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Abstract

It is well known that wavelets cannot be eigenfunctions of differential opera-
tors. We show that for homogeneous convolution operators, one can obtain a
diagonal representation using two different biorthogonal wavelet bases, prop-
erly adapted to the operator at hand. We generalize this to include many
inhomogeneous convolution operators, using “wavelet-like” basis functions,
i.e. functions that share all the important properties of classical wavelets
but not necessarily are dilates and translates of a single mother wavelet.
We also show how to associate a multiresolution structure to these bases,
which means that the wavelet transforms involved can be implemented with
fast algorithms. Finally, we use these techniques to construct a fast wavelet
transform for complex-valued signals that separates positive and negative
frequencies, which is important in the analysis of radar signals.
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Chapter 1

Introduction

The purpose of this introduction is to give an overview of what the thesis
is about. While the rest of the thesis is somewhat technical, and requires
some familiarity with wavelet analysis, this section is written with the aim of
being possible to understand with just some basic knowledge of functional
analysis and Fourier analysis. Basically, there are three main important
concepts involved in this work:

1. Biorthogonality
2. Wavelets

3. Diagonalization

Below, we will try to explain each of them in an informal way, and at the
same time describe the main ideas of our results. We also give an outline of
how the thesis is organized. Finally, we discuss some results related to ours.

1.1 Biorthogonality

Biorthogonality is best understood in the language of matrices. Let U be a
nonsingular n-by-n matrix and let U be the transpose of its inverse (U =
U~T). We can write this as

(1.1) UoT =1
Let uy,...,u, be the columns of U and %y, ..., %, the columns of U:

U=luy...u,] and U =[uy...uy,

We can think of u; and u; as basis vectors. The basis {u;} will be called the
dual basis to the basis {u;}. The two bases {u;} and {%;} together will be



referred to as a biorthogonal system. We may now interpret U as a change
of basis matrix, since any vector x can be written as

<m7ﬂ1> n
(1.2) r=U02) =U| | = (u)u,

(z,in)) =

i.e. a linear combination of the basis vectors u;. The coefficients (z,u;) are
obtained by taking inner products of x with the dual basis vectors u;. The
basis vectors u; and the dual basis vectors satisfy a biorthogonality relation

(1.3) (uis wir) = &; 0,

which is just another way of writing (1.1). The roles of U and U may of
course be interchanged which is the reason behind the “duality” terminol-
ogy. In the special case U = U we have an orthonormal basis (ON-basis).
Equations (1.2) and (1.3) can immediately be extended to Hilbert spaces
to define biorthogonal dual Riesz bases. Two families of vectors {u;};cr and
{ui}ier in a Hilbert space H are said to constitute biorthogonal dual Riesz
bases if

(1.4) (wiy wir) = &0 (Biorthogonality)
and
(1.5) Allz))* < Z|<m,ﬁi>|2 < B|z|*. (Stability)

el

Whenever these conditions hold, each x € H can be written as
(1.6) = (z,Uui.
€1
We should also remark that from (1.4) and (1.5), it also follows that (see
[4])
B™ e < ) e, u? < A7 |z
€1
and each z € H can be written as
z = Z(r, i) .
il

Again, the roles of {u;} and {%;} can be interchanged (in applications,
there can be a significant difference between using a basis or it’s dual how-
ever). The difference from the finite- dimensional case is (1.5). In a finite-
dimensional basis this inequality is always satisfied. But in practice we need



B/A to be of moderate size, so stability questions are of equal importance
in the finite-dimensional case. The quotient B/A is called the condition
number of the matrix U (and U) and is a measure of how much relative
errors are amplified when we multiply z with UT. The computation of the
coefficients (z, u;) is referred to as analysis of 2 in the system {u;}, {%;}, and
the summation in (1.6) is called synthesis. In the finite-dimensional case,
the analysis is realized by the action of U™ on z, and the synthesis is done
by applying U on the coefficient vector UTz. In a general Hilbert space H,
we define the operators

U*:H — 2(1]); Uz = ((x,4))ier “Forward transform”

U: (1) = H; Uc= Z iU “Inverse transform”
el

performing the analysis and synthesis respectively. With these operators,
(1.6) can be written in a more compact way which resembles the matrix
notation:

@ =U(U*z), oreven simpler UU* = 1.

Here of course, [ is the identity operator.

1.2 Wavelet Analysis

We will be interested in a special kind of biorthogonal dual Riesz bases,
namely biorthogonal wavelet bases in L*(R). We will just mention briefly
here the basic ideas of wavelets, since chapter 2 contains a short introduction
to the subject. For a more thorough description, see one of the references
[4] or [13].

1.2.1 Wavelets

The starting point of a wavelet basis is a function @ with integral zero,
and some localization in both time and frequency. This function is called
the mother wavelet. In figure 1.1 we have plotted some frequently occuring
mother wavelets. From this single function we create a whole family of
wavelets by making copies of it at different scales and positions:

(1.7) Bialt) = 2120t — k)

The wavelet v, is obtained by “stretching” the mother wavelet with a
factor 277 in time and a factor 27/2 in amplitude, and finally shifting it 2=/ k
in time. The whole family {#; 1}; & thus consists of stretched versions of the
mother wavelet located at various positions (see figure 1.2). If we think of
the mother wavelet as “living on scale one”, v; ;, will be living on scale 277.
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Figure 1.1: Four different mother wavelets.

Note that for fixed scale (fixed j), the wavelets are centred around points
277k (if we assume that the mother wavelet is centred around 0). So for
fine scales (large j), the wavelets will be spread over the real line with a
small step 277. For large scales (small j), the wavelets will be distributed
very sparsely. This enables us to analyze f with different resolutions at
different scales; at the fine scales (high frequencies) we analyze f with high
resolution, and at the coarse scales we analyze f with low resolution. The
representation

(1.8) F=Y digtin
7,k

is then very efficient for functions with non-stationary properties. The coeffi-
cients d; r measures the local oscillations at scale 277 around the point 277 k.
Where the function is smooth, i.e. does not vary to much, the small-scale
coefficients will be almost zero and can therefore be neglected without losing
to much information. The small-scale coefficients are only used when they
are needed, i.e. where the the function has abrupt changes, transients or
highly oscillatory components. This is the idea behind wavelet compression.
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Figure 1.2: The Mexican hat function at three different scales.



1.2.2 Multiresolution Analysis

A natural question at this point is how we compute the coefficients d; 1, i.e.
what is the dual basis? It turns out that one can construct wavelet bases so
that the dual basis is also obtained from a single function, the dual mother
wavelet, by stretching and moving it around:

bix(z) = 20222 — k)

These constructions are based on the extremely important concept of a
multiresolution analysis (MRA), which we will give an informal description
of here. We refer to Daubechies book [4] for examples. The central object of
an MRA is the scaling function @, which is a localized function with integral
one. It is used to approximate functions at a certain scale; we define the
approrimation spaces V; as

Vi = span{;k},
where of course
ejk(z) = 2j/2go(2jm — k).

The best example to illustrate MRA’s with is the Haar system which was
invented by Haar in 1904. This is the first known wavelet basis constructed.
Here the scaling function is the unit box function,

1 if0<az <1,
p(z) =

0 otherwise,
see figure 1.3. The Vj-spaces thus consist of functions that are piecewise

constant on the dyadic intervals [277k,277(k + 1)]. For a general MRA, a
function is approximated at scale 277 by a projection onto V:

FrRf=Pf=> cirpi
k

This projection is determined by dual approzimation spaces ‘7j spanned by
dual scaling functions

Binl(x) = 215(20a - k).

The scaling function and its duals are biorthogonal to each other in the sense
that

<99j,ka &j,lc‘) = 5k,k’-

10
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Figure 1.3: The Haar scaling function.

The coefficients ¢; ;, are given by inner products of f with the ¢;.’s, i.e.

Pif = {1, 8in) ek
k

For the Haar system, which is orthogonal, V; = ‘7] (and ¢;r = @; ). The
projection of a function on V; thus means approximating the function at
each interval [277k,277(k 4 1)] with its mean value on that interval. This is
shown in figure 1.4 for three different scales.

In applications, where the function f is given by its sample values at 27k
(some j7), it is common practice to replace the coefficients (f, ¢; ) with the
sample values f(277k). In that case, the scaling function takes the role of
an interpolating function. In fact, some biorthogonal wavelet systems uses
B-splines as scaling functions.

Now we impose the following conditions on the approximation spaces V;
in order to derive the wavelets,

1. ‘/J C V}'.H
2. U, Vj is dense in L*(R)

3. ﬂj Vi ={0}

The first condition says that nothing is lost when going from the approxi-
mation at one scale to the approximation at the next finer scale. Rather,
some details (fluctuations) are added. As we will see, it is those details,
or fluctuations, that will sum up to the wavelet decomposition (1.8). The

11
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Figure 1.4: Projection in the Haar system onto scales 1/8, 1/4 and 1/2
respectively.
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second condition says that f can be approximated arbitrarily well in the
V;-spaces if we take j large enough. Suppose that we have such a fine-scale
approximation of f,

Jo=P;f= ZCJ,kSOJ,k
%

where ¢y, = (f,¢7k). The wavelets {1;;} are constructed so that they
for fixed j span the difference between V;;; and V;. More precisely, let the
detail spaces be defined by

Wj = span{;x }i-
We then have (V; and W; are not orthogonal in general)
Vi = Vo W,

We also have dual detail spaces spanned by the dual wavelets

W; = span{v; s} .

The following biorthogonality relations holds for the approximation and de-
tail spaces and their duals, (see figure 1.5)

W/jJ_f/j and ‘/jLWj,
which in terms of scaling functions and wavelets becomes
(1.9) (Vi @iy = 0 and (i, i) = 0.

Since V; = Vj_1 & Wjy_1, our approximation f; above can be decomposed
into two parts,

fr=fr—1+461-1,

where fy_; € Vy_1 and é5_1 € Wj_y. They can be written as

fJ—lZE ci-1kPi-1,k and 5J_1=E di_1x0i-1k,
k k

with cy_1 1 = (f, 7-1,5). From (1.9) it follows that dj_q = (f, 'LZJ_L]C>.

Now we turn over to the greatest feature of the MRA; the coefficients
cj-1,y and dj_;y  can be computed very fast from the c;;’s by the so called
pyramid algorithm. Since ¢ € Vi C Vi, the scaling function must satisfy a
scaling relation

(1.10) p(r) =2 hep(20 — k).

13
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Figure 1.5: The approximation and detail spaces and their duals at level j,
where we think of the whole plane as V;.
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By integrating (1.10) and using that the scaling function has a non-vanishing
integral we get that
D hp=1.
k

For the wavelet we have in the same way
(1.11) gb(m):Qnggo(Qx—k)
k

where
S
k

For the Haar system, we have hg = hy = 1/2, all other hy zero, and gy =
1/2,g91 = —1/2, all other g zero (see figure 1.6). The same relations hold

o() b(a)

¢(22) ¢(22)
+ —
p(2z—1) P2z —1)

| |

Figure 1.6: Scaling relations for the Haar system.

for the dual scaling function and wavelet,

(112)  F(a)=2> Mm@z —k) and (2) =2 Ged(22 — k).

15
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Figure 1.7: The pyramid algorithm.

where
(1.13) Y hi=1 and Y G =0.
k k

We write out (1.12) at scale 277

(1.14) Gr-1k = \/52%1—21«5‘1,1 and  Py_1y = \/5251—%475.7,1-
I !

Let us get back to the decomposition f; = f;_1 +d5_1, or
Z CrIPIl = Z Cj-1,1¥PJ-1, + Z dj_10%5-1,-
! ! !

Taking inner products with @;_; ; and using (1.14) we get

ik =V2 E hi—aregy.
]

Doing similarly for the wavelets we get

di_ip = \/52 Gi—2kCJ,1-
]

These formulas can be viewed in the following way: First we convolve the
coefficient sequence c¢; = (1), with the low-pass filter V2 hy, and the high-

pass filter \/2 gy (or actually with /2 h_y and V2 J—r to be precise) to get
the sequences

\/ﬁzzl—kcll and \/52@-1@611-
1 !

16



The use of the terminology low-pass and high-pass filter is motivated by
(1.13), which tells us that convolution with Ay is averaging and convolution
with g is some kind of differencing. Next we subsample these sequences, i.e.
we throw away the odd coefficients (put 2k instead of k) and end up with
the coefficient sequences ¢j_; 1 and dj_; ;. For the Haar system, this means
taking pairwise mean values and differences of the cj:s, see figure 1.8. This

0.5 { 0.5 0

Figure 1.8: One decomposition step in the Haar system.

procedure is now recursively repeated on cy_q1, and this is known as the
pyramid algorithm or the Forward Wavelet Transform (FWT). In figure 1.7
this is shown schematically, where the H* and G* means filtering with h_k
and §_i, and subsampling. After a while we are left with the decomposition

J-1
(115)  fr=0s148sa 48+ fio = DY distik+ > CiokPiok
i=io k k

Theoretically, we need to run the pyramid algorithm ad infinitum in order to
obtain the decomposition (1.8). We would also have to start at an “infinitely
fine” scale. In practice however, we always stop at a coarsest scale jo and
end up with the decomposition (1.15).

There is also a fast recursive algorithm to reconstruct the cjx:s from the
wavelet coefficients d;; and coarse-scale coefficients ¢;; 1. The reconstruc-
tion formula is

ik =2 (Z hr—gicj—1,0+ ng—zzdj—u) :
1 ]

This can be seen as convolutions of ¢;_;; and d;_;; with the filters V2 hy
and v/2 g;, after first inserting zeroes between each coefficient (k—2l instead

17
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Figure 1.9: The inverse pyramid algorithm.

of k — 1), and finally summing up. This is shown in figure 1.9, where H and
G means both inserting zeroes (up-sampling) and filtering.

1.3 Diagonalization

1.3.1 Diagonalization in a Single Basis

A matrix A is said to be diagonalizable if it can be written as
(1.16) A=UANU"

where UU™ = [ and A is a diagonal matrix with diagonal entries Ay,..., A,
(the eigenvalues of A). If we again view U = [u; ... u,] and UT =[Gy .. . y]
as dual biorthogonal bases, we can express (1.16) in an other way by saying
that A becomes a diagonal matrix in the basis uy, ..., u,. This can also be
displayed in the “vector-level notation”:

(1.17) Az = Z/\i<337ﬂi>ui
i=1

Indeed we see that Az can be computed by analyzing z in the basis u;,
multiplying each coefficient (z,u;) with the corresponding eigenvalue A; and
hence getting the coefficients of Az in the basis uy, ..., u,. Finally we syn-
thesize Az by the summation in (1.17). Of course we can have U = U,
i.e. diagonalization in an ON-basis. The famous spectral theorem states
that this can be achieved if the matrix A is symmetric. Orthogonality is

18



an attractive feature since it guarantees numeric stability in the analysis
and synthesis steps (the condition number is 1). The notion of diagonal-
ization extends naturally to Hilbert spaces; we say that an operator A is
diagonalized by the biorthogonal system {u;}, {u;} if

Az = Z iz, )y

el

which is very similar to (1.17), the difference being that we have to make
sure that the series converges. We can also get an analogy to (1.16) by using
the operators U and U*:

(1.18) A= UAU,

where A is the operator that multiplies each coefficient (z, ;) with the eigen-
value \;:

A2 = (1), Ac= (Neier

1.3.2 The Singular Value Decomposition

Not all matrices can be diagonalized in the sense of (1.16). However, there
is a completely general way of writing a matrix in diagonal form, called the
singular value decomposition (SVD). Here, given any matrix A (which need
not be quadratic but we will restrict ourselves to square matrices here) there
exist two orthogonal matrices U and V such that

(1.19) A=UxV".

The matrix X is diagonal, with diagonal elements o; called the singular
values of A. For a proof and some further interesting features of the SVD,
we refer to the book by Golub and Van Loan [8]. With U = [u;...u,] and

V =[vy...v,] we can write (1.19) as
(1.20) Az = Z oi(z, vi)u,
=1

With the SVD, Az is computed by first analyzing 2 in the ON-basis {v;},
then multiplying each coefficient with the corresponding singular value o;,
and finally performing synthesis in the ON-basis {u;}. Note that we use
different bases for analysis and synthesis here. The SVD generalizes in an
obvious way to general Hilbert spaces, the summation in (1.20) is just taken
over the index set /, and in (1.19) we use the operator notation instead. We
should stress here that not all operators posses a singular value decompo-
sition, in fact, the existence of an SVD is equivalent to the existence of a
spectral decomposition of A*A.

19



1.3.3 The Wavelet-Vaguelette Decomposition

The singular value decomposition has been used widely for solving linear
inverse problems, i.e. given y, solve Az = y. This can be done by the SVD
through the inversion formula (from now on we switch freely between matrix
and operator notation)

r= Ay = Yo g ugu
7

A disadvantage with this approach is that the basis functions used are com-
pletely determined by the operator A and may not be well adapted to the
class of functions we want to work with. Often, the singular functions have
a non-local nature (orthogonal polynomials and spherical harmonics for in-
stance) while the functions to be reconstructed have local features such as
edges, transients etc. (A more detailed discussion on this matter can be
found in [6]).

What we really would like to have is a diagonal representation like (1.20)
were we have some freedom to choose the bases {u;} and {v;} so that they
are adapted to the class of objects under study. This can be achieved if we
are willing to give up orthogonality and instead work with two biorthogonal
systems {u;}, {u;} and {v;},{v;}. In other words, we try to write

(1.21) A=UKVT.

Again, K is a diagonal matrix; we will call its diagonal elements ky,..., K,
quasi-singular values of A after Donoho [6]. Note that they are by no means
uniquely determined by A since the representation (1.21) is highly non-
unique. As a matter of fact, we can chose the matrix U in any way we want,
then the product KVT is uniquely determined. Therefore, we can chose a
proper biorthogonal system {u;}, {@;} that is well adapted to the objects we
want to compute. We then construct a new biorthogonal system {v;}, {v;}
through

- ~ 1
(1.22) v; = kK, A7 u; and T = ;ATui

3

where we chose the quasi-singular values x; such that the new basis functions
v; have comparable size. Now we can express Az as

n n n

Az = Z<Am, Uihu; = Z(m, ATy = mem,'ﬁi)ui.

=1 =1 i=1

Informally, one can argue in the following way to motivate the construction
(1.22): If u; are “good” basis vectors for representing the vectors Az, then
v; = k; A~ u; should be “good” for representing the vectors z.

20



In this thesis we will be concerned with (1.22) when {uw;},{%;} are
biorthogonal dual wavelet bases. This is what Donoho [6] defines as the
wavelet-vaguelette decomposition. We now turn over to the notation that
will be used throughout the rest of the thesis. T'he operator we want to
diagonalize will be denoted by K since it will often be a convolution opera-
tor. The wavelets will as before be denoted by % and 1,5_7-,;3, the new basis
functions (v; and v; before) will now be denoted by w;ik and {b‘;k Being
overly thorough, we write out (1.22) with this new notation.

_ 7 1 ~x .
(1.23) 5 = ki K and 9k, = —K Vi k
"7

Donoho uses the name vaguelettes after Meyer [12] for the functions gb;fk and

g’bv? i since they for many operators K are “almost” wavelets or “wavelet-like”.
We will always refer to them as wavelets throughout the paper, though. In
fact, for homogeneous convolution operators they are wavelets in the classical
sense (after proper normalization), that is
" _ ~ o e
Vi(e) = 220K (e — k) and 5 (2) = 2294200 — k).

So far, there is nothing new here. The contribution of this thesis is
that for some operators K, the multiresolution structure can be carried over
from the original wavelets to the new ones, which enables us to develop fast
algorithms for the analysis step. In other words, we will define filters and

scaling functions associated with the new wavelet basis. This will be the
basic theme of the thesis.

1.3.4 Outline

In chapter 2-3, which is a paper written together with Martin Lindberg [7],
we consider the case of homogeneous convolution operators, i.e. convolutions
with k(w) = w" (derivatives) or k(w) = |w|® (Riesz potentials). In this case
we show that if the original wavelet bases originates from a multireslution
analysis, we can construct scaling functions and filters generating the new
wavelets. This is also carried out in higher dimensions for wavelets defined
on arbitrary lattice structures.

In chapter 4 this is extended to convolution operators that are asymp-
totically homogeneous, i.e. their Fourier multipliers satisfies

E(w) ~ |w|® as  |w| = o0
and

/Ig(w) ~ |w|ﬁ as w—0

21



For these operators, we can construct a “generalized” multiresolution anal-
ysis” with different filters and scaling functions on each scale. We will still
have the translation invariant structure on each level (scale) though. The
asymptotic homogeneity will ensure that the new system “converges” to
classical wavelet bases as j — 400, which will guarantee stability under
some mild conditions on the original basis. We will also extend the higher-
dimensional result to inhomogeneous and/or anisotropic convolution opera-
tors in a similar way.

In chapter 5 we give up the translation invariance and consider integral
operators,

K f(x) = / Kz, ) f(y)dy.

and general differential operators. In this case we will generate a new MRA
with filters and scaling functions depending on both scale and position.

Finally, in chapter 6 we give an application of the above methods, by
constructing a wavelet transform for complex-valued radar signals that sep-
arates positive and negative frequencies.

1.4 Related Work

This thesis can be seen as a natural extension of Donoho’s work about the
wavelet-vaguelette decomposition [6]. He does not develop any algorithms
for computing the vaguelettes coefficients (f, ;;\,k> though. This is now pos-
sible since we have derived a multiresolution analysis, and therefore fast
algorithms, for the new wavelet basis. For the derivative operator, this was
done by Daubechies in [5]. Her construction relies on the very explicit factor-
izations of the filter functions and is not clear how to extend her construction
to more general operators or to non-separable higher dimensional wavelets.
Another method for computing the coefficients in the new system was de-
veloped by Kolaczyk [11]. He uses Meyer wavelets since they have a very
explicit representation in the Fourier domain, where convolution operators
are easy to handle. Computing the vaguelette coefficients then comes down
to computing certain projections of f in the frequency domain.

A different approach for the numerical computation of operators with
wavelets was developed by Beylkin, Coifman and Rokhlin [1]. They ac-
tually use two different methods, the standard representation and the non-
standard representation. The standard representation just means expressing
the operator K in a wavelet basis, i.e. working with the (infinite) matrix
(K, ‘%'k'%k,y"k'- They show that for a large class of operators, including
differential operators and Calderon-Zygmund operators, this matrix is al-
most diagonal in the sense that the elements decay very fast away from the
diagonal. The non-standard representation corresponds to expanding the
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kernel k(z,y) of an integral operator in a two-dimensional wavelet basis. A
way of performing matrix-vector multiplication (operators application) and
matrix multiplication (operator composition) in this representation is also
derived.

In a paper by Jawerth and Sweldens [10], techniques similar to ours
are used to obtain diagonal stiffness matrices in Wavelet-Galerkin schemes.
Given a symmetric, positive differential operator I, = C*C', the Wavelet-
Galerkin method for solving Lu = f is to find an approximative « in a
finite-dimensional space spanned by wavelets W; ;. such that

<Cu7 Cli;,k> = <f7 {I};k%

for wavelets U* ; in another finite-dimensional wavelet space. Writing « =
E]-, w Tt kWi leads to the linear system

Azr = b,
where
A(j,k),(j’,k’) = <C\I;j’,k’7 C{I};k> and bj’k = <f, @;7k>'

The wavelets ¥; ;. plays the same role as our “original wavelets”; they are
used to represent the function L~=!f we want to reconstruct. The wavelets
l’I};f’k corresponds to the vaguelettes, or “new wavelets” 1];;(713 which are used
to analyze f. As in the wavelet-vaguelette decomposition, they are chosen
so that the matrix A is diagonal. There is a main difference between the two
constructions however. We start with the original wavelets and construct
the new wavelets through the operator L:

¢;<,k = L'l,/)j,k and ¢;<,k = L_*?/)J"k.

In [10], the starting point is also a biorthogonal system {%; 1.}, {17)_7-,;3}. Those
wavelets are not used at all in the computations, their role is to define new
wavelets

\Ilj’k = C_llﬂj’k and \D;,k = C_ll/)j’k.

It is immediately clear that this construction makes the matrix A diagonal.
To see the connection with the wavelet-vaguelette decomposition, define
wavelets dual to those above through

Wik = CPjp and Wi, = C7jp.

We then have

;,k =LV;; and {IVJ;’]C = L_*{Iv’j7k.
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Here we assume enough regularity of ¥ and IZ in order to apply the differen-
tial operator C. But we actually never use the wavelets v and W; 1, so ¥

and 1:/; need not have any regularity at all. In some of the examples in [10],
Haar-like systems are used. From there, new scaling functions and filters are
defined so that the new wavelets W; ;. and @3‘7 r come with a multiresolution
structure and fast algorithms.
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Chapter 2

Diagonalization of
homogeneous convolution
operators

For homogeneous convolution operators, we can obtain a diagonal represen-
tation using two wavelet bases, properly adapted to the operator. We will
derive scaling functions and filters for the new wavelet basis, and show that
the new basis is stable under suitable assumptions on the original wavelets.

2.1 Wavelets

In this section we review basic wavelet theory mainly to fix the notation and
we refer to [4] for proofs and more details.

2.1.1 Multiresolution Analysis.

A multiresolution analysis (MRA) of L?(R) is a sequence of closed subspaces
V; of L*(R), j € Z, with the following properties:

1. V; C Viqa,

2. f(z) €V & f(22) € Vi,

3. f(x) eVoe flz+1) € Vo,

4. U, Vj is dense in L*(R) and ), V; = {0},

5. There exists a scaling function ¢ € Vy such that the collection

{¢(x = 1): | € Z} is a Riesz basis of Vj.

It is immediate that the collection of functions {¢;; : I € Z}, with ¢;(z) =
212p(272 — 1), is a Riesz basis of V;. From the definition of the MRA it
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follows that the scaling function must satisfy the dilation equation

(21)  el@)=2Y hpe—1) or )= H(w/2)3w/2),
{

where H is a 27-periodic function defined by H (w) = 3, hje™“. If the scal-
ing function belongs to L'(R) it is, under very general conditions, uniquely
defined by the dilation equation and the normalization

/cp(ac)dac =1 & 0)=1.

We will always assume that this is the case and from (2.1) we then have

H(0) = 1.

2.1.2 Approximation

The spaces V; will be used to approximate functions. This will be done
by defining appropriate projections onto these spaces. Since the union of
all the V; is dense in L?(R), we are guaranteed that any function can be
approximated arbitrarily close by such projections.

If we want to write any polynomial of degree smaller than N as a lin-
ear combination of the scaling function and its translates then the scaling
function must satisfy the Strang-Fix conditions,

?(0)=1, and
(2.2) eP) (2rk) =0 for k#0,0<p<N.

From (2.1) it follows that H (w) must have a root of multiplicity N at w = 7.

2.1.3 Wavelets

By W; we will denote a space complementing V; in V., i.e.
Vigr =V, & Wj,

and consequently

Pw; = I*(R).

A function ¥ is a wavelet if the collection of functions {¢(x —1): | € Z} is
a Riesz basis of Wy. The collection of functions {#;; : j,/ € Z} is then a
Riesz basis of L?(R). We define P; as the projection onto V; parallel to vy
and Q; as the projection onto W; parallel to W¢. A function f can now be
written as

F@)=3"0if() = vjutu(e),
J gl
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or if we start from a coarsest scale .J as

fz)=Psf(z +ZQ] Z)\JZSOJZ +ZZ’W¢J,

i=J 1

Below we will describe how to find the coefficients A;; and +;;. Since the
wavelet ¥ € Wy C Vi

(23)  v(@) =2 gpr-1) or Pw)=Gw/2)Fw/2),
l
where G is a 27-periodic function defined by G(w) = 3, gre™*.

2.1.4 Biorthogonal Wavelets

In a biorthogonal MRA we have a scaling function ¢, a wavelet ¢, a dual
scaling function @, and a dual wavelet ¥ such that any function f can be
written

(2.4) f@) = (fi@s)en( +ZZ £ bale

! j=J k

For this to be true the scaling functions and wavelets must satisfy the
biorthogonality conditions

<{57 1/)( - l)> = <17;7 99( - l)) =0 and
(@rp(-=0) = (P, p(-— 1)) = 4.

Expressed in the filter functions H, G, f[, and G necessary conditions
are given by

E[(w)i) + Hw+mnHw+n) = 1
(2.5) GWEW) + Gu+mGw+r) = 1
| G AW + Glot+nAkrn = 0
Hw)Gw) + Hw+m)Gw+nr) = 0




Cramer’s rule now states that

(2.7) =t Gy At

where A(w) = det M (w).
When constructing wavelets one often starts by defining the low-pass
filters H and H. Then one defines G and G through equation (2.7) where

A(w) is chosen equal to e™™.

2.1.5 Vanishing Moments

The moments of the wavelet are defined by
N, = /acp'zb(:c)d:c with p € N,

and similarly for the dual wavelet. We recall that if the scaling function
reproduces any polynomial of degree smaller than N then H(w) has a root
of multiplicity N at w = 7. From (2.7) we see that this is equivalent to
G(w) having a root of multiplicity N at w = 0. Since F(F)(0) = 1 this is
also equivalent to ]—'(1’&) (w) having a root of multiplicity N at w = 0, i.e. the
dual wavelet has N vanishing moments. By a similar argument the wavelet
¥ will have N vanishing moments if the dual scaling function reproduces

polynomials of degree smaller than N.

2.2 The New Wavelet Basis

2.2.1 Diagonalization

In a biorthogonal wavelet basis we have a wavelet ¥ and a dual wavelet 7:/;
such that any f € L?*(R) can be written

F= v
7l

For a given linear operator K we would like to expand K f in this basis. We
will consider convolution operators,

-~

Kf=kxf or KJ(€) =kE)](©),

that preserves the characteristics of a wavelet. If we denote the adjoint of
K by K* we can write K f as

Kf=) (K], P i = > (4 K900,

gl 7.l
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We will now describe how the coefficients (f, K*%ﬁ can be calculated in
a fast and numerically stable way by analyzing f in a new biorthogonal
wavelet basis. We define this new basis by the relations

(2.8) YK = K* and o = K14,
and in the Fourier domain we have

onl P o~ 1 -~
(2.9) P@) = B@) ) and W) = ——dw).

For the moment we assume that the wavelets, ¢ and {E, and the operator K
are such that these new functions are well defined and below we will show
that under certain assumptions these functions in fact form a biorthogonal
wavelet basis. Our goal is to find a condition on the operator K such that
the following relation holds

S — K
K™ =F;;,

since then the wavelet coefficients of K f, (f, K*¢;) = k;(f,¢};). The
constant x; is independent of / since K* is translation invariant. So for this
to hold true K* must be invariant under dyadic dilations, up to the constant
;. Let us therefore define the dyadic dilation operator D; as

D;f(z) =22 f(272) or Dif(w)=27/2f(27w).
The dilation invariance of K* means that

or in the Fourier domain

(@)272f (27 w) = 7,27k (27w) f (27 w).

)

From this we arrive at the following condition on K

k)
(2.10) k; = =——— is constant.
k(27w)
We observe that x; = H{ so if we let kK = Ky, we have k; = k7. Tt is now also
clear that the new functions ¥¥ and ¥¥ are biorthogonal. To conclude, by
analyzing f in the new wavelet basis and multiplying the wavelet coefficients
by x’, we get the wavelet coefficients of K f in the original wavelet basis:

(2.11) Kf =) w{f b5 v

5l
and this is what we refer to as a diagonalization of the operator K. Examples
of operators satisfying (2.10) are
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1. Differentiation and integration
k(w) = (iw)®, a € Z. Here k = 2.

2. The Riesz potential
k(w) = |w|* a € R. Here k = 2%,

3. The Hilbert transform
k(w) = —isgnw. Here k = 1.

These three types of operators are essentially exhaustive. This follows if we
consider continuous solutions of (2.10) for positive and negative w separately
since then we must have k(w) = Cw®, for some constant C.

2.2.2 Admissibility Conditions

Let us now return to the question of whether the new wavelets as given by
(2.9) are well defined. Given the operator K we would like to find suitable
conditions on the original wavelets. First we assume that E(w) = |w|* and
that o > 0, since any other choices of k and « are treated similarly. We
know that the new wavelets must have at least one vanishing moment each
and from (2.9) we then see that i) must have at least |a + 1] vanishing
moments. In this case there is no additional requirement on the number of
vanishing moments on 1Z On the other hand if 12 € W*(R) we realize that
¥ € W=(R) so we must have s > a to have ¥ € L2(R). If a < 0 the
roles of ¥* and ¥¥ are simply interchanged.

2.2.3 Decay and Compact Support

Finally, let us discuss the rate of decay of the new wavelets. In most applica-
tions we are interested in compactly supported wavelets and this corresponds
to transfer functions that are finite impulse response filters. Non-compactly
supported wavelets are also useful in practice if they have rapid decay.

If the original wavelets have compact support we know that their Fourier
transforms are smooth. Looking at the definition of the new wavelets in the
Fourier domain (2.9) we conclude that a necessary condition for the new
wavelets to be compactly supported is that /k\:(w) is smooth for w = 0. This
will only be the case when the operator is differentiation or integration.
Indeed when this is the case it is obvious that the new wavelets are also
compactly supported.

When « > 0 is not an even integer we have, after a moment’s consider-
ation,

(2.12) < e N1+ (R),

where N is the number of vanishing moments of the dual wavelet. Now,

if the Fourier transform of ¥* and its derivatives were also in L'(R) the
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Riemann-Lebesgue lemma would give us the following estimate on the rate

of decay of ¥*
(2.13) 2" () = 0 as |z| — oo, for 0<n<N-1+4[al.

Let us therefore find out when this is actually the case. We assume that
the dual wavelet » € CM(R) and that it is compactly supported. It follows

that {E(m) € L' for 0 < m < M and

o~

Whh(w) =0 as  |w| — oo, for 0<m <M.

From this it follows that there is a constant C' such that

~

P(w)| < C(1+ |w)™.

Actually, this holds for all derivatives of the Fourier transform of {E since
2Py(z) and its M first derivatives are in L'(R) for all p € N, i.e.

o =

0@ SC+ W)™ for peN.

From the definition of ¢* and (2.12) we get

P =
a K

owpP

@] <CU+ )™M  for 0<p<N-1+]al.

That is, 9% € L'(R) if @ — M < —1. So the decay estimate (2.13) holds
when M > 1+ «. Rewriting the decay estimate we have thus arrived at

(2.14) |95(2)| < C(1+ |z)'=N=T1  if M >14+a where e M.

For the wavelets ¢ and ¥" a similar argument as above gives 1//J?< e oN-1-1a] (R),
where N is the number of vanishing moments of the wavelet. The rate of
decay of the wavelet ¥* is then given by

(2.15) [¢5(z)| < C(L+|))' N+l if M >1-a where ¢ CM,

We see that the number of vanishing moments of the original wavelets de-
termines the rate of decay of the new wavelets. Again, if @ < 0 the roles of
¥* and ¥* are interchanged.

2.2.4 Stability

Finally, let us investigate the stability of the new wavelet basis. Following
Donoho ([6], p 108-109), the following conditions are sufficient to guarantee
stability
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L. ¢(x) < C(1+ |z])~'~¢, for some constant C' and € > 0.

2. [¢(z)=0.
3. ¥ € CP for some 3 > 0.

and similarily for the dual mother wavelet. Thus, all we need is one van-
ishing moment, and some minimal decay and regularity. We know from the
previous section that the first condition is satisfied if the mother wavelet has
Holder exponent greater than 1 —« and at least |« + 3 vanishing moments,
and if the dual mother wavelet has Hélder exponent greater than 14 « and
at least 3 — [a] vanishing moments. The second condition is satiesfied under
much weaker conditions. Using standard Fourier techniques, we see that the
last requirement is fulfilled if M > 1+« and M > 1 — «. To summarize, we
will get a new stable wavelet basis if

1. M>1-|—oeandM>1—oe,wheregZ€ C'MandwECM.

2. N> 2+ |a] and N > 2 — [a], where N is the numeber of vanishing
moments for ¥ and vice versa.

2.3 The New Multiresolution Analysis

We will now describe how to associate a multiresolution analysis with the
new biorthogonal wavelet basis. We will do this by defining a new pair of
scaling functions. It is natural to try with

—— ~ A~ 1

(2.16) Pl =TB) and F) = 2550)

where 7 is an unknown function. Biorthogonality of the original scaling

functions then implies biorthogonality of the new scaling functions ¢* and
<K

@
(P, (= 1) =(@o(- = 1)) = .
The scaling functions must also be biorthogonal to the wavelets
(@ = D)= (@ (- 1) =0,
which, expressed in the filter functions, amounts to
AT + Ao+ mG@E = 0 and
G*(w)H¥(w) 4+ G(w+m)HX(w+7m) = 0.
From the dilation equation for @ and (2.16) we get

Fi(w) = 29 (w2 F (w)2) = B (w/2)F (/2),
/2
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and by similar arguments we get the following expressions for the new filter
functions

) ()
HY(w) = Z(Qw)HW)v G (w) = E(Qw)G(w)7
@) = 29 ), G () = H2) .

{(w) {(w)

(Qw)ﬁ(w) lw) )+ (2w—|—27r)ﬁ(w+ ) l{w+ ) Gt =0
I(w) k(2w) Uw + ) k(2w + 27)

(2.17) m(w) = =— is 27-periodic.

~

If we can find such an /(w) all of the biorthogonality conditions will be satis-
fied. Tt is still not clear how we should define this function though. However,
we have not considered the approximation properties, or the Strang-Fix con-
ditions, of the new scaling functions. If we substitute (2.17) into (2.16) we
get

—~— '~

(218)  m)FW) =k@)pw) and kw)FF (W) =m@)@(w).

—~

Since we know that @(0) = ¢*(0) = 1 we must have

3

w)

= —lasw—0.
k(w)

From this we see that we must find a 27-periodic function m(w) that matches
k(w) at w = 0, i.e. it should have the same number of zeros at w = 0.
We make the following more or less canonical choice

(2.19) m(w) = k(—i(e™ — 1)),
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since —i(e"” — 1) = w + o(w) as w — 0. This is indeed a natural choice
because the determinants of the modulation matrices of the original and
new system will only differ by a multiplicative constant

(2.20) A(w) = k(i)&2A¥ (w).

This choice implies that m(w) is a sort of discretized version of /Is;(w)
From (2.18) we then see, via the Strang-Fix conditions, that the approxi-
mation properties of the new scaling functions are exactly related, as they
should be, to the number of vanishing moments of the new wavelets. If we
write the Fourier series of m(w) as

m(w) = Zmle_”‘“
!
we see that

(2.21) K*3(z) =) mig"(z+1).
{

For K being the derivative operator this becomes

F(z) =& () - &(z - 1),

i.e. differentiation in the original system corresponds to a finite difference
in the new system.

At this point we have constructed a new biorthogonal multiresolution
analysis with the wavelets ¥* and &K and with the scaling functions ¢®
and P*. This means that we can decompose any function in this new basis
using the fast wavelet transform. We also know the relation between the
wavelet coefficients of f and K f in the new and original basis, respectively.
In a numerical computation we always stop the decomposition at a coarsest
scale and we are thus also interested in finding a relation between the scaling
function coefficients of K f and f. Expanding K f in the original basis we
get

Kf(z) =) (i K*gn)yen(z)+ > ) (f, K 0)950(2).
=7 1

{

Using (2.21) it is easy to verify that
(2:22) (B = w7 Y i f &)

We note that this formula can be seen as a discretized version of the operator
K acting on the subspace V;.

34



Summary

Before looking at some examples we summarize our results. Given a function
f such that

=A@+ v,
k

j=J k

we can find the expansion of K f

Kf(z Z/\HSDJI ZZ s
1=J k

by the relations

K A
7],[ =K 7]717

K J
Ji =K E mn)‘J,l—n-
n

With our choice of m(w) the new filter functions become

. E(e™ + 1) . 1
HY(w) = =——2H(w), G¥ (W) = — , G(w),
(@) - (@) ©) = 0@
¥ (w) " Hw),  GSw)=Rk(=i(e —1)G(w)
k(e + 1)
Remark

A more elegant way to derive the new scaling functions and filters was
pointed out to us by Patrik Andersson. We start with a biorthogonal system
and first find a new pair of scaling functions as follows. Begin with the
identity

o0

H zZJw_I_l

Our operators satisfy k(wlwg) = k(wl) (w2) and if we apply k to the left
and right hand side of the identity we get

k(- e “’+1)
Ea U

since /R;( 2) = /R;(l) and where we have assumed that k(l) = 1. By arepeated
application of (2.1) we can write the scaling function as the infinite product

i(e™
k

o0

B = [[HEw),

i=1
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and it follows that

i =) o T RET ) o
————a =11 H(27w).

©) - :

That is, if we define a new scaling function by

— E(=i(e™ — 1)) .
(W) = ——=——"F(w),
() = TR
it will be associated with the filter
k(e 41
1) = M gy,

and this is exactly the filter we got with our choice of m(w) above. Similarly,
we get the same filter for the dual scaling function. Now we can define the
new wavelets from equation (2.7) and instead of the standard choice of the
determinant of the modulation matrix we define A¥ through equation (2.20).
Then it is easy to verify that new wavelets are the same as before.

2.4 Examples

2.4.1 Differentiation

For the derivative operator we have

d d z
K=— K'=—-——, Kl'=
dmv dm’ / dy7

—00

and the new wavelets are thus given by
@) =-T), = [ v

Since /Ig(w) = iw we have m(w) = ew — 1 and

Fla)=&"(x) = &z = 1).
We also note that the new wavelets and scaling functions are compactly
supported if the original wavelets and scaling functions are.
2.4.2 The Ramp Filter

We consider the Riesz potential operator with e = 1 as an example, i.e. the
ramp filter. Now

— ~

KF@) = [wlf@) and KT7@) = — ).

vl
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Since E(w) = |w| we have

- 4

m(w)=e"™ =1 and m; = ———.
(@) =1 | T RTE

In this case E(w) is not smooth for w = 0 so the new wavelets and scaling

functions will not have compact support. If we start with a biorthogonal

basis where the wavelets have several vanishing moments the new wavelets

will decay fast though.

2.4.3 The Hilbert Transform

In the case of the Hilbert transform we have

P——

Kf(w)=—isgnw f(w) or Kf(z)= % p.V./ %dy.

We note that E(w) = —i sgnw = —if:j—| s0
eT —1 1

)= =g ™ = ey

We make the interesting observation that we have a convolution with m; =
1/(m(l + 1/2)) acting on the V; spaces, i.e. a discretized version of the
Hilbert transform. Just as for the ramp filter the new wavelets and scaling
functions will not have compact support but if the original wavelets have
several vanishing moments the new wavelets will decay fast. See figure 2.1
and 2.2 for an example where the original scaling functions and wavelets
where chosen from the 6/10 factorization of the maxflat Daubechies halfband
filters.
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Chapter 3

Diagonalization in Several
Dimensions

In this chapter we will generalize our method to higher dimensional spaces
and convolution operators. If both the basis and operator are separable it
is easy and straightforward to extend our results of the previous sections.
What is interesting though is that we can generalize the diagonalization
technique to the case of non-separable wavelet bases.

3.1 Separable Bases and Operators

For a separable multidimensional wavelet basis in R™ it is easy to see that the
previous ideas can be generalized in a straightforward way if the convolution
kernel k is also separable, i.e. if

/l::(w) =T (wy) - -En(wn), where w € R",

and all the k;:s satisfies the diagonalization condition (2.10). In a two-
dimensional separable wavelet basis we form the scaling function ® and the
wavelets W, by tensor products of a one-dimensional scaling function ¢ and
wavelet

(b:$9®§97 qj1:¢®¢7 qj2:¢®§97 and lI}?):/l/j@l/)

Similarly, we define a dual scaling function ® and dual wavelets U, if we
want a biorthogonal two-dimensional wavelet basis. Starting from such a
basis we define the new wavelets analogously with the one-dimensional case

UK = K*U, and UX=K"'U,.

We will form the new scaling functions by defining new one-dimensional
scaling functions for each coordinate direction, i = 1, 2,

~
~

F¥(wi) = Li(wi)P(wi) and  @F(w;) = A;QO(%),
l;(w;)
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where each E(w) is derived from k; trough (2.17) and (2.19) as before. The
new scaling functions ®¥ and ®* are formed by taking tensor products of
the new one-dimensional scaling functions

O =3 @F5 and @ =f @ g

The new wavelets become

U = &Y @ o and U = of @ ¥,
Uh = ¥ @ o5 and U3 =9 ® @,
U = P @ P and W = i @ v,

where of course

P =krxp and  PF = k7w,

3.2 Non-separable Bases

It is possible to construct non-separable wavelet bases in several dimen-
sions although fairly few such bases have actually been constructed. Non-
separable bases are of interest in for example image processing since they
are more isotropic than a separable basis, which is strongly oriented along
the coordinate axes. For a separable basis in R™ the underlying structure
is the integer lattice Z"™ and the dilation is the same along all coordinate
axes. This is not the case for a non-separable basis where we have some
other lattice and /or another dilation. Two examples for which non-separable
wavelet bases have been constructed are the hexagonal and the Quincunx
lattice. Cohen and Daubechies [2] have constructed symmetric biorthogonal
wavelets with compact support and arbitrarily high regularity on the Quin-
cunx lattice. The two-dimensional biorthogonal wavelets on the hexagonal
lattice by Cohen and Schlenker [3] have symmetry under 30" rotations, com-
pact support and some regularity. For a class of lattices with certain tiling
properties Strichartz [14] constructs n-dimensional orthogonal wavelets with
arbitrarily high regularity but not with compact support. In a forthcoming
paper Jawerth and Mao [9] present a general method for the construction
of wavelets on lattices.

3.2.1 Lattices

For a standard separable basis in R” the underlying structure is the integer
lattice Z™ and the wavelets are generated from 2™ — 1 mother wavelets v,
v=1,2,...,2" 1

?

¢V7j7'7(m) = 2]n/2¢V(D]x - 7)? .] e Z? 7 E Zn?
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where D = 21 is the dilation matrix.

To construct non-separable wavelet bases we start with a lattice T' and
dilation matrix D. A lattice in R™ is defined as T' = I'Z"
nonsingular n-by-n matrix. With

0 3

we get the hexagonal lattice in R?, see figure 3.1. The integer lattice has
I' = I and so has the Quincunx lattice. As we will see it is the dilation
matrix that distinguishes these lattices from each other. Given a lattice T
the dilation matriz D has to satisfy the requirement DI' C T'. Moreover,

, where 1" is a

all eigenvalues of D must have modulus greater then one so that we are
expanding in all directions. We will refer to the lattice DI' = DI'Z™ as the
subsampling lattice of T'. The subsampling lattice of the Quincunx lattice,
see figure 3.2, is defined by

1 -1 1 1
D_(1 1) or D_(1 _1).
From the conditions on D it follows that

D=TNI"",

where N is a non-singular integer matrix. If we let m = |det D| = |det N| we
will see that we get m — 1 different mother wavelets. In most constructions
of non-separable bases the dilation matrix is often diagonal or of the form

D =mP,

where P is an orthogonal matrix.

3.2.2 Multiresolution Analysis

We define a multiresolution analysis of L?(R™), associated with the lattice T
and the dilation matrix D, as a sequence of closed subspaces V; of L*(R"),
j € Z, such that

1. V; C Vg,

2. f() € V; & f(D) € Vi,

3. fle)eVoe flz+v) € Vy, VY €T,

4. U, V; is dense in L*(R") and (", V; = {0},

5. There exists a scaling function ¢ € V; such that the collection

{¢(z —v):v € T} is a Riesz basis of V.
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It is immediate that the collection of functions {¢;~ : v € T'}, with ¢; (z) =
mi/2p(Dixz—v),is a Riesz basis of V;. As usual, the scaling function satisfies
a dilation equation

(3.1) p(e) =mY  hyp(Dz —7),
~eT

and the transfer function of A, is defined by H(w) = >  r hye™. To
proceed we have to be able to do Fourier analysis on the lattice group T'.
We then need to define the dual group of I'. The dual lattice of T is defined
as

(3.2) I'"={y"eR":y-v"€Z, YyeT},

and the dual group of T is then the quotient group R"/27T*. From this
definition it easy to verify that I'* = ['""Z". Since D™y* .~ = ~v*. D~ for
every 7 € I and v* € ' we have D'I'* C I'*. From the definition of H we
notice that for any v* € I'*

H(w + 271_7*) — Z h’ye—iv-we—izwv-v* _ Zhve_m.w — H(w),
~€r ~er

since v - v* € Z for any v € T. In other words, H (w) is 27I*-periodic.

For the standard integer lattice Z™ the dual lattice is also Z". The dual
lattice of the hexagonal lattice is the hexagonal lattice rotated 30° and it is
shown in figure 3.1, where also the Voronoi cell of 2zT'* around 0, i.e. the
set of points closer to 0 than any other v* € 27T, is shown. This is the
smallest possible set on which H(w) is completely determined since it is a
representative of the quotient group R"/27T*.

Figure 3.1: The hexagonal lattice and its dual with a Voronoi cell.

Having defined a multiresolution analysis let us now introduce wavelets.
In the separable case we need 2" — 1 different W; spaces, and the same
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Figure 3.2: The Quincunx lattice and sublattice.

number of mother wavelets, to complement V; in V;,;. In the non-separable
case we need m — 1 different mother wavelets which follows from the fact
that the order of the quotient group I'/DT is m. Each mother wavelet 1,
will satisfy a scaling equation

Py (x) = mZgwyc,o(D:v -7v), v=1,...,m-1,
~eT

where the transfer function of each g, , is defined by G, (w) = EWEF gyﬂe_”'“’.
The wavelet basis is obtained by taking D-dilates and T'-translates of these
mother wavelets v, ;- (z) = mi/ 2, (Dix — ~) for j € Z and v € T. Let
us find the conditions on the filters in order to obtain an orthogonal MRA.
First ¢ and its I'-translates have to be orthogonal

oy = (=) = [ 1B

=Y e

Il
S—
S
€
+
DO
5

2
N
s
R
|
3
€
W
S

= [ ety
v(0)

y*er*
where V(27v*) are the Voronoi cells of the lattice 27T, This gives us a
necessary orthogonality condition on the scaling function

-~ *\[2 1
(3.3) ’Y;J‘P(W‘I‘ 2my")|" = IV (0)]"
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We will now find out the corresponding condition on the filter function H.
In the Fourier domain the dilation equation (3.1) becomes

(3.4) B(w) = HDw)3(D"w).

Let T§ = {r},...,r,} be arepresentative of the quotient group I'*/D™I'* so
that every v* € I'* can be written uniquely as v* = v + 7§, where 7§ € I'§
and v € D'T*. We then have

Y B+ = D D Pw+2my)
~y*er* vy LG v*EDTL* g

=Y Y B2ty + 2

vy ETS v*er*

= Y [H(D w4 2707 y)P

ETS
X Z |B(D™Tw 4 2my* + 27 D™ T8)|?
y*ET®
1
=L S (et 2m D T
VOl 2.
0 0

by (3.3), (3.4) and the 2xT™*-periodicity of H(w). Just as in dimension one
this leads to the orthogonality condition

(3.5) Y |H(w+2xD" )P =1
% €TG

By similar calculations as above we see that orthogonality for the whole
multiresolution is equivalent to the m-by-m modulation matrix M (w) being
unitary, where

M(w)yy = H(w+2rD™Tr]) I=1,...,m,
M(w)y41, = Gy(w+27D77Try) v=1,...,m— 1.

In the same way, biorthogonality requires that

M(W)M(w)" = 1.

3.3 Diagonalization

Now when we have introduced the appropriate framework and notation for
non-separable multidimensional wavelets it is fairly straightforward to gen-
eralize the previous diagonalization technique. Let us therefore assume that
we are given a biorthogonal wavelet system in R™ with scaling functions ¢
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and @, m mother wavelets ¥, and ’;El,, and an n-dimensional convolution
operator K. Just as before we define the new wavelets as

(3.6) PK = K*p, and ¢X =K',

As before a necessary condition on the operator K to obtain diagonalization
is that K commutes with dilations

(DT
(3.7) K= k(,\D w) independent of w.
k(w)

The wavelet expansion of K f is then given by

(3.8) K=" w9008 0t

v=1 je7 IeT
Again we try to find new scaling functions by setting
= — LIPS
P (w) =Llw)P(w) and P(w) = =o(w),
tw)

o B o @)
1) = ) ) = F )
i) = L% i), Gifw) = MG, ).

By calculations identical with those in the one-dimensional case we see
that we get biorthogonal filters if m(w) is 27T*-periodic where, m(w) =

-~

k(w)/l(w).

As in one dimension m(w) must be chosen so that

M—)l as w— 0.
m(w)

For simplicity we consider the two-dimensional case only. In analogy with
the one-dimensional case we try to write

(3.9) m(w) = k(—ia(w), —ibw))

where a(w) and b(w) are 27T™-periodic functions such that a(w) = iw +
o(lw|) and b(w) = tws + o(|w|) as w — 0. Let 7 and 72 be the column
vectors of I and try with

a(w) = al(em Y1)+ ag(e”““ - 1)

=i(a1y1 + azy2) - w + o(|w|) as w — 0.
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We now chose ay and ag such that (171 + a27y2) - w = wy, i.e such that

ay 1
r = .
() =)
and similarly for b(w). This can be written in the condensed form
(3.10) m(w) = k(=i (" - 1)),

where the exponential of the vector ['"w is taken element wise. This choice
can be thought of as a one-sided difference approximation of k£ in the di-
rections 1 and v,. That is, if k£ is a directional derivative in one of the
directions ~;, then m will be a one-sided difference approximation in that
direction.

3.4 Examples

To conclude the multidimensional case we now consider two examples where
the operator is the laplacian and a directional derivative, respectively.

3.4.1 The Laplacian

If K = A we have E(w) = —|w|*. From the diagonalization condition (3.7)
we must have
DT 2
= | | T;| independent of w.
w

It follows that the dilation matrix has to be of the form

D =mP,

for some positive integer m and orthogonal matrix P. We then have x = m?.

Now, if the original wavelets have compact support so will the new wavelets.
On the other hand we see that the new low-pass filter

LA

K
) = e e

H(w),

is infinite impulse response (IIR) since we can not factor the denominator
and simplify as in the one-dimensional case. All the other filter functions
will also be IIR which means that the new scaling functions do not have
compact support. We also note that operators with

E(w) = |w|® where @ € R,

can be handled in the same way as the laplacian.
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3.4.2 Directional Derivatives

Now suppose that K f is the directional derivative of f in the direction v

Kf:g:Vf-v,
ov

where v is a unit vector in R™. Then
/lg(w) = iw -,
From the diagonalization condition (3.7) we must have

DTw v
Kk = ——— independent of w.
w-v

It follows that the dilation matrix has to be of the form
D =ml,

where m is a positive integer. In this case the most reasonable choice would
be m = 2.

If one of the lattice directions is v, the new filters will be finite. Other-
wise, they will be infinite.
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Chapter 4

Diagonalization of
inhomogeneous convolution
operators

In this section we will relax the very restrictive homogeneity condition (2.10).
Once we give up homogeneity, we can no longer obtain diagonalization in
classical wavelet bases. However, if we are willing to accept different wavelets
at different scales, our method can be generalized to convolution operators
that are asymptotically homogeneous, for instance, linear differential op-
erators with constant coefficients. We will also generalize the result for
non-separable wavelets in several dimensions in a similar way.

4.1 The New Wavelet Basis

4.1.1 The Wavelet-Vaguelette Decomposition

Let us start with recalling the wavelet-vaguelette decomposition. The fun-
damental idea is that we have an operator K and want to expand K f in a
given biorthogonal wavelet basis,

Kf=Y (K, din)tin=> {f K %ir) vk
Jsk Jsk
We define the vaguelettes as

" 1 ~x T 1K r—_
(41) w;(,k e — (*¢j,k and ‘¢7;k = K,J"k[( llb]"k
Kk

It’s a direct consequence of the definition that the vaguelettes are biorthog-
onal,

'K Af/K .
<wj,k7 wj/,k’> - 6],]’5k,k'-
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We can now write K f as
Kf=Y kil &f)vis
5k

The constants «; are referred to as quasi-singular values of K and they
should be chosen so that the ¥, , w?k all are of comparable size. This is
necessary since we require the vaguelettes to constitute biorthogonal dual

Riesz bases of L*(R).

4.1.2 Asymptotically Homogeneous Convolution Operators

In the previous chapters we saw that if K is a convolutional operator with
kernel k, K f = k x f, and if the kernel is homogeneous, i.e.

ki\(Qw) =k independent of w,
k(w)
then {{ﬁvj—,k} and {zz;fk} are wavelets in the classical sense and k; = k7.

This immediately leads to the idea that if £ is “almost” homogeneous in
some sense, then the {¢,} and {%(,k} will “almost” be wavelets. We
will only consider the case of asymptotically homogeneous operators here.
With asymptotically homogeneous convolution operators we mean that the
Fourier multiplier k(w) satisfies

Ew) ~|w|® (orw™) as |w| = oo
(4.2) ~ 5
k(w)~|w|” (orw™) as w—10

where o, 3 € R and m,n € Z. We also require E(w) to have no zeros or
singularities other than possibly at w = 0. Those requirements together
with some natural assumptions about regularity and vanishish moments for
% and ¢ will be enough to ensure that ;b;(k and ka constitute Riesz bases.
For simplicity we will assume that the exponents in (4.2) are nonnegative.
Negative exponents can be treated similarly by just interchanging the roles
of {¢¥,} and {&;?,k} A typical example of an asymptotically homogeneous
convolution is a linear differential operator with constant coefficients. In
this case, m is the order of the highest order derivative term, and n is the
order of the lowest order term.

The new wavelets will no longer be wavelets in the classical sense, i.e.
dilations and translations of a single mother wavelet. Instead, at each level
7, they will be translations of “scale-dependent” mother wavelets 10;-(’0 and

1/)j o, due to the translation invariant nature of K. However, we will have
the 272 — k-structure asymptotically as j — +oo0. To explain this in more
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detail, let us write out the new dual wavelets (4.1) in the Fourier domain:

— Tlw) = o P
P(w) = ,i_j)w,k(w) nd T = i)

Note that the quasi-singular values no longer depend on k. For the new dual
wavelets we then have (it is enough to consider & = 0 only)

P —

o) = B =itz ot

Kj

i,\ ig\
Polw) = ST

Since 1:/;(2_-7@) is concentrated around w = 27, we can approximate E(w)
with |w|” for large 7, which gives us

Trolw) [P g-ir2 9=

kj
:Lﬂg 1/2‘2 Iy ‘ 1#(2‘%;)
R |27 w|”
202 T —
= 2 gmilafie)(27iw)
Rj

— ~

where we have used the notation 9(®)(w) = |w|* ¥ (w).

In other words, as j — oo, the dual wavelets will “almost” be dilations
and translations of the “mother wavelet” 7:;(‘”. In the same way, as j —
—oo they will almost be dilations and translations of 1& . For the primal
wavelets the same thing will hold except for that the exponents will be —a
and —f instead. We also get a hint about how we should choose the quasi-
singular values. For j large we need to have x; ~ 27 and as j — —oco we
must choose k; ~ 218,

4.2 The New Multiresolution Structure

Note that on each level, the wavelets are translates of each other. Therefore
one can hope for a multiresolution structure with different filters at each
level. Following the approach in 2.3 we try to find level-dependent scaling
functions

(43)  Fpw) =L@ Falw) and &ﬁwzﬁmw).
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What about the filters? Simple calculations gives

—— 1 e
gpl’.(_ W)= =———pj_1,0w
7 1,0( ) l]_l(w) 7—1 0( )

and

Doing the same thing for the dual wavelets and scaling functions we see that
we will get level-dependent filters A, g, A% and g%, whose transfer functions
are given by

o = GO o e ()
(4.4) = fj:(?fw)H( ) aw TR (2w )
) = Dy Gy = L E2 A,

lj(ij) Hj_l lj(ij)

For all this to make sense we have to make sure that those are 2r-periodic
functions. This is equivalent to the 2727-periodicity of

k(w
mj(w) = )
L (w)
since this also implies that
(o) my)
lj (w) mj—l(w)

is 2/27-periodic. Writing out (4.3) in another way,

(45)  mi(@)F, (@) = k(@) Fu(w) and  k(w)ek, (@) = mi(w)Frw)

we also see that m; must match E(w) at w = 0. We therefore make the
natural choice

(4.6) mj(w) = k(=i (27 = 1))
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which can be regarded as a discrete approximation of E(w) at the scale 277,
We have to take extra care here, so that m;(w) does not have zeros at other
points than w = k27727, k € Z\ {0}, since this will lead to division by zero
in (4.4). Contrary to the homogeneous case, /k\:(w) can have zeros in the
complex plane other than w = 0 and if one of the “circles” —i2j(ei2_“’ -1)
passes through such a zero this will cause the corresponding m;(w) to have
a “forbidden” zero. We do not have a general method to solve this problem,
but we show below how it can be circumvented in certain cases.

To summarize, we have a new biorthogonal multiresolution analysis with
wavelets given by

/\

T ()~ =K
v]',k( w)=—v;rw) and ¢j’k(w)—,];( )770],( ),

level-dependent scaling functions defined by the relations

— —

R(w) 35, (@) = k(=i2i (2% — 1))G4(w)

and

—

k(@) Br(w) = k(=127 (272 = 1))@, (w)

and level-dependent filters given by

() = M2 (e 1)) « e
H' (w) = — - H(w G] W)= x—— G(w
;) k(=12 (e — 1)) «) «) k(=12 (e — 1)) «)
() = AE(—iQJ(eW D) i) G () = k(29 (eiv — D))

k(—i27-1(e*?v — 1)) Kj-1

With those scaling functions we have an associated “generalized” biorthog-
onal multiresolution analysis with approximation spaces

VE = span{o e and VE = span{@In,

and detail spaces
Wi = span{¢¥, 1y and W} = span{%ik}k.

These approximation spaces satisfies all the requirements of an “ordinary”
biorthogonal multiresolution analysis with the only exception that they are
not scaled versions of each other. When it comes to the detail spaces, there
is a a technicality that we must take care of. We have to check that the
W -spaces complements the V-spaces in the V% ,-spaces. It is not difficult
to see that this is the same as requiring the (level-dependent) modulation
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matrix to be nonsingular. Let us see if this is the case by looking at its
determinant,
Hi(w) Hf(w+m)
Af(w) = J J
! Gilw) Gilw+m)
Hi(w)G5(w+7) — Hi (w+ m)G5 (w)
_ m;(2/w)
mj1(2/w)
m; (2w + 277) o
o (P 1 27 m;(2w)H (w+ 7)G (w)
m;(2/w)

= mmj(?w + 2'm)A(w).

m; (2w + 221 H (w)G (w + 7)

where A(w) = H(w)G(w+ 7) — H(w + m)G(w) is the determinant of the
“original” modulation matrix which we know is nonzero. Also, m;(2/w) has
its zeros at w = k27, m;_1(2'w) at w = km and m;(2'w + 277) at odd integer
multiples of w. All those zeros are of the same order, so they will always
cancel out and A¥(w) will never be zero. An identical argument shows that

the dual detail spaces WJK complement ‘7“ in V;fl_l

We need to find a relation between the scaling function coefficients of K f
in the original and of f in the new basis, since we always stop the wavelet
decomposition at a coarsest scale. Let

w) = E mj e ",
l

Since

P

m; (@) 5 (@) = k(w)E; (),

we have
-k~ — K
K ¢k = ij,zsoj,k_z,
{
and therefore

Kfagoj, ij, f’go‘],k I

This leaves us with the following algorithm to compute K f:

1. Compute the fine-scale coefficients (f,@,) of f in some Vj-space
(pre-processing).

2. Perform a forward wavelet transform with the level-dependent filters
H and G to get the wavelet coefficients (f,¢%,), jo <j < J, in the
new basis, and the coarse scale scaling function coefficients (f, @ 9930, ).
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3. Transform into the coefficients of K f in the original basis, (f, 1%-71.3) =
K’J'<f7 ;k) and <Kf7 @Jo,k> El Mol <fv 90]0,1-: l>

4. Perform an inverse wavelet transform with the filters H and G to get
the fine-scale coefficients (K f, &54).

5. Compute sample values of K f from these coefficients (post-processing).

4.3 Stability, Regularity and Decay of the New
Wavelets

In this section we will show that, under suitable assumptions on the original
wavelets, the new wavelets will constitute Riesz bases, i.e. they will satisfy
the stability condition

(4.7) AllFII* < ZI £l < BISI.

and similarly for the duals.

First, we have to make sure that the new wavelets are valid L%(R)-
objects. For the duals, this is equivalent to the dual mother wavelet 7:/;
belonging to the Sobolev space W?. In general, if the dual mother wavelet
belongs to W?, the new dual wavelets will belong to W?*~%. Similarly,
the new primal wavelets will “gain” o L*(R)-derivatives. The new primal
wavelets will be L?(R)-functions, if the mother wavelet ¢ has [3] vanishing
moments. The decay of the new wavelets can be analyzed in just the same
way as in the homogeneous case so we now turn over to the stability issue
instead.

Intuitively, it seams clear from (4.2) that if the systems generated from
the mother wavelets ©»=%, 1 and =9 ¢ﬁ are stable, so is the new system.
Let us be a little bit more precise about this. In the Fourier domain, we

have
ik / f w] JACY

:: flw >E< ) () oo
:_/f 1/);( w)dw.

For simplicity we assume that the orlglnal wavelets have compact support in
the frequency domain (this restriction can be removed to the prize of adding
some more technicalities). Since

E(w)

|l

=1 as |w| = o0
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and
Kj— 2% as  |w| = oo

there is some J such that for j larger than J, x; < 27941 and

)

@)

S a =
w|

Do | —

—

holds on the support of {L;j,k(w). For j > .J we therefore have

< a| [ Tl iawia = a 107,350

If the basis generated by 1Za is a Riesz basis we then have
YA < B,

i>J
keZ

fore some constant B. An identical argument for j — —oo gives us
AP < BISIR,

j<J!
kEeZ

for another constant B and some .J'. Now we are left with a finite range of
scales, so it is enough to prove the corresponding inequality for each scale
separately, i.e. we have to show

ZI SOl < BISIP,

for J' < j < J. A standard integral inequality gives us

ZI £ 8En® < 11951, SUPZW z—277k)| |||

Under some mlmmal conditions on the decay of the new wavelets, e.g.

— C
|95 (2)] < 1 )+’

we have thus shown that

YA < BISIP
Ik

In precisely the same way we can show that
2
SRRl < Bl
Jik

Together with the biortogonality, this is sufficient to ensure that {¢,} and

{;;‘k} are Riesz bases. As a remark, we note that the stability constants
can blow up if the new wavelets have large L'-norms.
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4.4 Some examples

In this section we will consider some examples in order to illustrate some
aspects of the new wavelet system. Let us start with K = [ — D where [
is the identity and D is the derivative operator. The new dual wavelets will
be

K

ik = %(%‘,k + 2795 1)
j
where {/;;}k means dilations and translations of 1:’ and not derivatives of ’l:/;j’k.
We see that x; = 1427 is a suitable choice of quasi-singular values. Another
possible choice (see Donoho [6]) is k; = maxz(1,27). At the fine scales, the
new dual wavelets are essentially dilates and translates of {bv’. For the coarse
scales we get the old system. In figure (4.1) we plot these new wavelets for
a range of scales. For comparison, they are all normalized to scale one, i.e.
we plot Q_j/leﬁo(Q_jw). One can clearly see how these “level-dependent
mother wavelets” evolves as j increases, from the original mother wavelet to
its derivative. As original (dual) mother wavelet we have used the “Mexican
hat function”, ¢(z) = (1 — 222)e=".
Let us take a look at the new filters

1—-2(e™™ 1) ~

f[;‘(w) —1_ 2T (e=12w — 1)H(w)
&) = 2 W
i) = 2 e
G5(e) = T O )
For large 7 we get

- 2 -

H(w) = mﬂ(u)

é?(w) ~ 2(1 — TG (w)

HE @)~ T H W)

G (w) ~ Q(I_%M)G(w)

i.e. approximately the filter we would get with the derivative operator. As
j — —oo they will approximately be the old filters.

We mentioned above that problems could arise when /Ig(w) has other zeros
in the complex plane than the origin. Let us illustrate this by considering
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-2 -2 -2
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Figure 4.1:
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K =14+ D. Here we have
E(w) =1+ iw,

so we will have a zero at w = 1. Indeed we will get into difficulties; the m;’s
becomes

mi(w) =142/ (™'Y — 1),

and we will have m_;(7/2) = 0 which will lead to inconsistency in (4.5).
This difficulty can be circumvented by choosing m; as “backward difference
approximations” instead;

mj(w) = k(27 (727 — 1)).

In the complex plane, this amounts to reflecting the circles —i2j(ei2_]‘“ —1)
in the real axis, hence avoiding the zero at w = 1.

Let us also study the example K = [ — D?. Here, E(w) =14 w?
has zeros at w = =4t so the trick in the previous example does not apply.
However, this time we can get around the problem even more easily, we just
choose E(w) = 1+ |w|? as the extension to the complex plane. Note that
m;(w) = 1-27(e77'% —24€7'%) 50 we have made a symmetric difference
approximation of the second derivative term.

4.5 More on Multidimensional Convolution Cper-
ators.

In this section we will investigate some examples where the diagonalization
condition (3.7) does not hold, but we still can diagonalize the operator in
some kind of wavelet-like bases. We will in particular consider the case of
anisotropic operators when the dilation matrix contains a rotation. The
constructions here will be very similar to those above for one-dimensional
convolution operators, so some readers might want to skip this section.

4.5.1 Notation

Let us first recall the notation from chapter 3. The wavelets and scaling
functions are defined with respect to a sampling lattice I' = I'Z? ,where d is
the dimension, and a dilation matrix I which is required to satisfy DT C T
and m = |detD| > 1. The scaling functions and their duals are defined as

Pin(2) = mp(Diz —7) and B (e) = m"F(DIe - 7).

The wavelets and dual wavelets are defined as D-dilations and I'-translations
of m — 1 mother wavelets and dual mother wavelets,

bujn(2) = md/QQ/’V(Djx —v) and &;u,jw(x) = md/leu(Djac -7,
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forv =1,...,m— 1. We have scaling equations

pl@)=m) hypDz—7), @)= m) hyp(Dz—7)

vy vy

Yo(2) =m Y guyp(Dr =), $u(x) =m > Guye(Dr —7)

v v

(4.8)

for some low-pass filters hﬁ/,’ivz,Y and high-pass filters g, , and g, .. In the
Fourier domain, the scaling equations (4.8) becomes

(4.9) Pw) = H(D™w)g(D™"w), /g:o(w) = H(D"w)3(D™"w)
D) =G(DTTDFDTW), () =Co(DTTF(D )

with the filter functions

H(w) = Z e~ H(w) = Z’ﬁwe_”"“

~veT ~el
Gul@) = gune™ ™ Gulw) =D Gue™™
~vel ~el

4.5.2 The New Wavelets

Let us now consider a d-dimensional convolution operator Kf = k* f. In
chapter 3 we saw that we could construct a new wavelet basis with mother
wavelets 1 = K~14 and 'JK = K*ibv that gives a diagonal representation of
K, provided that the operator commutes with D-dilations, up to a constant
k. In the Fourier domain, this amounts to

k(D™w)
k(w)

=k ,independent of w.

When D = 2], this just requires K to be homogeneous. But there are cases,
for instance the Quincunx lattice, where the dilation matrix is a scaling and
a rotation, so this requires K to be rotation invariant as well. This rules out
operators of the form

E(w) = |Aw|” (or k(w) = (Aw)™) and E(w) = |v-w|® (or k(w) = (v-w)?)
where A is a symmetric, positive definite matrix and v is a unit vector.
Of course we can also have sums of these (e.g. linear partial differential

operators) in which case the diagonalization condition will be violated even
for D = 21. For those operators, the wavelet-vaguelette decomposition will
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not give us wavelets that are D-dilations and I'-translations of m mother
wavelets. We write out the new wavelets once again,

(410) P = K, and gl = s KT,
v,

Let us look at the Quincunx lattice to understand the difference between
this basis and a “real” wavelet basis. In the latter case, we have one mother
wavelet ¥ that typically is associated with one direction, i.e. it measures
oscillations in one specific direction. The dilation matrix is a 45° rotation
and a scaling with /2. The family ¥y .~ is thus the mother wavelet rotated
to four different directions (horizontal,vertical and the two diagonal direc-
tions) and at different scales. For each direction, the scaling factor is 4, i.e.
after four D-dilations we have come back to the same direction but we have
scaled by /2 four times, that is, by a factor 4. The wavelets defined by
(4.10) on the other hand, will be different for the different directions, due
to the anisotropic nature of K.

4.5.3 The New Multiresolution Analysis

We derive level-dependent filters and scaling functions just as in the previous
chapter with the non-homogeneous convolution operators. We try to find
level-dependent scaling functions through

o = = . 1 o
@?,w(w) = 1j(w)@jy(w) and 99?,7(‘*’) = m@j,w(w)-
J

This will give us new filter whose filter functions are

) = D) o ) = D)
(4.11) ! )_E:(Djw)H( ) i) [;(Diw) “
Gjw) = T R (Diw) Gulw) - Gule) Hu,J—llA;(Djw)Gy( )

These are 2rT*-periodic if

is 2r DT*-periodic. Looking at (2.19) and (4.6) suggests thatwe should
choose

m;(w) = k(—iDIT~T (7P 7% _ 1)),

We can describe this in words by something like “a one-sided difference
approximation at scale m™7, in the lattice directions rotated j times”.
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Chapter 5

Giving Up Shift Invariance

In this chapter we will sketch some ideas how to extend the methods de-
scribed in previous chapters to more general operators that need not be
translation invariant. We will still have some requirements on the operators
under study though. They have to preserve the most important proper-
ties of wavelets, such as localization in time and frequency, regularity and
vanishing moments. Typical operators of interest are linear differential op-
erators with varying coefficients and integral operators with kernels rapidly
decaying away from the diagonal, i.e. the same operators as in [1]. Our
presentation will leave a lot of questions to be answered, and more research
is needed to realize the ideas described here.

5.1 General Multiresolution Analyses

Due to the lack of shift invariance, we have to consider a more general notion
of multiresolution analysis where the scaling functions can depend both on
scale and position. Following Sweldens [15], we define a multiresolution
analysis as a sequence of subspaces of L*(R) such that

LV, CVip

4. Each V; has a basis of scaling functions {¢; i }x

We still think of V; as an approximation space at scale 277 and of go?k as
living at scale 277 and position 2=7k. We also keep using the name scaling
functions for the ¢; ;’s even if they cannot be written as linear combinations
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of scaled versions of themselves. By W; we denote “detail spaces” comple-
menting V; in V;4q. A collection of functions v; ; are called wavelets if they
are Riesz bases for the W; spaces, i.e.

Wi = span{d;ite and  A|fI* <D KF v < BISIP
k

A dual multiresolution analysis has approximation spaces ‘7] and dual
scaling functions @; which are dual to the scaling functions {¢;r}s, i.e.

(5.1) (i @ikr) = Ohpr-

The dual detail spaces Wj are spanned by the dual wavelets which are
biorthogonal to the wavelets,

(5.2) (Wies Vit ) = 85,40, 10-
The approximation and detail spaces and their duals are related by
W; L 17] and V; L Wj.
The corresponding relations for the scaling functions and the wavelets are
(5.3) (G Biar) =0 and (i, Yy = 0.

We refer to (5.1)-(5.3) together as the biorthogonality conditions.
We will now turn over to the filters. Since ¢;; € V; C V;41 the scaling
functions must satisfy refinement relations

(5.4) Cik =D hjkiPit12k40,
!

for some coefficients h; ;. ;. For fixed j we define the level-dependent lowpass
filter as the operator H; : * — (* defined by

(5.5) (Hje)r = Zh]‘,k,lCQkH-
l

Note that H; is not a shift invariant filter. Similarly we must also have

coefficients h;r1, ;%1 and g; x; such that
Gk = E b k1 Di1, 26415
l

(5.6) Yik = Zgj,k,199j+1,2k+z,
[

Yk = E G5 k141 2K+
!
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Define lowpass and highpass filters H;, G; and G; as in (5.5). With a slight
abuse of notation we can then write (5.4) and (5.6) as

(5.7) i = Hjvipn @5 = Higjn

¥ = Gigivr ¥ = Gi%in

In terms of these filters, the biorthogonality conditions becomes

HiH: = G,G5 =
(5.8) GiH: = H;G?

HIH; + GG,

[
~ o~

5.2 The New Biorthogonal System

We define the new wavelets as before,
o L —
;k = —H'klﬁ*‘lﬂ and ’l,/);ik = Kj’kfﬁ llﬂj’k.
]7

Let us try to find a biorthogonal multiresolution analysis corresponding to
these new wavelets. We do so by glancing at the shift-invariant case. There
we had that the new scaling functions cp;?"k, @?k were related to the old one
through

P

TP ) = Ko Bae) and RE)FH ) = mi)Fw),
where
m;(w) = ij,le_““’.
l
In the time (or spatial) domain this becomes
Y omi @ = Kk and Y miigiep = K¢,

l l

We can think of the m;’s as discrete approximations of the operator at scale
277, Inspired by this we try to define new scaling functions through

(5.9) 2umii kDl ey = K@k,

2amikipik+ = Kgh.
Again we think of the matrices m; as discrete approximations of K. The
main question here is of course how to chose the coefficients m; ;. Ignoring

that for the moment we instead move on to derive the new filters. First we
note that we can write (5.9) in operator notation

M!G; = K*¢; and Mjp; = Ky,

63



with the obvious definition of the operators M;. Assuming that the M;’s
are invertible we have
I(QO;-( = M]SO] = MHSD]-l-l M H; M]-l—lM _|_1QO‘7‘+1

= M;H;MZN K, = KMH MY &5

This implies that

99 = M;H;M -|-199]+1
The same kind of calculations gives us that

475] = M_*H M+19°_7+1

Vi = K;GiMZ _Hcpj

O = K716 M7 B
Here K; is the diagonal operator

(Kid) = rjndk

We see that we get a new biorthogonal system with filters defined by the
expressions
HE = M;H;M7Y  Hf = M7 H;M;,

(5.10) J i+

C‘:@-(:ICGMJ‘_I_1 G7 = K} G 1

It is straightforward to show that these new filters satisfies the biorthogo-
nality conditions (5.8).

At this point a number of questions arises about the new wavelets, scal-
ing functions and filters, such as stability, regularity, decay and vanishing
moments. We do not intend to answer this in general but rather consider
some interesting examples in more detail.

5.3 Differential Operators

We will consider a particular differential operator here, but we believe that
the ideas extend to more general differential operators. The operator we will
study is K = DalD where a is a positive and differentiable function with
bounded derivative, |a'(z)| < C. Note that this operator is self-adjoint. We
take the original wavelet basis as a classical one, i.e. generated from mother
wavelets ¥ and {L; by dilations and translations. First we have to chose the
quasi-singular values. The new dual wavelets are

Vi) = a(@) D*je(2) + d' (2) Dibj(a)
= 4a(2)(¢")j(z) + 2a ()(15) K(2)
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The natural assumption on « is that it should have a uniformly continuous
derivative. Intuitively, as j — oo, the variation of a’ (and @) on the support
of {bvj’k can then uniformly (over k) be made arbitrarily small and we can ap-
proximate a and a’ with constants. A proper choice of quasi-singular values
would then be k;; = maz(a(277k)47, ‘a’(?“jk)| 29). This approximation is
only valid for fine-scale wavelets and we cannot count on the new system to
be stable as 7 =& —oo. However, in practice we always have a coarsest scale
so this is not really a problem.

Assuming the additional condition that |a'(z)| /a(z) is bounded we can
in fact show that the new system is stable as j — oo.

Let us now consider vanishing moments. Suppose that the original dual
wavelets have N vanishing moments,

/m”iy;j,k(m)dm =0, for 0<n<N.

For the new wavelets we will have

/ (z — 277 k)", (2)dz = # (z — 277k)" Da(z) D; () da
= 20 (@ — 277K () (8 ()
Hj,k

By the mean value theorem,
a(z) = a(277k) + (2 — 279k)d (& 1),

and hence

[@=20m e = [ (o= 270k ) ()

an —jgNn—1 1 i
+— [ (2 =277k)" " (& ) (¥1) j e () d2
ik
= 2y ) () ()
Kjk

for 0 < n < N +2, since the first term is zero due to the vanishing moments
of the original system. For n = 0 the integral is exactly zero. We now assume

for simplicity that the original wavelets are supported on the intervals /;; =
[277(k — N),277(k 4+ N)]. By Cauchy-Schwartz inequality we then have

. ~ 2 2in 2 ~
‘/(m — 270" % () dz| < (—) (maz ‘a'(m)‘)Q/ 2?2 dz ||4']|?

Kijk i
Lo\ 2
%n N2n—1 ~
= (E) 571 (max ‘al(m)‘)2||'¢l||27
Js
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and therefore

5.11 gy, (o) da| < 20N
(5.11) /( )" bjn(x)de| < KiE2n =T
We see that even if we cannot expect vanishing moments of the new dual
wavelets, at the fine scales they will be “almost orthogonal” to Taylor poly-

nomials around their central points, since x;; ~ 47 as 7 — oo.

maz | (z)] [}

Let us have a look at the M;’s. We choose them as two-sided difference
approximations

(512) Mkl = a(Q_j(k + 1))5l,k+1 — 2(1(2_11143)(51’]C + Q(Q_j (]C — 1))51&_]

Of course, there are a lot of questions to investigate; what will the new filters
look like, will the cascade algorithm converge, and if so, what will the new
scaling functions look like? If we want to use this method to solve differential
equations, we also need to incorporate boundary conditions. These questions
will be a matter of further study.

5.4 Calderén-Zygmund Operators

Let us consider Calderén-Zygmund operators, i.e. integral operators

K1@)= [ ko) fw)dy

where the kernel & satisfies the estimates

|k(2,y)| <

T —

(5.13) [z =4l
N N

|z -yl

We assume that the original dual wavelets have N vanishing moments. This

gives us some decay properties of the new wavelets, for if we expand the

kernel in a Taylor series in its first argument,

. . . r — 277k)2 .
k(z,y)=k(277k,y) + (2 —277k)01 k(27 k, y) + %8?“2_%, Y)
x— 279N s x— 279 k)N
+- %81}\] 'k(27k,y) + %8{\716(6]‘7167@/)7

where \gj,k — Q_j]c‘ < ‘33 — 2‘”@‘, we have
(o) = [ n)alw)iy

1 -
- ﬁ/ YN O k(& 2) Vi (y) y-
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We again assume that the original wavelets are supported on the intervals
Iy =[279(k = N),277(k 4+ N)]. For z outside this interval we have

< C C
TGk 2l T miN -2V

OV k(& k)]

and therefore

NN+1/2 C
<
T NW2N 41 270N — 2|V !

We now turn over to the choice of M;. We recall the relation

[#%(@)]

(5.14) ij,l,ka?,k-u = K*‘Ej,kv
l

between the original and new scaling functions. In the shift-invariant case,
we can write this in the Fourier domain

(@) 35 (w) = F@)Einlw) and  R(@)@5L(w) = m; (@) Faw),

where
mj(w) =Y mje”".
{

Here our choice of m; was guided by letting w approach zero. We therefore
take integrals in (5.14)

. e
ij,l,k / Okl = / K™%k

- / (/k(y’x)@?kﬂ(y)d@/) dz
:/f((y)a?,kﬂ(y)dy
~ K(270k)271/2,

where

K(y) = /k(y,w)dl‘-

The above approximation is valid for large j. As j — oo, we would like to

have
/ P =272
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This gives us

> mjipn K(27k) = /k(z-f'k, y)dy =Y k(27 k, 27 (k+ 14 1/2)).

{

We therefore make the choice
mypr =k(27k, 279 (k4 [+ 1/2)).

which indeed seems to be a reasonable approximation of K at scale 277,
Again, there are lot of details here to investigate, vanishing moments of the
new wavelets for instance.
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Chapter 6

Wavelet Transforms for
Complex Radar Signals

In this chapter we will use the techniques developed in the previous chapters
to adapt the wavelet transform to complex radar signals. For complex-
valued signals, positive and negative frequencies do no longer contain the
same information. Moreover, for the complex radar signals we will study,
positive and negative frequencies have a significant physical interpretation,
and it is therefore of interest to separate them when analyzing these signals.
This problem was given to us by Claes Hagstrom of the radar section at
Ericsson Microwave Systems.

6.1 Complex Radar Signals

Below we will give a simplified description of complex radar signals and how
they arise. The purpose is to explain what positive and negative frequen-
cies means physically, and we do not intend to give the complete picture
of radar technology here. The signal transmitted from a pulse radar is a
“rectangular pulse train” with a certain pulse width and pulse repetition
frequency, modulated by a carrier cosine wave with some carrier frequency
w,. The Fourier transform of this modulated pulse train is sketched in figure
6.1. (Note that the “bumps” around +w, do not look exactly like that, but
as an illustration, this figure will do). If this signal hits a target (aeroplane,
helicopter etc), it is partly reflected and will be received by the radar an-
tenna. If the target is moving in a direction towards the radar, the spectrum
will be shifted to higher frequencies due to the Doppler effect. If the tar-
get is moving away from the radar, it will be shifted to lower frequencies.
If the target has a complex structure with moving components there may
be contributions in both ways and the spectrum will be fairly unsymmetric
around w,. (There is also a copy centred around —w,, but it contains no
further information and will be neglected). An example of how this might

69



—We 0 We

Figure 6.1: Fourier transform of transmitted signal.

look like is shown in figure 6.2. The received signal is shifted in frequency

—We 0 We

Figure 6.2: Fourier transform of received signal.

by w,, i.e. it is multiplied by e~*<! and the spectrum is therefore centred
around zero, see figure 6.3 (the part around —2w. is removed at this stage by
a low-pass filter). Notice that the new spectrum is in general unsymmetric
and that the corresponding modulated signal is complex. Moreover, nega-
tive frequencies corresponds to targets moving away from the radar and vice
versa. Therefore it is of importance being able to distinguish between pos-
itive and negative frequencies when analyzing this signal. This is of course
automatically achieved with traditional Fourier methods. A disadvantage
with the Fourier transform is that it does not give any spatial resolution
and this is why we are interested in wavelet transforms because they give us
resolution both in space and frequency.

6.2 Complex Wavelet Transforms

6.2.1 The complex discrete wavelet transform

Let {1, 1} be an orthonormal basis of (real) wavelets, where

Yi(t) = 222t — k),

and 1 is the mother wavelet. Let f(t) be the complex-valued signal described
above and d; i = (f, ;) its wavelet coefficients. We can interpret the
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- 0 T

Figure 6.3: Fourier transform of complex radar signal.

|d]-’k|2’s as an energy distribution, since by orthogonality
[1r0F a =3 1l
Jk

The wavelet ;1 is essentially supported in the frequency intervals 21—l <
|¢] < 27 and in the time interval [277k, 277 (k+1)]. Hence |d; x|” is a measure
of the energy in these frequency bands and in this time interval. But we
have no information about how the energy is separated into positive and
negative frequencies, since each coefficient ¢; ; mixes contributions from the
frequency intervals [-27, —2771] and [2/~!, 2/]. What one would like to have
are wavelet functions supported in positive (or negative) frequencies only.
The natural way to achieve this is to separate the mother wavelet into two
parts:

-~

W) = 0W)d(w) and P (w) = B(~w)P(w)

where 6 is Heaviside’s step function. From these “mother wavelets” we define
new wavelet basis functions

Wh(0) = 279F (270 k) and g5 (1) = 29797 (21 — k).

It is immediate that {9/, }, v = + or —, is an orthonormal basis in L?(R).
The analysis of f in this basis, i.e. the computation of the coefficients
(f, V;,k> will be referred to as the complex wavelet transform. It is equivalent
to first splitting f into positive and negative frequencies respectively and
then analyzing each part in the basis {%;r}. The positive and negative
frequency parts of f can be obtain by multiplication with Heaviside in the
frequency domain, or in the time domain as

f+iHf.
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Here, H stands for the Hilbert transform. Now we want to compute the
wavelet transform, which we denote by W. From chapter 2 we know that
there exist another wavelet transform W™ such that WH = W" and we
therefore have

W(fLiHf)=WfLiWHf=Wf+iW"f.
The new wavelet basis have mother wavelets defined by
YH=H*)p and "= H .

The new filters have filter functions

u B eiw_l_l ~ _‘eiw+1‘~
o) H"w) = Pz 1|H(w) H"(w) = pea 1H(w)
. H __‘em—l‘ ~H __e—i‘ﬂ_|_1~
@)= T AW ) = g O

We now have the following algorithm for the complex wavelet transform of

f:

1. Compute the wavelet coefficients (f, g'u’dmk) and the coarse-scale coeffi-
cients (f, @;o.%) with the filters H and G.

2. Compute the wavelet coefficients (f, {Eyk) and the coarse-scale coeffi-
cients (f, @} ) with the filters H" and GH.

3. Get the wavelet coefficients and fine-scale coefficients of H f in the orig-
inal system through the formulas (H f, ¢; k) = (f, ¥% ) and (H f, 8 k) =
1

2omulf, @4 ;) where my = Ry (see section 2.4).

4. Now it is simple to get the complex wavelet coefficients,
df = (£ 00D = (£ 950 +ilf, 9) and
A= (F05) = (i) = i, 05
There are some technical difficulties associated with this method. First, the
new filters will not be of finite length since the filter functions in (6.1) are
not smooth at w = 0. We then have to truncate the filters. We also have
to truncate the convolution of the coarse-scale coefficients with the discrete

version m; of the Hilbert transform. We will discuss this more when we
consider some numerical examples below.

6.2.2 The Complex Continuous Wavelet Transform.

In some situations when a detailed analysis of a signal is desired, one needs
a more fine-tuned instrument than the usual discrete wavelet transform. It
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can be provided by the continuous wavelet transform. This just consists
of analyzing the signal at all scales a and positions b, by looking at the
correlation of the signal with a family of wavelets, at all scales and positions.
This family is obtained from a single mother wavelet v, just as in the discrete
wavelet transform, by dilations and translations,

1 —b
¢a’b(t):76¢(xa > where a >0, b € R.

The continuous wavelet transform of a signal f is thus defined by
(6.2) Wita,) = [ F0)ban()d.

There is also an inverse continuous transform, or reconstruction formula, to
compute the signal from its continuous wavelet transform:

(6.3) £(t) = Ciw /0 h /_ T OW F(a, b)) 2%

a? -’

where
o0
Co=2n [T B,
which of course needs to be finite. This reconstruction formula is not of
major interest in applications, where we use the continuous wavelet trans-
form merely to analyze signals. In practice, we only compute W f(a, b) for a
finite set of values of ¢ and b, but contrary to the discrete wavelet transform,
where @ = 277 and b = 277k, we can chose this discrete set of values more
freely, and adapt it to the signal at hand. This enables us to “zoom in”
on transients and edges. We also have a lot more freedom in choosing the
mother wavelet, since it no longer has to fit into a multiresolution structure.
We still need fast algorithms to compute the W f(a, b)’s. Regarding (6.2)
as a convolution, we get

w

W f(a,b) = / F(£)ap(t)dt

=) roe ()
= =+ 00)
= va 77 (Fw)

where we have used the notation

~

(@) (8)

To implement the continuous wavelet transform we have to do the following:
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1. Store the Fourier transform of the mother wavelet QZ(UJ) with high
precision.

~

2. For a given signal f, do an FFT to get f(w).
3. For each scale a, multiply f(w) with v/a {b\(aw) and do an inverse FF'T

For a discrete signal of length N, this requires (#a + 1)Nlogy, N + #aN
operations, where #a is the number of scales we are looking at.

Since we are working in the frequency domain, it is easy to deal with
complex-valued signals and to separate positive and negative frequencies. In
step 2 above we separate f(w) into two parts,

-~ —~ -~

FHrw) =0w)flw) and f-(w)=0(-w)f(w),

and we then do step 3 on each of them separately. This gives us the complex
continuous wavelet transform.

6.3 Numerical Examples.

It is about time to study some numerical examples. The signals we will work
with were provided by the radar section at Ericsson Microwave Systems. The
first signal contains radar echoes from the traffic on a road. The absolute
value of this signal is shown in figure 6.4, where also the power spectrum
is plotted. From this spectrum we see that is a large component around
zero frequency, probably due to reflections from buildings and from the
ground. There are also some smaller “bumps” at positive and negative
frequencies. This is reflections from cars moving at different speeds and
directions. In figure 6.5 we plot a Mallat-style multiresolution display of
the complex wavelet decomposition. Let us explain exactly what we see
there. For the positive and negative frequency part separately, we compute
projections onto the Wj-spaces from the complex wavelet coefficients. We
then plot the absolute value of these projections, where the coarsest scale is
plotted on top. At the coarse scales, we see the echoes from the surroundings,
buildings, parked cars etc. At the finer scales, we can clearly see cars moving
away from the radar at ¢ = 0.2 and ¢ = 0.9. There is also a car moving
towards the radar at £ = 0.2 and several between ¢ = 0.5 and ¢ = 0.8.

The second signal is the radar echo from a helicopter. The absolute value
is shown in figure 6.6, together with the power spectrum. In figure 6.7, we
plot the multiresolution display as described above. Here, one can clearly
see the echo from the helicopter body at low negative frequencies, so the
helicopter is slowly moving away from the radar. At the fine scales, we see
reflections from the four rotating airfoils, two in each direction.
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We used Coiflet-3 as our original (orthogonal) wavelet basis, since they
reduce the effect of entering sample values f(27k) instead of the coarse-
scale coeflicients (f, @;, x). We choosed to truncate the new filters after 31
coefficients.

The MATLAB routines we used to compute the complex wavelet trans-
form and to generate the plots are available at
ftp://ftp.math.chalmers.se/pub/users/ekstedt/Complex.tar.gz
They work together with WaveLab v .700.
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Figure 6.4: The radar signal (on top), and its Fourier transform.
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Multi-Resolution Decomposition, positive frequencies
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Figure 6.5: A multiresolution plot of its complex wavelet transform.
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Figure 6.6: The radar signal (on top), and its Fourier transform.
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Multi-Resolution Decomposition, positive frequencies
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Multi-Resolution Decomposition, negative frequencies
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Figure 6.7: A multiresolution plot of its complex wavelet transform.
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