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Abstract

The random triangle model was recently introduced as a random graph
model that captures the property of transitivity that is often found in social
networks, i.e. the property that given that two vertices are second neighbors,
they are more likely to be neighbors. For parametersp € [0,1] and ¢ > 1, and a
finite graph G = (V, E), it assigns to elements 7 of {0,1}¥ probabilities which
are proportional to [[.cp ™€) (1 — p)t=me) g  where t(n) is the number of
triangles in the open subgraph. In this paper the behavior of the random tri-
angle model on the two-dimensional triangular lattice is studied. By mapping
the system onto an Ising model with external field on the hexagonal lattice, it
is shown that phase transition occurs if and only if p = (¢—1)"2/3 and ¢ > ¢,
for a critical value ¢, which turns out to equal 27 + 15v/3 ~ 52.98. It is fur-
thermore demonstrated that phase transition cannot occur unless p = p.(q),
the critical value for percolation of open edges for given ¢. This implies that

for ¢ > ¢, pc(‘]) = (q - 1)_2/3'

1 Introduction

The study of random graphs began in the late 1950’s with the pioneering papers by
Broadbent and Hammersley [3] and Erd6s and Rényi [6]. Since then, the subject
has attracted enormous interest in mathematics (see e.g. the books by Grimmett
[12] and Bollobds [2]) as well as in various applied disciplines. One class of such
disciplines is the social sciences where random graphs are often used to describe
social networks; see e.g. Faust and Wasserman [7] or Frank [9] for overviews. For
instance, an open edge between two vertices could mean that the corresponding
individuals are friends, family, colleagues etc. It has been well recognized that many
types of social networks exhibit transitivity, i.e. the property that “friends of friends
often make friends”. In other words, an edge is more likely to be open if this would
produce some triangle in the open subgraph (i.e. if its endpoints are known to be
second neighbors) than if not.

Jonasson [17] introduced the random triangle model in order to capture and
isolate the property of transitivity between second neighbors. As opposed to other
models that have been used to capture the transitivity phenomenon, it has the
Markov random field property that the conditional probability that an edge e is
present given everything else depends only on the states of edges adjacent to e; see
[17] for further comparison with other models. Another attractive property of the
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random triangle model is that the resulting distribution has maximal entropy in the
class of random graphs with given edge and triangle probabilities.

Let G be a finite graph with vertex set V and edge set E. An element of {0, 1} is
identified with a subgraph of G by letting the value 1 (resp. 0) indicate the presence
(resp. absence) of an edge in the subgraph. Conforming to percolation terminology,
we also call an edge with value 1 open, and an edge with value 0 closed. A triangle
is a set {ey, es, €3} C F of cardinality 3, with the property that any two edges in the
set share a vertex.

DEeFINITION 1.1 Forp € [0,1], ¢ > 1, and a finite graph G = (V, E), the random
triangle measure ub? is the probability measure on {0, 1}¥ which to each n € {0,1}¥
assigns probabzlzty

:U’G Zp,q H p 1 n(e)qt(n) (1)
G ecE

where Z%" is a normalizing constant and t(n) is the number of triangles in 7.

The definition can of course be extended to any ¢ > 0, but we restrict to ¢ > 1 for
two reasons. Firstly, the social network interpretation makes more sense for ¢ > 1.
Secondly (and more importantly), a number of stochastic monotonicity properties
(starting with Corollary 1.3) that are crucial for all our results hold for ¢ > 1 but
in general not for ¢ < 1.

Thus, compared to the basic model with independent edges, the random triangle
model rewards a frequent appearance of triangles. The desired transitivity follows
from Lemma 1.2 below; the conditional probability that an edge is present given
everything else is increasing in the number of “mutual friends” that its endpoints
have.

LEMMA 1.2 Fore € E and a configuration n € {0, 1}P\M¢} let A(n,e) = t(n) —t(n)

where 7 and n are defined by 7i(e) = 1, n(e) = 0 and 7(e’) = n(e') = n(e') for
¢ € E\{e}. Then

A(Ye)

Dsq _ N pq

Y (6) = 1Y (B\ {e}) = m) = o

Here and in the sequel Y is understood to be a random element in {0, 1}¥ distributed

according to a random triangle measure. For any E’' C F, we write < for the usual
(coordinatewise) partial order on {0, 1}¥"

COROLLARY 1.3 For any 0 < p; < ps <1, any 1 < ¢ < @ and any n,ns €
{0,1}2Me} such that n; < o, we have

pe (Y (e) = 1Y(E\{e}) =m) <pg®(Y(e) =Y (E\{e}) =m).  (2)

Lemma 1.2 is immediate from the definition of the random triangle measure, and
Corollary 1.3 is then another immediate consequence.

In [17] the asymptotic behavior of the random triangle model on the complete
graph on n vertices as n — oo is analyzed for p = n™%, o > 0. In this case
it turns out that the model has a more or less degenerate behavior. If ¢ = 1 +
(3 + €)alogn/n, then, for € > 0, almost all edges will be open, whereas for ¢ < 0
the model becomes virtually indistinguishable from the ordinary Bernoulli model
with independent edges. For ¢ = 0, the probability mass divides between these
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two extremes. The reason for this degeneracy is that on the complete graph the
number of triangles is so much larger than the number of edges. This suggests
that one should study the model on graphs where the number of triangles is of the
same order as the number of edges. A natural choice is to study what happens
on the two-dimensional triangular lattice L7 (the more usual square lattice is of
course useless for this purpose, since it does not contain any triangles). This line of
study is also interesting from the point of view of percolation theory and statistical
mechanics, as the random triangle model can be seen as a prototype for a “random-
cluster-like” model with only local edge dependencies; the similarity between the
random triangle model and the random-cluster model will be is discussed later in
this section. Central questions for the random triangle model on £ are:

(i) For what values of p and ¢ will the set of open edges percolate (i.e. contain an
infinite connected component)?

(ii) When does the model exhibit phase transition, i.e. for what p and ¢ is there
more than one possible random triangle measure?

We now proceed to make these questions more precise. Definition 1.1 requires that
the graph is finite so the first thing we must do is to define what a random triangle
measure on an infinite graph shall mean. The following definition is an adaption of
the usual Dobrushin-Lanford-Ruelle definition of an infinite-volume Gibbs measure
(see e.g. [11] or [14]) to the present setting.

DEFINITION 1.4 Let G = (V, E) be an infinite but locally finite graph. A probability
measure i on {0,1}F is said to be a random triangle measure with parameters p €
[0,1] and q > 1 if, for all finite subsets S of E, all n € {0,1} and p-a.e. 0" €
{0,137\

p(Y(S) =7 lY(E\S)=7") = Z L[] p"1 — p)=7@gtt ") (3)

ecS

where Z is a normalizing constant (which may depend on n" but not on n') and
t(n',n") is the number of triangles in the open subgraph of G that have at least one
edge in S.

Note that this definition produces a consistent set of conditional distributions, and
that natural analogues of Lemma 1.2 and Corollary 1.3 go through for infinite-
volume random triangle measures (the analogue of Lemma 1.2 is in fact contained
in the definition: set S = {e} in (3)).

The existence of random triangle measures on infinite locally finite graphs can
be proved by standard compactness arguments, using that {0,1}¥ endowed with
the natural product topology is compact so that the set of probability measures on
{0,1}¥ is compact in its weak topology. Note that weak convergence of a sequence
of probability measures on {0,1}” is equivalent to convergence of the correspond-
ing probabilities for cylinder events, i.e. events depending on only finitely many
coordinates.

The triangular lattice L7 is defined as the infinite locally finite graph with vertex
set

1

r— 3 1
ceZ yeZY U e R?: 2 cZ y——€7Z
, Yy €Z} U {(z,y) 7 Y=g }

X

V3

V ={(z,y) € R?:
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and edge set E consisting of all pairs of vertices at Euclidean distance 1 from each
other.

Let A, be the closed hexagon with side length n centered at the origin and
two of its sides parallel to the z-axis, and let Ej  denote the set of edges with

both endpoints in A,. Define two probability measures, uf¢ and pf’¢, on {0,1}"

by letting uf,’;f =i for e € E \ E), and then assigning values to the edges of Fj,
according to (3) with S = Ej, and 1" = i. It turns out (see Section 2) that the weak

limits pf*? = limy,_,o0 pif, @ = 0,1, exist and are translation invariant. Moreover,

pb? and 187 are infinite-volume random triangle measures in the sense of Definition
1.4.

Let C denote the event that the random subset of E consisting of edges taking
value 1 contains an infinite connected component. We will see that if pu??(C) > 0
for some random triangle measure for L with parameter values p and ¢, then in
particular p7"?(C) > 0 (in fact, even the stronger conclusion that p7"?(C) =1 holds).
Furthermore, p3"?(C) is nondecreasing in p. A natural way to make problem (i)

above more precise is therefore:

(i') Given ¢, determine the critical value p.(q), defined as

pe(q) = inf{p : p7*(C) > 0}. (4)

We will also see that there is a unique random triangle measure with parameter
values p and q if and only if pf'? = p"? (the ‘only if’ direction is of course trivial),

so that a simple way of formulating problem (ii) becomes:
(ii") For what values of p and g do we have up? # u??

A complete answer will be given to problem (ii’), whereas we are only able to give
a partial answer to problem (i').

At this stage let us make some comparisons between the random triangle model
and the random-cluster model. If we modify (1) by replacing ¢(n) with k(n), defined
as the number of connected components in 7, we obtain the definition of the random-
cluster model on a finite graph, and by making a similar replacement in (3) we get the
infinite-volume random-cluster model. The random-cluster model was introduced
in the early 1970’s by Fortuin and Kasteleyn [8], and has gained great popularity
in the 1990’s (see e.g. [13] or [14]), mainly motivated by the striking and useful
connections with Ising and Potts models. For ¢ > 1, the random-cluster model
satisfies an analogue of Corollary 1.3, and for this reason the random-cluster model
and the random triangle model share several important monotonicity properties. A
major difference between the two models is that whereas interaction between edges
in the random triangle model is local, the random-cluster model exhibits highly
non-local interactions, in the sense that the conditional probability that an edge e
is open given the status of all other edges may depend on edges arbitrarily far away
in the graph. The problem of phase transition in the ¢ > 1 random-cluster model
on the cubic lattice Z¢, d > 2, has been treated e.g. by Grimmett [13]. Defining
pc(q) similarly as in the random triangle model, the widely held belief is that there
exists a ¢, = ¢.(d) € (1,00) such that phase transition occurs if and only if ¢ > ¢,
(or possibly ¢ > ¢.) and p = p.(q); this is conjectured in [13] and elsewhere. Partial
progress has been made, but so far the full conjecture remains unsolved for all d > 2.

The following two theorems, which are the main results of this paper, prove an
analogue of this conjecture for the random triangle model on L7, and even identify

¢ and p.(q)-
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THEOREM 1.5 The random triangle model on the triangular lattice with parameters
p and q exhibits a phase transition if and only if ¢ > q. and p = (¢ — 1)72/3. Here
qe = 27 + 15v/3 = 52.98.

THEOREM 1.6 The critical value p.(q) (defined in (4)) for percolation in the random
triangle model on the triangular lattice 1s a decreasing continuous function of q¢ on

[1,00), satisfying p.(1) = 2sin(7/18) and p.(q) = (¢ — 1)™2/3 for ¢ > 27 + 15/3.

Here, decreasing means nonincreasing, although presumably p.(q) is even strictly
decreasing throughout [1, 00). The result that p.(1) = 2sin(7/18) is due to Wierman
[22]; this is simply the critical probability for independent bond percolation on Lr.

Here is a brief outline of the rest of this paper. After some preliminary results
in Section 2 on stochastic domination and monotonicity, we show in Section 3 that
phase transition for the random triangle model on L7 is equivalent to phase tran-
sition for a certain probability model on {0,1}T, where T is the set of triangles of
Lp. This model turns out to be nothing but the Ising model with external field
on the hexagonal lattice L. Once this correspondence is established, Theorem 1.5
follows from well known results about the phase transition behavior of the Ising
model on L. In Section 4 we use the Burton—Keane theorem on the uniqueness
of infinite clusters in percolation models to show that there can be phase transition
only if p = p.(¢). In combination with Theorem 1.5, this proves the hardest part of
Theorem 1.6. Finally, Section 5 contains a short discussion on some variants of the
model, including extensions to higher dimensions.

2 Preliminaries on stochastic domination

In this section, we obtain some results on stochastic domination and monotonicity in
the random triangle model, which are central to the methods in subsequent sections.
The results rely critically on Corollary 1.3, and thus on the assumption that ¢ > 1.
All the proofs are standard, and the results have well-known analogues for the Ising
model and the random-cluster model (see e.g. [19] and [14]).

We first need to introduce the concept of stochastic domination. If P and P’ are
two probability measures on some partially ordered measure space A, then we say
that P is stochastically dominated by P’ (or that P’ stochastically dominates P)
and write P <4 P' (or P' >4 P) if [, fdP < [, fdP' for all bounded and increasing
functions, f : A — R. By Strassen’s Theorem (see [20]), this is equivalent to the
existence of a pair of A-valued random objects Y and Y’ with respective distributions
P and P’ and the additional property that Y < Y’ with probability 1. We call such
a pair a monotone coupling of P and P'. Recall that we endow {0, 1} with its usual
coordinatewise partial order.

By applying Holley’s Theorem (proved in [16]; see [14] for a formulation which is
adapted to the present setting) to the random triangle model, using Corollary 1.3,
we obtain the following result.

PROPOSITION 2.1 Let G = (V, E) be a finite or infinite locally finite graph, let S
be an arbitrary finite subset of E, and let p? be a random triangle measure for
G with parameters p and q. For an edge configuration n € {0,1}P\S, write u’;ﬂ,
for the conditional distribution under pP? of Y(S). Then pP? admits conditional
probabilities such that

pst <q 4t (5)
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whenever n1 < no. More generally, if p1 < p2, ¢1 < @2 and n1 < 1, then

HWom! <a W - (6)
We now specialize to the random triangle model on Lr. Recall from the introduc-
tion the definitions of pf for i = 0,1 and j = 1,2,.... As a first application of
Proposition 2.1, we claim that

1o <a Hbd (7)

for any j > 1. To see this, let (Y,Y”) be a coupling of pg? and pp?,; obtained

as follows. First let Y = 0 on A;, let Y’ = 0 on Aj;1, and pick Y'(E,,,, \ Ey;)
according to the projection of ug’?,; on {0, 131785+ \E8 - Next, pick Y (Ey,) and
Y'(Ey,) according to their respective conditional distributions, in such a way that
Y(E);) < Y'(E),); this is possible by (5). This gives a monotone coupling of ¥ and
Y’ so (7) is established. Similarly,

PG >a
In other words, pp{ <4 pb3 <a -..and pf'{ >4 p’§ >4 ... so that by monotonicity
the limits pb? and pf? exist, as claimed in the introduction. That p5? and ph*?

are random triangle measures in the sense of Definition 1.4 follows from the general
theory of Gibbs measures (see [11]) since the interactions are local.

Next, let 4?7 be any random triangle measure for L7 with parameter values p and
g. The same argument as the one used to prove (7) shows that ug7 <q pP? <q 7,
and taking limits implies the next result.

COROLLARY 2.2 For any random triangle measure uP? for Lt with parameter val-
ues p and q, we have

po? <q pPt <q pbl.

This has several important consequences. Firstly, it shows that ph? and pb'? are
invariant under graph automorphisms of Lr (i.e. under translations, rotations and
reflections). Secondly, it implies that phase transition is equivalent to having pf? #
8%, Further consequences concern the percolation behavior: since the event C of
having an infinite cluster of open edges is increasing, we have

1o (C) < pP(C) < pi(C)-

It is also not hard to see that p5'? and 18’ have to be extremal in the set of ran-

dom triangle measures with the given parameter values, and that this implies tail
triviality of pf'? and u}"?. Hence

pi*(C) €{0,1} (8)
for i = 0, 1.
So far, we have only used part (5) of Proposition 2.1. We can also use part (6)

to show e.g. that pfv? <, uf%® for i = 0,1 and j = 1,2,... whenever p; < py and
g K 5 5

q1 < qo. By letting j — oo, we obtain the next result:

COROLLARY 2.3 For any p1,p2 € [0,1] and any q1,q2 > 1 such that p; < ps and
¢1 < q9, we have fori=0,1 that

/411,(11 <d ,ufz,lh_ (9)
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This shows e.g. that for fixed ¢, the percolation probability p}*?(C) is nondecreasing
in ¢, as claimed in the introduction. In conjunction with (8), this implies that p}"?(C)
is a step function, i.e.

0 for p < p(q)
D,q _
H(C) = { 1 for p > pc(q).

The value of pi"?(C) at p = p.(¢) cannot be deduced using these elementary mono-
tonicity arguments. It is shown in [22] that ,ulc(q)’q(C) = 0 for ¢ = 1, whereas for
¢ > 27+ 15/3 we shall see in Section 4 that p£9(C) = 1.

Finally, another standard consequence of Corollary 1.3 is the FKG inequality
(see [19]) which, specialized to the random triangle model, becomes

COROLLARY 2.4 Let G = (V, E) be a finite graph, let f,g: {0,1}¥ — R be increas-
ing functions, and let u%? be the random triangle measure for G with parameters
p€1[0,1] and ¢ > 1. Then

/fgdu’c’ﬁq > /fdu’c’;’q/gdu’c’éq-

For the random triangle model on L, the same conclusion extends easily to the
measures jgy, and i, and by standard limiting arguments we obtain the FKG

inequality also for p5? and %

3 Phase transition

In this section, we analyze the phase transition behavior of the random triangle
model on L. A key tool is the following alternative representation, introduced in
[17].

DEFINITION 3.1 Let G = (V, E) be a finite graph and let T be the set of triangles
of G. For parameters p € [0,1] and ¢ > 1, we define the probability measure v&* on
{0,1}T by letting it assign, to each w € {0,1}T, probability

24(w) = ——p/ @ (g — 1) (10)

where |w| = Yerw(t), and f(w) is the number of edges that are part of a triangle t
with w(t) = 1.

The relation between v2%? and the random triangle measure pf:? is best understood
in terms of the following coupling.

PROPOSITION 3.2 Let P5? be a probability measure on {0,1}F x {0,1}T given by

P (n,w) = 27 [[ "9 (1 = p)' ™" (g — 1) 1p(n,w) (11)

eckE

where B is the set of outcomes (n,w) such that w(t) = 1 implies that n(e) =1 for

all three edges of t. Then the first and second marginals of P%? are pf* and vZ1,

respectively.
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This is Theorem 2.2 of [17], where a proof can be found (the proof is only a matter of
summing out the marginals). It is analogous to the correspondence between random-
cluster and Ising/Potts models (see e.g. [14]). We shall see that for a certain class of
graphs, including the triangular lattice, the alternative representation of the random
triangle model can be described as an Ising model with external field (for this reason,
the w(t)’s will sometimes be called “spins”). It will turn out that the connection
between the random triangle model on £ and the Ising model is different from the
connection between random-cluster and Ising/Potts models in the following respect:
There is a direct correspondence between phase transitions in the random triangle
and Ising models, whereas (see [14] again) phase transition in the Ising/Potts models
does not correspond to phase transition in the random-cluster model, but rather to
percolation in the random-cluster model.

Just like for random triangle measures one can define an infinite-volume version
of v%1. Let us for convenience introduce a name for such measures: v-measures. Here
and in the sequel X is understood to be a random element in {0,1}7 distributed
according to a v-measure.

DEFINITION 3.3 A v-measure with parameters p € [0,1] and ¢ > 1 for an infinite
locally finite graph G = (V, E) with triangle set T is a probability measure on {0,1}T
such that for all finite subsets S of T, all ' € {0,1}° and v-a.e. w" € {0,1}7\5 we
have

V(X (8) = X(T\ ) =) = 27 (g = ) p (12)

where f(w',w") is the number of edges that are part of a triangle s € S with w'(s) =1
but no triangle t € T'\ S with w"(t) = 1. The normalizing constant Z may depend
on w" but not on w'.

Existence of v-measures follows in the same way as for random triangle measures.
Let us explicitly construct rv-measures for L1 in the same fashion as we did in
Section 2 for the random triangle model. Let T, be the set of triangles of L1 that
have at least one edge in E,, . Define, for i = 0,1, the measure v,/ by assigning
to all triangles in 7'\ T, spin ¢ and then assigning spins to the triangles of Ty,
according to (12) with w” = i. The monotonicity arguments in Section 2 are easily
modified to show that 15} <4 g3 <a ... and that v"{ >4 115 >4 ... so that the
limiting measures, denoted v§'? and v}? exist and are automorphism invariant and
also extremal in the class of v-measures. We also get, in analogy with Corollary 2.2,

that

]/(I)),q Sd prq Sd I/{)’q (13)
for any v-measure vP¢ with the prescribed parameter values. The following the-
orem thus tells us that phase transitions for the random triangle model and its
corresponding v-model are equivalent.

THEOREM 3.4 Forp € [0,1] and ¢ > 1, we have ph? = p? if and only if vi* = 1.

To prove this, we first need the following elementary modification of Proposition
3.2. The succeeding corollary is an immediate consequence.
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PROPOSITION 3.5 Let, fori = 0,1, the probability measure Pl;! on {0,1}F x{0,1}"
be given by

z7 I1 99 = ) 70— 1)1, ()

ecEp,

where B; is the set of outcomes (n,w), such that w(t) = 1 implies that n(e) =1 for
all three edges e of t, and w(t) =n(e) =i for alle € E\ Ea, and allt € T\ Ty, .

Then the marginal distributions of Pl are piyn and vf;! respectively.

COROLLARY 3.6 Fori = 0,1 the following statements hold.

(a) Choose a random element Y in {0,1}F by

(i) choosing a random element X according to vy,

(i) letting each edge e € E \ Ey, take value i, and

(iii) for each e € E\, letting e be open with probability 1 if e part of a triangle
with spin 1 and with probability p if not, independently of other edges.

Then'Y is distributed according to ,uf”;f.

b) Choose a random element X in {0,1} b
( y

(i) choosing a random element Y according to iy,

(ii) letting each triangle t € T \ Ty, take value i, and

(iii) for each t € Ty,, letting t have spin 1 with probability g;—I if all three
edges of t are open and with probability 0 if not, independently of other
triangles.

Then X is distributed according to vy, .

Proof of Theorem 3.4. Let ey be any edge of L. We claim that
JBT = B if and only if pB(Y (eo) = 1) = (Y (e) = 1). (14)

The ‘only if” part of the claim is trivial so let us focus on the ‘if” part. If 57 (Y (ey) =
1) = u"(Y (eg) = 1), then by automorphism invariance uf?(Y(e) = 1) = pu"(Y(e) =
1) for every e € E. Since uf? <, pf"? we can invoke Strassen’s Theorem to produce
a coupling (Y, Y”) such that Y ~ pb?, V' ~ i and Y < Y” a.s. Letting P be the

underlying probability measure of this coupling, we have
PY(e) #Y'(e)) =P(Y'(e) =1) = P(Y(e) =1) =0

by assumption. This holds for any e € E, so by countable additivity we have
P(Y =Y') =1, and and the claim (14) is proved.
Now, for 7 = 0, 1, weak convergence implies that

pi (Y (eo) = 1) = lim 17 7(Y (e0) = 1)

n—oo

and by Corollary 3.6(a) this limit in turn equals

lim (V232(C) + p(1 — v24(C)))

n—0o0
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where C is the event that at least one of the two triangles of which eg is part has
spin 1. Again by weak convergence this limit equals

v (C) +p(1 —v(C)).
Finally, by modifying the coupling argument above it is readily shown that 4" = "¢
if and only if 1§Y(C) = v"?(C). This completes the proof. O
We now proceed to show how r-measures in some cases coincide with Gibbs
measures for the Ising model. First, we define the Ising model. For a finite graph
G = (V, E) and a configuration w € {0,1}V, we denote, for i = 0,1,

a;(w) = the number of vertices with spin 7,
a;(w) = the number of edges both of whose endpoints have spin i, and
ap1(w) = the number of edges whose endpoints have different spin.

DEFINITION 3.7 The Gibbs measure for the Ising model with coupling constant J
and external field h on a finite graph G = (V, E) is the probability measure Wg;’h on
{0,1}V which to each w € {0,1}V assigns probability

1
T (w) = 751 P (=2hao(0) = 27 a0 ()

(In the literature, the state space of the Ising model is often taken to be {—1,1}V
rather than {0,1}V.)

Suppose now that G = (V, E) is a finite graph with triangle set T and the
property each edge is contained in exactly two triangles. (There are plently of graphs
with this property: the simplest example is the complete graph on four vertices, and
others can e.g. be obtained from Lr by restricting to a rectangular subset of the
vertex set and using a torus boundary condition.) It is then natural to define the
dual graph of G. This is the graph G* = (V*, E*) obtained by letting V* = T and
letting E* consist of those pairs of triangles that share an edge in G.

PROPOSITION 3.8 Forp e (0,1), ¢ > 1, and G and G* as above, we have

VP = gl (15)
where
-1
J=_8P (16)
4
and
30, 1)2
p = los(r’(¢—1)%) (17)

4

Proof.  Obviously, each vertex of G* is the endpoint of exactly three edges. It
follows that for any w € {0,1}"" the relations

{ a1 (w) = %au(w) + Lag; (w)
ao(w) = g&oo((ﬂ) + g(l()l(a))
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hold. Pick J and h according to (16) and (17). Writing |V*| for the cardinality of
V*, we get

V2 (w) ap™ (g - 1)
W) T g(e PO e )
G
Zg;quh\V*| elh a11(w)/3 e2h =67 ao1(w)/3
-2 ((q - 1)2p3> ((q - 1)p3>
7D:q ,2h|V*
— quf | |1a11(w)/31a01(w)/3
721
ZBAeh V"]
75

which does not depend on w, so (15) follows by normalization. O

The property that each edge is contained in exactly two triangles holds for the
triangular lattice L, and the dual of L is the hexagonal lattice Ly (see Figure 1).
The Ising model of course extends to infinite graphs in the same way as the random

Figure 1: The planar duality of the triangular and hexagonal lattices.

triangle model and its v-representations (Definitions 1.4 and 3.3), and it posseses
monotonicity properties similar to those discussed in Section 2 (see e.g. [19]). By
the same argument as for Proposition 3.8, it is readily shown that the measures v,
and v coincide with the Gibbs measures for the Ising model on the appropriate
subsets of Ly with ‘minus’ resp. ‘plus’ boundary conditions and parameter values
given by (16) and (17). Taking limits, we get that 8’ and v}"? are nothing but the
two stochastically extreme (minimal resp. maximal) Gibbs measures 75" and )"
for the Ising model on Lg. Hence, the question of phase transition for the random

triangle model on L1 has been reduced to that of determining whether or not
moh = 1t (18)

The first thing to observe is that (18) holds whenever h # 0; this is well-known in the
case where Ly is replaced by the cubic lattice Z¢, and the proof (see e.g. [5]) extends
in a straightforward manner to L (although note that the result does not generalize
to arbitrary infinite locally finite graphs due to non-amenable counterexamples such
as the regular tree discussed in Section 5). For h = 0, it is known (see [1]) that (18)
holds if and only if

7 < los(2 2+ v3)
Theorem 1.5 follows by solving for p and ¢ in (16) and (17).



12 OLLE HAGGSTROM AND JOHAN JONASSON

4 The percolation threshold

The purpose of this section is to prove Theorem 1.6. The main part consists of
showing that if p # p.(¢), then the random triangle model cannot exhibit phase
transition. The proof of this is easiest in the subcritical regime p < p.(q), so we
begin with this case.

PROPOSITION 4.1 If p < p.(q), then puf? = pui™.

Proof. Let eq be some edge incident to the origin, and write ey <> A, for the event
that there exists an open path starting with ey and ending somewhere at 0A,,. Here
O0A,, is the set of vertices of A, having at least one neighbor in V' \ A,,. Fix e > 0.
Since p < p.(q), we can find n large enough so that i (ey <> dA,) < €. Then

pri(Y(eo) =1) < e+ (1= e)ui(Y(eo) = 1[{eo > OAL}°).

The event {ey <> 0A, }¢ implies that eg is cut off from the boundary of A,, by some
“contour” of closed edges inside A,. (To be exact, we mean by such a contour an
unbroken path of open edges in the dual hexagonal lattice Ly, where an edge in
Ly is regarded as open if the edge in £, that crosses it is closed.) Provided such
a contour exists, then we can consider the outermost such contour contained in A,,.
Since the event that the outermost contour is found at a given location is measurable
with respect to all edges on and outside it (for a careful proof of this fact, one can
e.g. mimic the sequential construction in the final section of [15]), the conditional
distribution of the edge configuration inside the contour is, by the Markov random
field structure of random triangle measures, the same as with all edges outside it
closed. By Proposition 2.1, all such distributions are stochastically dominated by
pbd. Thus

(Y (eo) = 1) e+ (1= e)upg?(Y(eo) = 1)

<
< et (Y (eo) = 1). (19)

By Corollary 2.2, we have p"?(Y(ey) = 1) > ub?(Y(eo) = 1), and since € was
arbitrary in (19) it follows that

(Y (e0) = 1) = (¥ (e0) = 1)
By (14), this implies uf? = pi"?. O

The above proof relies on the fact that if there is no unbroken path of open
edges from the origin to infinity, then there is somewhere a contour of closed edges
surrounding the origin. A completely analogous argument would work for p > p.(q)
if it could be shown for such p that there will for pf'? with certainty be an unbroken
path of open edges surrounding the origin. Lemma 4.3 below states that this is
indeed true. We first need an adaption to the present setting of a well-known result
of Burton and Keane [4].

LEMMA 4.2 Let P be a translation invariant probability measure on {0,1}F, where
E is the edge set of Lr, with the property that

0<P(Y(e) =1]Y(E\{e}) =n) <1 (20)

for each e € E and P-a.e. n € {0,1}Y°Me}. Then P-a.s. Y contains at most one
infinite cluster of open edges. The same thing holds with Lt replaced by L.
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The property in (20) is usually referred to as the finite energy condition. Burton
and Keane proved the analogous result for site percolation on Z¢, but their proof
goes through unchanged to prove Lemma 4.2. Lemma 4.2 is a key ingredient in the
proof of the next lemma. Define, for each element n € {0,1}¥, the dual element
i € {0,1}”# where Ey is the set of edges of the dual hexagonal lattice Lz by, for
each e € E, letting 77(€) = 1 — n(e); here € € Fy is the unique edge crossing e.

LEMMA 4.3 Let p > p.(q), pick a random element Y € {0, l}E according to ub?,
and consider the dual configuration Y € {0,1}71. Then 15%(C) = 0, where C is the
event that Y contains an infinite connected component of open edges.

Proof. We use the ideas of [15, Section 4] (alternatively, it is also possible to adapt
the arguments of [10] in order to prove the lemma). Since ph? is extremal in the
class of random triangle measures on Lz, the tail o-field is trivial under p5?. Thus

12Y(C) is either 0 or 1. Assume for contradiction that
B0 = 1. (21)

From Theorem 1.5 we know that provided that g stays fixed, p5? # p*? for at most
one value of p. Therefore we can ﬁnd p’ strictly between pc( ) and p such that
pB? = . Since p' > pe(q) and 187 <4 87 it follows that p9(0 > 0o) > 0. By
tail triviality we thus have ph?(C) = 1, so we a.s. have an infinite cluster of open
edges both in Y and in Y. We saw in Section 2 that ;47 is translation invariant.
Furthermore, by Lemma 1.2, it satisfies (20), whence by Lemma 4.2 the infinite open
cluster in Y is almost surely unique. The same properties hold for Y, so we know
that ¥ and Y must a.s. contain exactly one infinite open cluster each.

Now let n be large enough to ensure that
ub1(A,) > 0.9999
and
p4(By,) > 0.9999

where A, is the event that the infinite connected component of Y intersects A,
and B, is the corresponding event concerning Y. Enumerate the six sides of A,,, in
clockwise order, 1,2,...,6. Write 4, = U}_, A" and B = US_, B! where A’ is the
event that the infinite connected component of Y intersects side ¢ of A,, and that
there is a path from side 7 going off to infinity without intersecting the interior of
An. The Bi’s are defined analogously for Y. The events A% are increasing in the
partial order on {0, 1}¥ so by the FKG inequality (Corollary 2.4) they are positively
correlated. This implies that

’up,q )<1-— H p,q

By symmetry the A%’s all have the same probabiltity so that
(ALY > 1 —0.00016 > 0.78.
The events B! are decreasing so exactly the same arguments apply to show that

pbd(B) > 0.78.
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By Bonferroni’s inequality it follows that for any {4, j,k,1} C {1,2,3,4,5,6} we have
(AL N AT NBENBL) >1-4-022=0.12> 0. (22)

Suppose now that the event in (22) occurs with (i, 7, k,1) = (1,4,2,5). Then the
infinite open clusters of Y that intersect sides 1 and 4 must be connected to each
other by uniqueness of the infinite cluster. Since an open path in Y cannot cross
an open path in Y, the geometry of the situation now prevents the infinite open
clusters of Y intersecting sides 2 and 5 from being connected to each other. This
contradicts the uniqueness of the infinite cluster property of Y, so the assumed (21)
must be false, and the proof is complete. O

As argued prior to Lemma 4.2, the following result is implied by Lemma 4.3.
PROPOSITION 4.4 If p > p.(q), then puf? = pui.

Theorem 1.5 and Propositions 4.1 and 4.4 together imply that p.(¢) = (¢ — 1)72/3
for ¢ > 27 + 15v/3. What remains in order to prove the full statement of Theorem
1.6 is to show that p.(q) is decreasing and continuous.

PROPOSITION 4.5 The function p.(q) is decreasing and continuous on [1,00).

Proof.  The event C that there exists an infinite open cluster is increasing, so
Corollary 2.3 implies that

#h(€) < i (C)

whenever ¢; < ¢o. It follows that p.(¢) is a decreasing function of q. To show
continuity, we need a slight sharpening of Corollary 1.3. With the notation of Lemma,
1.2 in force, we have for the random triangle model on L7 that A(n,e) € {0,1,2}
for any e € E and any n € {0,1}F. It follows that (2) holds whenever

g} . Pt
P +1—p1 7 pgs+1—po

for i =0,1,2. (23)

Fixing pi1,¢1 and € > 0, it is clear that (23) holds with po = p; + e and g = ¢ — ¢
provided that § > 0 is sufficiently small. From this, we can deduce, using the same
arguments as those used to prove Corollary 2.3, that (9) holds for such a choice of
P1, q1, p2 and go. We thus have for any ¢ > 1 and any € > 0 that

,u111+e,q76(c) > u;;m](c)

for small enough § > 0. Since p.(q) is decreasing, this shows left continuity of p.(q).
Right continuity follows similarly. O

5 Extensions and variants

A natural direction for further research is to study the behavior of the random
triangle model on triangular lattices in d > 3 dimensions. Unfortunately, most of
what we do in Sections 3 and 4 breaks down as we pass to higher dimensions. In
particular, the v-measures will no longer be equivalent to Gibbs measures for the
Ising model, and furthermore Lemma 4.3 relies crucially on the planar geometry of
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L. We nevertheless conjecture that, for reasonable choices of d-dimensional lattices,
the random triangle model will exhibit phase transition if and only if p = p.(q)
and ¢ is sufficiently large. One result that does go through in higher dimensions
is Proposition 4.1, i.e. the result that there is a unique random triangle measure
whenever p < p.(¢q). It is also not hard to show that for fixed ¢, phase transition
occurs for at most countably many values of p; this can be done by proving convexity
in p of the so called pressure, following Grimmett’s [13] proof of the analogous result
for the random-cluster model. Perhaps Pirogov-Sinai theory (see e.g. [18]) can be
exploited to make further progress towards proving the full conjecture.

Let us next give an example of an infinite graph G for which the behavior of the
random triangle model is qualitatively different from that on L. Its vertex and edge
sets are defined as follows. Start with three edges e, e; and e; forming a triangle.
We say that these edges constitute the first generation of edges. The rest of G is
defined recursively: To each edge e in the ith generation, we associate a new vertex
v, and form edges between v and the two endpoints of e. These edges belong to the
(7 + 1)st generation. See Figure 2. Like L, this graph has the property that every

Figure 2: The first four generations of G.

edge is contained in exactly two triangles. Furthermore, its dual G* is the regular
tree in which every vertex is incident to exactly three edges. Using arguments in
Section 3, results about the Ising model on regular trees (see e.g. [21] or [11]) can
thus be translated into results about the random triangle model on GG, and it turns
out that for ¢ sufficiently large, there is an entire interval (of length greater than
0) of values of p for which phase transition occurs. This contrasts sharply with the
random triangle model in d-dimensional lattices. Note that the random triangle
model on G is well-defined despite the fact that G is rather badly behaved in other
repects (for instance, every vertex of G is incident to infinitely many edges, which
implies that p.(¢) = 0 for each q).

Finally, we point out that there are various natural variants of the random tri-
angle model for which the methods in Sections 2—4 also work. Instead of rewarding
triangles as in Definitions 1.1 and 1.4, one may reward the appearance of other
structures such as squares on the square lattice and hexagons on the hexagonal
lattice. Key properties are that the rewarded structures are such that each edge
of the lattice is part of exactly two such structures (in order for the Ising model
translation to work), and that the structures are sufficiently “localized” to make
the contour arguments used in the proofs of Propositions 4.1 and 4.4 work. For



16 OLLE HAGGSTROM AND JOHAN JONASSON

instance, suppose that we are on the square lattice, and that we replace ¢(n',7") in
Definition 1.4 by s(n',n"), defined as the number of open squares (of size 1 x 1) that
have at least one edge in S. Let us call this the “random square model”. Adapting
the arguments of Sections 2 and 3 and using the well-known result that the Ising
model on the square lattice has a phase transition if and only if J > 1 log(1 + v/2)
and h = 0 (see e.g. [11] or [5]), we can deduce that the random square model on
the square lattice with parameters p and ¢ exhibits phase transition if and only if
q > 18+412v/2  34.97 and p = (¢ — 1)"'/2. Furthermore, the arguments in Section
4 show that p,(q) = (¢ —1)7%/2 for all ¢ > 18 + 12V/2.
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