fized compact set, and let G(&,u) be the function
given by (7.1) with F' satisfying the above assumptions. Let R and L be the constants
defined by (5.6) and (5.7). Then for u,u' #0, £ € K

G u) = G(&,u)| < C(R, D)ful *(Jul 7> + Ju'|#7) Ju — o]

Proof. First, we prove an analogous inequality for G. Let us fix two nonzero
vectors u and u' € R®, and denote by A the rotation mapping A, introduced
in the proof of Lemma 6.5. Then, using the compact support property and the
Lipschitz condition for F', we get

G(&u)— G(& v

‘/ F(& u,w) dw — F(&, Aw))d

gL/ |u—u'|+|w—Aw|)dw'

Ef

where EF = E,NBg(0). To estimate the difference |w — Aw| in the integrand above,
we notice that for all vectors x in the unit ball B;(0)

|z — Az| < Y e | g
Jul Jul
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and hence,

! !

U U ! !

oyl _ !
u wo ) Ju—] el =l

Jul Jul

u — |

=A<

'l ul |7 )l ul

Using this estimate of the norm we obtain

‘é(gau)_é(&u,) %

Jul

gL\u—u’|/dw+ \u—u'|/|w\dwg0(R,L)\u|—1|u—u'\.
ER ER

Now, it is easy to prove the desired inequality for G:
G (& u) = GE )| = |[ul PG (€ u) — |w/ |G ()
<|[u[G (& u) — [w[HPG (& u)| + [[u]PPG (6 u) — PG W)
=|[ul =2 — /|| G (& u) + [0/ G (,u) - G (&)

<CR, L) Jul 7 (Jul > + [u'[*F) ju — o]

Here we used the bounds
|C_¥(§,u)\ <C, |ul<R,

and
||u|—3+ﬁ _ |u/‘—3+ﬁ‘ < C‘u‘_l(‘u|_3+ﬂ + |u'\_3+ﬂ)|u N u,|’

where the latter one follows from the inequality

a __ g ‘1 — (¥)* | a
) B8] oo (14 () ot
T—y -2 T

holding for all z, y > 0, x #y. O
Applying Lemma 6.1, we obtain

3
‘ B{ G(&,u) du — K3G(E, uz)

< Ch’4|G(£1 ')|1,oo,Bk < Ch'4 LB}p G(f, ')a (73)
k

where By is the cubic cell of size h around ug, and Lipg, G(§, -) denotes the Lipschitz
constant over this cell. Thus, the local error 84(&, G, h) on each cell By, k # 0 is
estimated according to (7.3). Now, the Lipschitz constant of G' can be estimated by
Lemma 7.1 for k£ # 0, and summing up the bounds for 84 (¢, G, h) over k € Z3 will
give the bound for the total spatial quadrature error.

Lemma 7.2 Let G(&,u) be as in Lemma 7.1. Let K C R® be a compact set and let
R and L be the constants given by (5.6) and (5.7). Then

3 8i(6,G, h)| < C(R,L)I", (7.4)

keZ3

where r = min(1, ), and the bound is uniform with respect to £ on K.
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Proof. Using Lemma 7.1, the Lipschitz constant of G' can be estimated by

LipG(&,-) < C(R, L) max |u|~*"7. (7.5)
By, By,
Applying the estimates (7.3) and (7.5) and recalling that G(&,0) = 0, we obtain

Z Sk (ga G’ h)

keZ3 ‘ \k|<R/h

< /G ¢u)du+C(R,L)h S h*max|u| *2,
0<|k|<R/h k

/Ggu ) du — B*G(€, ug)

The integral over By can be bounded as

4
/G(g,u) du < 0/ |3 du < C / u| =3B du = “CRP.
2 B

u|<h

Since the maximum of |u|=**# on each cubic cell By, is attained either at one of the
corners or at the centre of one of the sides, the last sum can be rewritten as follows
(we skip writing |k| < R/h, considering only such k):

> Wmaxu = (X 4+ X+ X+ X)Wl
0<|k|<R/h " k€(Z-1)3  keZ-2  ke€Z-)  ksez -1
ko—=k3=0 k3=k1=0 k1=k2=0

In the first sum, the contributions from the eight points closest to zero can be singled
out, and the rest is estimated by an integral:

B\ 48
> b7 < 8R? ( ) +2 / lu| ™ du = Ch*
he(Z—5)° b <lul<R

where s = min(0, —1+4/3). The factor 2 in front of the integral is due to duplication
near the coordinate planes. In the same way,

h —4+p
S B jug| T < 2p3 ( ) + lu| =4 du = Ok,
k1€Z——
ko=ks—= 0

Nl

<lu|<R

and analogously for the remaining two sums. Combining the above estimates and
noting that r = s + 1, we obtain the desired result. [l

The proof of Theorem 5.1 is now achieved by combining the estimates of Lemma
6.4 and Lemma 7.2. The convergence for the error of the space integration in
assumptions of continuity of integrands is proved in a much simpler way.
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Lemma 7.3 Assume that G(€,u) is defined by (7.1), and that F(E,-,-) € Co(P)
satisfies the conditions (5.6) and (5.7) on every compact set K C R®. Then

> 8k(&, G k) — 0

kezZ3

uniformly with respect to & on compact sets of R?.

Proof. Let us fix some positive § and estimate the above sum as follows:

> 816Gk < [ Gl&,w) du— WG(E, uy)
kezZ3 |k\<R/h B,
< / G wdut+ Y PmaxGEu)+ 3 G(&,u) du— BPG(E, up).

u|<6& 0<[k|<d/h 5/h<|k|<R/h'p,
Now, since the integral converges, the first term can be made as small as desired by
choosing sufficiently small §. For the second term we have:

> h’maxG(E,- )<squ &) > h3max|u| 3+6 <C/ lu|~ 3+ﬁdu—>0

B
0<|k|<s/h  F 0<|k|<5/h lu<6

The third term is a residual of the Riemann sum for the function G(¢, -) outside a
neighborhood of zero. We show that G (,-) is a continuous function outside of this
neighborhood. In fact,

G~ ) < [ [F(Euw) ~ P, Ausw)|du,

and since u' — A, _,u is a continuous function outside a neighborhood of zero, the
continuity follows from the uniform continuity of F. Now, G(&, ) is also continuous,
and hence the third term converges to zero as a consequence of Riemann integrability

of G.

All bounds can be made uniform with respect to & by taking supremums over a
compact K CR}. O

8 Conclusions

We showed that the discrete-velocity collision term constructed in Section 4 con-
verges to the Boltzmann collision integral for compactly supported distribution func-
tions. The case when these functions decay polynomially can also be treated in a
similar way.

The expression for the exponent of convergence (5.2), shows that in the case of
“hard sphere” molecules for which the value of the singularity exponent § can be

29



chosen equal to 2, the convergence rate becomes m/(m + 3) and is determined only
by the regularity of the distribution function. In the limit case when the distribution
functions are from C§° (or the Schwartz class s ) the quadrature error is estimated
as C.h'~¢, for all € > 0. The same remark is true when 1 < 8 < 2 and the function
B in the kernel is of the class C*®. However, if considering kernels of the form (1.7)
with smooth function b(z), this convergence rate is generally not attained. For
example, for the so-called “variable hard sphere” cross-section, when b(z) = x and
v € [0, 1], the condition (4.4) with B € C%!(P) gives that 3 must be taken < ~ and
hence the value of the exponent of convergence given by Theorem 5.1 is equal to ¥
for 7y close to zero, and vanishes for v = 0. The estimate of Theorem 5.1 in this case
can be improved by considering the kernel B in the form

B(u, w) = |u|™*(u? + w?) ™2 B(u, w)

for some positive o and 3 and globally Lipschitz B. For the “variable hard spheres”
with v € [0, 1], for example, the convergence exponent 1/4 can be obtained in this
way.

It is also interesting to point out that the argument used in the proof of Lemma
6.4 cannot be applied for the analogous model with two-dimensional velocity space,
and as in the case of the model considered in [9] the question of convergence for such
a model is open. Thus, the only one of the three types of models considered in this
paper, for which the convergence in two-dimensional case is proved, is the one by
Rogier and Schneider [46]. Notice that the coefficients of the quadratic form Q. (f, f)
are different for the three models discussed, and the convergence results proved for
one model generally cannot be transferred to the other ones. The questions of the
relation between these models and their possible generalizations could be the subject
of future investigations.
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