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Abstract

Let n particles be independently and uniformly distributed in a rectangle A C R?. Each
subset consisting of k < n particles may possibly aggregate in such a way that it is covered
by some translate of a given convex set C C A. The number of k-subsets which actually are
covered by translates of C' is denoted by W. The positions of such subsets constitute a point
process on A. Each point of this process can be marked with the smallest necessary “size”
of a set, of the same shape and orientation as C, which covers the particles determining the
point. This results in a marked point process.

The purpose of this paper is to consider Poisson (process) approximations of W and of
the above point processes, by means of Stein’s method. To this end the exact probability for
k specific particles to be covered by some translate of C is given.

1 Introduction

Assume n particles are uniformly and independently distributed in a rectangle A ¢ R?, and let
C C A be a convex set, small relative to A. To avoid problems with the boundaries of A, the torus
convention will be used throughout the paper. The aim of this paper is to investigate Poisson
approximation of certain variables and point processes which concern subsets of particles which
are covered by some translate of C.

First a brief review of related problems will be given. Thereafter necessary notation and some
general Poisson approximation theorems are presented. In Section 3 the probability that a fixed
number of particles aggregate in such a way that they are all covered by some translate of C' is
given, and its connection with integral geometry is discussed.

Section 4 constitutes the bulk of the paper. First the number of subsets consisting of & < n
particles, called k-subsets in the following, which are covered by some translate of C is considered.
The Stein-Chen method is used to bound the error made in the approximation of this number by
a Poisson variable.

To each k-subset, which is covered by some translate of C, can be attached its position on
A, and the smallest s € Rt for which some translate of sC covers the k particles. Poisson
process approximation of three point processes determined by these positions and sizes is also
dealt with in Section 4, as is the joint distribution of the number of covered k-subsets, and the
corresponding processes, for different k. The next section deals with asymptotic aspects, such as
rates of convergence. The paper is concluded with some problems of possible interest for more
detailed investigation.

Note that the parameters used in the approximations follow from results in Section 3. For
those readers whose main interest is the approximations, and not the geometrical considerations
leading to the parameters, it is enough to use Section 3 as a reference.

1.1 A brief historical account

There are (Z) different k-subsets of particles, some of which are covered by translates of C. Order
the k-subsets in some way and let W denote the number of k-subsets which actually are covered



by some translate of C. Then W can be written as

where

I = 1 if the ith k-subset is covered by some translate of C,
*7 1 0 otherwise.

A Ek-subset which is covered by some translate of C' will in this introduction be referred to as
a k-aggregate in accordance with previous literature. Silberstein (1945), Mack (1948,1949), and
Eggleton and Kormack (1944) are concerned mainly with the calculation of the expected number of
k-aggregates, E[W], in one dimension (then C obviously is a line segment) and, for certain shapes
of C, in two dimensions. Circular sets are handled by Mack (1948) and Silberstein (1945), while
rectangular sets are handled by Mack (1949) and Eggleton and Kormack (1944). Mack (1949)
discusses arbitrary shapes in two dimensions, and also gives some results in higher dimensions,
and Mack (1948) argues for a Poisson limit of the number of k-aggregates as n tends to infinity.

The cases of a disc and a square are treated by Aldous (1989). He gives approximate formulas
for the distribution of the radius (side length) of the smallest disc (square) which can be translated
to a position where it covers at least k particles.

In the special case of kK = 2 and a circular set, C, the number of k-aggregates equals the
number of pairs of particles with interpoint distance less than the diameter of C. Convergence of
this number to a Poisson limit is discussed in Silverman and Brown (1978). The results therein
are complemented with a bound for the total variation distance in Silverman and Brown (1979).
In e.g. Kryscio and Saunders (1983) Poisson convergence of the interpoint distances is considered
in the case where the underlying process of particles is not necessarily stationary.

In Silverman and Brown (1978) the number of close pairs is given as an example of the classical
U-statistics. Poisson approximation of U-statistics and sums of dissociated variables (defined in
Section 2.2) are treated by Barbour and Eagleson (1984) and Barbour, Holst and Janson (1992).
In these two references the Stein-Chen method is used to bound the total variation distance for
Poisson approximations of the sums; in particular, the bound in Silverman and Brown (1979) is
improved.

The number of close pairs is sometimes used to test the null hypothesis that a sample is
uniformly distributed against some clustering or regular alternative. This is discussed e.g. in
Silverman and Brown (1978) and in Barbour, Holst, and Janson (1992) p. 34.

Another related concept is the so-called scan statistic, i.e. the maximal number of particles
which are covered by some translate of C'. In this context the particles usually constitute a
Poisson process rather than being a fixed number. In one dimension considerable attention has
been devoted towards finding approximations of the distribution of the scan statistic, see e.g. Naus
(1982), Alm (1983), Janson (1984), and Glaz (1989). The references on scan statistics in higher
dimensions are more scattered. The two-dimensional case is treated in Alm (1997) and Loader
(1991), the latter, however, being restricted to rectangular sets.

In one dimension the scan statistic is used in the same way as the number of close pairs is
used in two dimensions, in testing the null hypothesis of an underlying Poisson process against a
clustering or regular alternative.

2 Preliminaries

2.1 Notions and notation

Let R? denote the 2-dimensional Euclidean space, with a fixed origin, O, and orthogonal coordinate-
axes. The area of a (measurable) subset of R? is its 2-dimensional Lebesgue measure which we
denote by pu.



For B,C C R? and ¢ € R the Minkowski sum and scalar multiple are defined as
B+C={z+y:2€B,yeC} and cB={cx:z¢€ B},

respectively. If ¢ = —1 we get B = {—z : 2 € B}, which we call the reflected set of B. For z € R?,
B + {z} is the translate of B by z, which is denoted by B + 2. If B = B + z for some z € R?
B is said to be centrally symmetric. An alternative, and for us more useful, way of writing the
Minkowski sum is

B+C={z:Bn(C+x)#0}. (2.1)

For the set B + yC, where z,y € RT and B,C C R? are non-empty convex sets, the area
can be written as:

(B +yC) = z*u(B) + 2zyv(B, C) + y*u(C), (2.2)

where v(B, C) is the mized area of B and C, which is actually defined by (2.2) (see e.g. Bonnesen
and Fenchel (1948) p. 40). These mixed areas are usually only defined for non-empty sets. We
make the natural extension that if B or C = ), then v(B,C) = 0. It can be shown that if C is a
convex set in R? then

w(C) <v(C,C) < 2u(C), (2.3)

where the lower bound is attained if and only if C is centrally symmetric while the upper bound
is attained if and only if C is a triangle. For a proof of these facts, see e.g. Bonnesen and Fenchel
(1948) p. 105.

Assume that the rectangle in which the particles are distributed, A, is centred at the origin.
The family of convex sets, C C R?, with the properties that C' + C' C A and that O is an interior
point of C; we denote by K.

Let (X, .A) be any measurable space. The total variation distance, drv, between two probability
measures p and v on X is defined to be

drv (u,v) = sup |u(A) —v(4)].
Ac A

If the state space is discrete, then

1 . .
drv (p,v) = 2 Z |n{i} — v{i}],
ieXx
and in this case convergence in total variation distance, drv (£(X,), £(X)) — 0, is equivalent to
{X,} converging in distribution to X.

2.2 General Poisson approximation theorems

Following the notation of Barbour, Holst and Janson (1992), let I be an arbitrary finite collection
of indices and let

W=3,crlay ma=E[l] and X\=E[W],

where I, a € T, are, possible dependent, indicator variables. The following method for bound-
ing the total variation distance between the distribution of £(W) and a Poisson variable with
parameter A is called the local approach of the Stein-Chen method. It is suitable to use when
there is a natural dependence structure which allows every pair of indicators to be classified as
either strongly or weakly dependent. For each a € T, let I'\{a} be divided into two subsets;
one consisting of those 3 € I" for which I3 is weakly dependent on I, and one consisting of the
indices of the indicators which are strongly dependent on I,. Denote these subsets by I'¥ and I'?,

respectively, and let
Zo= Y I

BeTy,



Theorem 2.1 (Theorem 1.A Barbour et al. (1992)). Let T be an arbitrary finite collection of
indices. With the above definitions, for any choice of the index sets TS, a € T,

a’

d(L(W),Po(N)) < > (n2+maE[Zs] + EllaZ)A™ (1 —e™)
a€el

+ Z T min(la )‘71/2);
a€el

where

Na = E[Ea | (Ig,8 € TE)] —mall.

The next theorem concerns approximation of marked point processes. Let = = 3 . I,dy,,
where §, denotes the unit point mass at y and the Y,’s are random variables with state space
Y, which is assumed to be metric and separable. Then Z is a random element on the space Z of
configurations of finite point processes over ). Assume that a measure on ) is defined for each
a el by

Aa(A) =PI, =1,Y, € A) (2.4)

and let

Furthermore, let

g = Z Igéyﬁ and EZ = Z Iﬂ(SYB'
BETY BeTe,

The following theorem is the “local” version of Theorem 10.E in Barbour et al. (1992). Its
proof is a combination of the proofs of Theorem 10.A and Theorem 10.E of that reference, which
should be consulted for more details.

Theorem 2.2 Let = and X\ be defined as above. Then
drv(L(E),Po(X)) <
> (wi + 1o E[Z4] + E[1,Z,] +/ drv(LEY | I, =1,Y, = x),L(Eg))Aa(dx)) :
y

acl

Proof. Let
(AR)(E) = / [h(€ + 6,) — h(E)]A(dz) + / [h(€ — 6,) — h(€)] £{dr),
y Yy

& € Z, be the generator of the immigration-death process on ) with immigration intensity A =
> aer Ao and unit per-capita death rate, whose equilibrium distribution is that of the Poisson
process on Y with intensity A. Let hy p be the solution of

(AR)(§) = I(§ € B) —Po(A)(B),
which can be found in Proposition 10.1.1 in Barbour et al. Then

drv(£(E),Po() = sup |E[(Ahs,5) )],



In order to bound |E[(Ahy,B)(E)]| we write

E[(AR)(E)]
- E h(E + 6,) — h(Z)] Ao (dz) + — h(2)] (Idy,){dz}
{Z /y [h(E +62) - > / ) (b, }{do} }
= Y E{ /y [h(E — 6,) — h(Z)] (Iaaya){dx}}—E[Ia (h(EY) — h(EY + bv,))]
a€el
+Z/E[h +82) — h(E)]Aa dw+Z/E[h h(EY + 0,)]Aa (dz)
a€el a€el
+ 3 Bl (bE2) - h(E +6v,)] - / E[h(EY) — h(EY + ) ha(ds).  (2.5)
a€el a€el

To bound the absolute value of the right-hand side of the above equation we need Lemma
10.1.3 in Barbour et al. which says that

Ath= sup |h(E+0:) —h(§)| <1 (26)
(€Zxey
and
DNoh = sup  |h(E+ 0, +dy) — h(E+dz) — h(E+dy) + h(€)| <1, (2.7)
EEZ iz, yeY

where h is the solution of
(AR)€) = I(€ B)—Po(\)(B).

By rewriting the first term on the right-hand side of (2.5), noting that the number of points
of =8 is Z,,, and using (2.7) we get

|3 Bl AB(E - 6v,) = h(E) = h(E2) + h(E +by,)}]

a€l’
- ‘ 3" Ella {MEY + B + Iady,) — h(EY + E5 + Lady, —0y,) — h(EY + bv,) + h(E)}]
a€el
< ‘ 3 Ell.Za0:h)
a€el’
< Y EllaZ).
a€el

Similarly the second term on the right-hand side of (2.5) is bounded by

‘ 3 E[(la + Za Azh]/ Ao d:z: < 3 Ella + ZJ)E[L).
a€l a€el
Finally, the third term on the right of (2.5) is equal to
|3 [ { B - ) | T = 1. = 0] - FNGED) - MEE 4] i) | (28)
a€el

By (2.6) |h(EY) — h(EY +4,)| < 1, and hence, using the definition of total variation distance, (2.8)
is bounded by

/dTV WL = 1,Ys = 2), £(E2)) A (d2),

and the theorem is proved. [ ]



If T is a collection of k-subsets of {1,2,...,n}, then the family {X, : a € T'} of random
variables is said to be dissociated, as defined by McGinley and Sibson (1975), if (X, : @ € A)
and (X, : @ € B) are independent whenever (J,c4 @) N (Uyep @) = 0. In the following theorem
families of indicator variables belonging to a somewhat wider group are considered; instead of just
one value of k, we let I be a collection of arbitrary subsets of {1,2,...,n}.

Theorem 2.3 (i) Let T be a collection of subsets of {1,2,...,n} and the family {I, : « € '} be
such that (Io : o € A) and (I, : a € B) are independent whenever ({J,c 4 @)V (Ugep @) = 0.
IfTs, ={BeT:B#a,BNa#D}, then

dry (L(W),Po(N)) < ) (7 + 7o E[Za] + E[laZa)A™ (1 — 7).
a€el

() Let T and '3, be defined as above, and assume that the family {I,dy, : o € T'} is such that
(Iady, : a € A) and (I,dy, : a € B) are independent whenever (Jyeq @) N (Uges @) = 0.
Then

dry(L(E),Po(N) < Y 7+ 7aE[Za] + EllaZs).

Proof. The result is an immediate consequence of Theorem 2.1 and 2.2, since by the definition
of T'}, it follows that Iz and Igdy,, B € 'y, are independent of I, and I,dy, , respectively. |

Remark 2.4. In the special case of dissociated indicators Theorem 2.3 () coincides with Theorem
2.N in Barbour et al. (1992). O

Remark 2.5. Note that the bounds in Theorem 2.3 (i) and (i7) are equal except for the factor
(1 —exp{-A}D/A\ a

3 The probability of covering of all particles

Assume p; ..., py are independently and uniformly distributed particles in the rectangle A C R?
and let C' € K. In this subsection we will derive the probability

PEAxe€eA:py,...,pp € C+1x) (3.1)

by means of results in integral geometry, and give some historical background.

First the case of two particles will be considered, so as to give some understanding of the
formula for the probability (3.1), given in Theorem 3.2. In this case the probability can be found
by fixing one of the particles in an arbitrary position, and considering all possible positions for
the other one, such that both particles are covered by some translate of C. By the independence
and the uniform distribution of p; and ps, and the torus convention, it does not matter where the
first particle lies, and the quotient of the “possible” area for the second particle and u(A) equals
P(3z € A :p1,ps € C +2x).

Example 3.1. If C € K is a circle of radius r, the possible area for the second particle is a circle
of radius 2r. Then

P(3r € A:py,ps € C +3) = 4712 [u(A) = 4u(C) /(A).



Figure 1: The possible area for the second particle.

Example 3.2. Let C € K be a triangle. Figure 1 shows C' and the possible area for the second
particle, given the position of p;. As seen by the figure this area is six times as large as that of
the original triangle. Hence

P(3r € A:p1,p; € C+ 1) =6u(C)/n(A).
O

By these examples (which will turn out to be extreme, see Corollary 3.3) we learn that for the
probability of covering the particles, it is not only the area of the sets which is of importance.

To handle the case of a general C' € K, the following simple lemma, is of considerable use, by
giving an equivalent way of viewing the problem. Recall the definition of the reflection of C at
the origin; C' = {~z : z € C}.

Lemma 3.1 Let zy, ...,z be arbitrary fized particles in R? and C C R%. Then
3z € R? such that ©1,...,5,, € C +

if and only if C ¢ o
ﬂizl + xi .

Proof. First note that
zeCH+uz © z—z;€C & z;—2€C & z;€C +x,
for every i =1,...,k. Hence

M (C+z)£0 & TreRi:zent (C+ )
& JrelRl:izy,... .z €C+u.

By this lemma it follows that
PAz€A:py,...,pr €EC+2x) =P (C+p)#0)

when the torus convention is used. It is now easy to derive an expression for the probability in
case of two particles and a general convex set C' € K. Since we may let py = O, we are looking
for the probability that ps belongs to the set {z : C' N (C + z) # 0} which is precisely C + C by
(2.1). Thus

PEz e A:py,pr € C+ux) P((C+p1)N(C +p2) #0)
w(C + C)/u(A)

= 2 (IU'(C) + V(Ca O)) /N(A)a
where the last equality follows from (2.2). What determines the probability is hence the area and

the mixed area of the set, where the latter is dependent on the shape of the set. This carries over
to the case of more than two particles, as can be seen in Theorem 3.2.



A generalization of the problem formulated in this latter way with non-intersecting sets, is to
let the translated sets be of unequal size and shape. In this case there is obviously no dual problem
in the context of covering particles. In fact it needs no more effort to handle this generalized case;
thus we search the probability

P((Ci+p)N(Co+p2)N...0(Cr +pr) #0),

where C4,...,Cy € K. Furthermore, for a while we extend the discussion to concern an arbitrary
dimension, R?.

A consequence of using the torus convention is that we may assume that the first particle lies
at the origin. Because of the assumptions that the origin lies in the centre of A and is an interior
point of C4, ..., Ck, and of the restrictions on the sizes of C1, ..., Cy, all vectors (z2,...,zx) such
that

CiN(Co+z2)N...N(Cx +zx) £ 0

satisfy x; € A, i = 2,...,k, without using the torus convention. Hence, once the assumption that
the first particle lies at the origin is made, we may treat A as a ‘“normal” d-dimensional rectangle.

Since ps,. .., p are independently and uniformly distributed in A, the vector (pa,...,px) is
uniformly distributed in the product space A¥~!. Let u¥~! denote the (k—1)-fold product measure
of 14, the d-dimensional Lebesgue measure. Now p* '(AF~1) = py(A)*1, and

P(CiN(Ca+p2)N...N(Cr +pi) #0) =
pg (@, k) s wi € RE,CLN (Co +2) NN (Cy + @) # 0}/ pa(A)

To see the connection with integral geometry, we write
1{ .'1:2, T .T,ER cin (02 +.CE2) ﬂ(Ck+:ck)7é(Z)}
/ / Vo(C1 N (Ce+z2)N...N(Ck + x))dz2 - - - day, (3.2)
R4 R4

where

if
V‘](C)Z{ é ifgig

The functional V5(C) is one of the so-called intrinsic volumes of C, V;(C), i = 0,...,d, defined
for compact, convex subsets of R?. The intrinsic volumes can be defined by the classical Steiner
formula, as follows. Let B be the d-dimensional unit ball, x4 its volume, and A € R*. Then

pa(C + AB?) = Zh:d ATV(O).

The most interesting, and therefore most studied, cases are i = 0,d — 1,d. As already mentioned,
Vb is the indicator of non-empty sets, while 2V;;_; is surface area, and V; is volume.

As early as 1937 explicit expressions for (3.2) was given for k = 2,3 in two and three dimen-
sions. Blaschke (1937) discusses both dimensions while Berwald and Varga (1937) handles three
dimensions. In a probabilistic context the planar case including an iterated version (i.e. for an
arbitrary number of sets), was rediscovered by Miles (1974), and the two- and three-dimensional
cases by Mansson (1996).

In an arbitrary dimension and for general V;, the integral in (3.2) is handled in Weil (1990),
where it is a special case of an even more general situation. Hence the formula for P(N¥_, (C;+p;) #
() follows directly in an arbitrary dimension. However, in higher dimensions the formulas involve
complicated functionals for which explicit descriptions are known only in special cases. Since the
setting in this paper is two-dimensional, we present only the probability in this case here.



Theorem 3.2 Suppose C; € K, i = 1,...,k, and that p;, i = 1,...,k, are independently and

uniformly distributed particles in A, and k = 2,3,.... Then, using the torus convention,
E ok k .k 1
PNy (Ci+pi) #0) = 21 I[lﬂ(cj) + "21 v(Ci, Cj) 11_[1 w(Cr) LAY
= i 1#i,j
In particular, if C; =C,i=1,...,k, then
PEzeA:p,....;p€C+x) = PN (C+p:)#0)
v(C,C C)k—1
= (k- 0%GR ) e

It is the latter part of this theorem which will be useful in the rest of this paper. The following
corollary follows directly from Theorem 3.2 and (2.3).

Corollary 3.3 Under the assumptions of Theorem 3.2

u(C)F 1

L p(C)F i 2 _
k <PEzr€A:py,...,pr € C+x) < (2k k),u(A)k_l’

p(A)E-t

where there is equality on the left if and only if C is centrally symmetric and on the right if and
only if C' is a triangle.

In this paper the discussions will be carried on in terms of covering particles. But throughout
the paper we shall bear in mind that when reading for instance “k uniformly distributed particles
are covered by C” we equally well can read “k uniformly translated copies of C' have a non-empty
intersection”.

4 Poisson approximation

In this section we will consider Poisson approximation of the number of k-subsets of particles
which are covered by translates of C', and Poisson process approximation of some point processes
which arise in this connection. Results concerning one value of k in the variable and process
cases are presented in Subsection 4.1.1 and 4.1.2, respectively, while Subsection 4.1.3 handles
joint distributions. The proofs are deferred to Subsection 4.2. Without loss of generality, we will
henceforth let pu(A) = 1.

4.1 Main results
4.1.1 The univariate case

As noted in the introduction, the number of k-subsets which are covered by some translate of C'
can be written as

w=>1I, (4.1)

where

7= 1 if there exists z € A such that the ith k-subset is covered by C + z,
*7 1 0 otherwise.

From Theorem 3.2 we know that

Ell]=P@z €A :py,...,ph €C+1)= (k + k(k - 1)”5‘(’:’0?)) p(CY1, (4.2)




i=1,...,(}), and hence that

A= E[W]= (Z) (k Y E(k-1) ”f’c(;)) w(C)k1. (4.3)

W is a sum of indicators, where those pairs of indicators which concern k-subsets with common
particles are dependent while those with no particles in common are independent. In a situation
such as this, the local version of the Stein-Chen method is a suitable mean to get a bound on the
total variation distance between the distribution of W and a Poisson variable with parameter A,
and it leads to the following theorem.

Theorem 4.1 Let W and X be defined by (4.1) and (4.3), respectively. Then

9 k=1 B )
dry (£(7), o)) < {& + () (I )me+ 0)’“—’} (1=,

n
=1

Remark 4.2. In case of k£ = 2 the bound can be somewhat improved by means of Theorem 2.0
in Barbour et al. (1992), which concerns families of strongly dissociated indicator variables. The
idea is to reduce the number of indices in I'},. O

4.1.2 The process case

The purpose of this section is to introduce three point processes determined by positions and sizes
of the k-subsets which are covered by some C + z, and consider approximation of these processes
by Poisson processes. The point processes are defined as follows.

Let the leftmost particles (the lowest of these in case of ambiguity) in the k-subsets which
actually are covered by some translate of C' constitute the points of the point process Za on
A. The size of a k-subset we define to be the smallest s such that for some z € A, sC + x
covers the k-subset. If sizes are attached to the points of =4, we get a point process on the space
A x [0,1], which we denote by Z. These sizes are identically, but not independently, distributed
with distribution function

Fly) = PEzeA:p,...,pr€yC+z|Iz€A:py,...,pr € C+1)
(k + k(k = Dr(yC,y0)/u(yC)) pyC)F!
(k+k(k = 1)p(C,0)/u(C)) w(C)*1
= y2(k71): (44)

0 <y <1, by (4.2) and since v(yC,yC) = y*v(C,C) and u(yC) = y*u(C). If we drop the
positions and just consider the sizes the result is a point process on [0, 1], which we denote by

Epo,1)-
All these three processes can be written as

()
I;dy;,
1

i=

where the state space for {Y;}, denoted by ), is A, [0,1] or A x [0,1]. We will first consider Z,
for which Y = A x [0, 1], and we need to derive the measure on Y introduced in (2.4);

X(A) = P(I; = 1,Y; € A).

The position of a k-subset which is covered by some translate of C, i.e. its leftmost particle,
is uniformly distributed on A, since the k particles themselves are uniformly and independently

10



distributed on A, and the torus convention is used. The size of a k-subset which is covered takes
its value in [0, 1] and has density function

2(k - 1)y** 2,

by (4.4). Furthermore, the size is independent of the position of the k-subset. With p = E[I;] and
A defined as in (4.2) and (4.3), respectively, the measure A; is thus given by

1
di(z,y) =p m%k —1)y*Pdrdy = p2(k — 1)y** *dz dy, (4.5)
i=1,...,(}), and we get
(%) n
d\(z,y) = dAi(z,y) = (k) p2(k — Dy**3dx dy = X2(k — 1)y** 3dx dy. (4.6)
i=1

The bound given below on the total variation distance between £(Z) and a Poisson process
with intensity A equals the bound on the distance between £(W) and a Poisson variable with
parameter A given in Theorem 4.1 if A < 1. If A > 1 it is unfortunately not as good in the process
case.

Theorem 4.3 Let & = Z(i)l I;dy, be the point process on A x [0,1] defined above and let X be
given by (4.6). Then

n

drv(£(2),Po(h) < V’“2+A§(’§) (42} e +or

Remark 4.4. Since Za and Zjg ;) and the corresponding Poisson processes are obtained as mea-
surable mappings from = and Po()), respectively, it follows that

drv (L(Ey),Po(Ay)) < drv(L(E),Po(})),

where Y = A or [0,1], and Ay is the measure corresponding to (4.6). Hence the bound in
Theorem 4.3 holds also when these processes are concerned. |

4.1.3 The multivariate case

For C!i) € K, where j = 1,2,...,m, kj € {2,3,...} and k; # k; if i # j, let

(&)
wk)  — ZI’W’ (4.7)
i=1
and
)
E(kj) = ijai(sij,w (48)
i=1
where Ij,; = 1 if the ¢'th kj-subset is covered by some translate of C(*3) and 0 otherwise.
We will now consider approximation of the distribution of the vectors (W®#1) ... Wkm)) and
(2, ..., 2km)) by the vectors of corresponding independent Poisson variables and Poisson pro-

cesses, respectively.
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From (4.3) we know that

) ) n v C'(kj)’c(kj) ) o
Ak = B = (1) (b + byt - 0T et o)
J

and furthermore, by (4.6),

()
dA k) (g Zd,\“c D (z,y) = A\E)2(k; — 1)y*%i 3dz dy, (4.10)
i=1

is the measure on A x [0, 1], which is connected to Z(*3).

Theorem 4.5 Let W®*3) 2#3)  \*5) gnd X*53) be defined by (4.7), (4.8), (4.9) and (4.10), re-
spectively. Then

dry (CAWED Y ), T Po(AR9))) - < dyy (C{ERI L), T, Po(A4)))
< Z( )pk + ok, E[Zk; 1] + ElIy; 1 Zk; 1)),
j=1
where
kj—1 m mln{k.ﬂk }
ki\ (n BN /n— ks
E[Z,. = J J J 4.11
[Zk; 1] ;(J(g )Pk +Z‘; Z (J(ks_l)pks, (4.11)
s#]
E[Zy;11k;,1] < (4.12)
k-1
S~ (R (m R (k) o ¢r(ks)yks L
) (1)(k,._1)1’kf“<0 + k)
=1
m min{k; k.} L n— ks
2 Z (l]) (k —?) min{pg, p(C*) + CED) Rl pp pu(C) 4 CEDYR 13
i
and
B v(Cki), C(ki)) (k3 )by —1
4.2 Proofs

We will start to approximate 2721 W (ki) by a Poisson variable with expectation

E[f:w(kj)] — f:)\(kj)’
7j=1 7j=1

where W) and A\(*5) are defined as in (4.7) and (4.9), respectively. This approximation is no
aim in itself but is more a means to be used in the rest of the proofs.

12



First we must introduce some new, local, notation. Let

J

{1:1=1,..., (,Z),l # i, (ith k;-subset N Ith k;-subset) # 0}, j=1,...,m,

Jst
r, = {l:l1=1,..., (:s), (ith kj-subset N Ith ks-subset) # 0},
j=1,....m, s=1,...,m, s #j,
ij,i = Zgnzl Elerii Iks,la .7 = 17' -, M,

so that Zj, ; equals the sum of the number of k,-subsets which are covered by some Cks) 4 g,
s =1,...,m, and have some particles in common with the ith k;-subset.

Theorem 4.6 With the notation introduced above,

dry (LY W% 1)), Po(y - A*)) <
j=1 7j=1

1—exp{— 7L, Ak)}
S A ’

where E[Zy; 1], E[Ix; 1Zk;,1] and py; are given by (4.11), (4.12) and (4.13), respectively.

i n
> (k ) (Pk, + Pr; E[Zk; 1] + Elli; 1 Z;.1]) (4.14)
J

=1

Proof. Note that if we let I' consist of the indices of all k;-subsets of {1,2,...,n},j=1,...,m,
and % ={8el:08+#a,BNa#0}, then we can write

" n (5)
S W =33 h = 1L,
Jj=1 j=1 i=1 a€el

where I, = 1if all p;, i € a, are covered by some C{?!) +z, x € A. Furthermore, if o is the index

of the ith kj;-subset, then
m
Zei =2 D Tei= 2 1o
s=1jerd | Bery

Hence it is clear that the assumptions of Theorem 2.3 (i) are satisfied, and (4.14) follows directly.
We need now to derive the expression and bound for E[Z, 1] and E[Iy; 1Z; 1], respectively.

There are (%) (%~*) different k;-subsets with exactly ! particles in common with the 1st k;-
J

subset, I = 1,...,k;j—1,and (¥ ) (v . 1) different k,-subsets with exactly [ particles in common with
the 1st kj-subset, [ = 1,...,min{k;, ks}. By changing the index of summation in the right-hand

side of
ElZial =Y Y Elld=> Y

s=1ierd s=1jeri ,
we immediately get (4.11).
Now, for each | = 1,...,k; — 1, let I ! be an indicator with the same distribution as a k;-

subset which has [ partlcles in common w1th the 1st k;-subset, and let I} ! be the corresponding
variable but concerning a k,-subset which has [ partlcles in common with the 1st kj-subset, where
I=1,...,min{k;,k,}. Then E[Z}, 1I}; 1] can be rewritten as

kj—1

ki\ [n—k;
E[ij,l-[kj,l] = Z (;) (k _ ;)E[Ik],ljllc]]
=1 J
m min{k; k.} k] n— k] . Il "
+Z Z I ky —1 (Zr; 1 I, |- (4.15)
s=1
s#£j
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The conditional probability P(I ,lcj = 1] Iy, 1 = 1) is bounded above by the probability that the
k; —1 not common particles lie in the set Cki) 4 Cki) | centred on any of the I common particles:

P(I,lcj =1|Iya=1) < pC®) 4 Chayki=t,

and hence
Bl ] = P, =1 Ix;0 = 1)ps,
< p(CH) 4 Oyl (4.16)
As above, )
B[l 0;,] < (O 4 C*))kelp, (4.17)

and by symmetry, another bound for E[Iy; 11} ] is
Elly; L},] < w(C%) + CEYkiipy,. (4.18)

Insert (4.16)—(4.18) in (4.15) to obtain (4.12).
|

Proof of Theorem 4.1 Letting 7n = 1 and k; = k in Theorem 4.6 and noting that p, = A/ (})
gives

drv (L(W),Po(X)) =
k—1 k—1
(S O6) S O hmererta-en

Let X be a hypergeometric random variable such that

(4.19)

k\ (n—k 2
P(X:l):M 1=0,1,...,k, and E[X]:%.

()

Then - ,
a2 () (o) =Pz

(x
by Markov’s inequality, and the first two terms in the major brackets of (4.19) can be bounded by
Ak? /n, by which the theorem is proved. [ ]

Remark 4.7. Theorem 4.1 could be derived more directly by using (3.2) p. 35 in Barbour et al.
(1992). O

Proof of Theorem 4.3. Positions pertaining to k-subsets with common particles are dependent,
otherwise they are independent. The same holds for the sizes. Furthermore this dependence
structure is the same as that of {I; : i = 1,...,(})}. Hence the family {L;dy, : i = 1,...,(})}
satisfies the assumptions of Theorem 2.3 (#i). As noted in Remark 2.5, in such a case the bound of
drv (L(Z),Po(X)) given in Theorem 2.3 (i) coincides with the bound of dry (L(W),Po(A)) given
in Theorem 2.3 (i), except for the factor (1 —exp(A))/A. We used Theorem 4.6 in the special case
where j = 1 to bound dry (L(W),Po(A)). However, in that case Theorem 4.6 and Theorem 2.3
(7) coincide, and the result follows without further calculations. [ |

Proof of Theorem 4.5. To prove this theorem, we use another point process Z which is the sum
of the processes Z(Fi) j =1,....m, k; € {2,3,...}, but with the additional information of which
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process Z(*i) each point originates from. Hence, if T(*3) contains the indices of the k;-subsets, and
r=uUr, T%), let
2= Ly,

where the f"a’s take their values in
V=Ax[0,1]x {ki,ka,..., km}.
The first step is to derive Aq(A4) = P(I, = 1,Y, € A), where A C Y. Note that if a € T'(*i) then
dho(z,y, k; i) = i, 2(k; — 1)y? ki=3dy dy,
by (4.5), and dxa(w,y,z) =0 for z # k;. Hence, for (z,y,2) € Y, let
dha(z,y,2) = p:2(2 — Dy?* *1{a € TG }da dy,
so that

a: Y, 2 Z d)\ (z,y,2 Z dxa(w,y,z) = A&2(z — 1)y*3dz dy.

ael a€el'(z)

W (ki) :// 2% {de, dy}
A Jj,

=) {de, dy} = E{d, dy, k;}

Since

is a functional of =(%), and

in turn is a measurable mapping of é, it follows that
dTV(ﬁ({W(kj)}?:l);U;":lPO(/\(kj))) <
< (»C(E) o(A ))

For a fixed k we could use the bound on dry (L(W ) o(\)) to get a bound on dry (L(Z), Po(})),
because of the dependence structure of {I;dy,,i = 1,. )}. Similarly we get a bound on
k

o (i
dry (L(E),Po())) by means of the bound on dry (E(E;nzl W( 1)), Po(3_72, Ak3))) given in The-
orem 4.6. ]

5 Asymptotic results

For a fixed C and k, the errors made by Poisson approximating of course get large when n does.
We will now consider asymptotic aspects of the previous results as k is kept fixed, but the areas of
the sets decrease as n grows. For instance how fast the areas of sets in a sequence must decrease for
the total variation distances to go to zero, if these rates are different in the uni- and multivariate
cases, and if there is any difference between the variable and the process cases. Since n is no longer
fixed, the quantities which change with n are here indexed by n.

5.1 The univariate case

Let {Cr}22,,Cr € K, be a sequence of sets. To get a bound on the variation distance drv (L(W,,), Po(A,)),
which is given in Theorem 4.1, valid for all shapes of the set C,, we use that

p(Cr + Cr) < 6u(Cy)

15



by (2.2) and (2.3). Furthermore, the expectation of W,,, given in (4.3), can be bounded by

k(o2 _ k-1
A, < 2R Z?” G

by Corollary 3.3. These bounds, together with (1 —e~*») < min(1, ), ), inserted in the bound in
Theorem 4.1 yields

2 _ -1 k-1 _
dry (L(W,),Po(A\n)) < {(Zk k)k(nu(Cn))* ns (k)M }

k—1)! 2 \1)" (k-1
k(op2 _ k—1
xmin{l,n (2 ]’3“(0") } (5.1)
valid for all C,, € K.
Theorem 5.1 Let W,, and A, be defined as in (4.1) and (4.3), respectively.
(i) For any sequence of sets, {Crp}>2,, Cy € K,
k—1
drv (L(Wy),Po(As)) = O (min{l,nku(cn)kl} Z(W(Cn))kl) - (5:2)
I=1

(it) For a sequence of sets {Cn}°2,, Cy € K, with u(Cy) = o(n™"), where t > 1 is constant, the
bound tends to zero and is of the order

drv(ev), Poian)) = { Oy, BLS LR, 53)

The conditions t > k/(k —1) and t < k/(k — 1) are here equivalent to A, = 0 and \,, = o0,

respectively.

Proof. (i) Follows directly from (5.1).
(4) Since ¢t > 1, it follows that nu(C,) < 1 asymptotically. Hence it is the (k — 1)st term (i.e.
[ =k —1) in the sum in (5.2) which is dominating, and it is of order o(n!~t). Furthermore

. 1 1 if1<t<k/(k-1),
mm{l,nkli(cn)k }= { Zgn)k(l—t)-i-t) ift> If:/(k 1(1) )

Combining these facts yields (5.3). The last statement follows from the fact that
An = O(0*u(Cr)* 1) = o(nkt=1))y.
|

Remark 5.2. Note that it is the (k — 1)st term of the sum which determines the rates in the
second part of the theorem. This term concerns the dependence between two indicators connected
to k-subsets with £ — 1 common particles. O

Remark 5.3. The condition u(C,) = o(n™!) is equivalent to that A, = o(n). Hence the expected
number of k-subsets which are covered may tend to infinity at the rate o(n) and still the variation
distance tends to zero. |

Corollary 5.4 Let {C,}32, be a sequence of sets such that C,, € K and

EW,] =X as n— oo,
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where 0 < A < 00, and let L(X) = Po(A). Then

D
Wo—=>X as n— oo.

Proof. Since
EWa] = (3) (k+ k(k = 1)v(Cn, C) /i(Cr)) p(Cr)E~ = X as n — oo,

and v(C,,,Cy)/p(Cy) > 1, for all n, by (2.3), there exists 0 < ¢ < oo such that

k

M(Cn) <cen”R-TL

By Theorem 5.1 (ii) the total variation distance between £(W),) and Po(\,,) tends to zero in this
case, which combined with the fact that

drv (Po(Ay),Po(\)) = 0
if A, = A, implies convergence in distribution by the triangle inequality. [ ]

This subsection is concluded by an application of Theorem 5.1. Let M, be the maximal
number of n independent and uniformly distributed particles on A which are covered by C,, + x
for some x € A. We will study the distribution of M¢, for different sequences of sets, and how
its asymptotic distribution depends on the chosen sequence.

Suppose ¢ > 0 and ¢t € R are constants and let {C,}52; be a sequence of subsets of K such
that

w(Cr) =cn™t.

Then the expectation of the number of k-subsets which are covered by some translate of C), is

A\, = E[W,] = <Z> (k + k(k — 1)%) Flp =), (5.4)

The limit of this expectation depends on the value of ¢:

oo ift<k/(k—1)
)\n—>{0 it > k/(k—1) as n — 0o, (5.5)
and if t = k/(k—1)
2 k—1 i ket
k c‘ < liminf \, < limsup A, < w,

where the bounds follow by Corollary 3.3.

Theorem 5.5 Suppose that k € {2,3,...}, ¢ > 0 and let {C,}7° be a sequence of subsets of K
with

w(Cr) = ent.

Ift=k/(k—1) and Ay = X as n — oo, then

e i=k-1
P(Mg, =i)—=»<{ 1—e™> i=k as n — 0o.
0 iZtk—1k

If(k+1)/k<t<k/(k—1), then
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. 1 i=k
P(Mcn—z)—>{0 i £k as m — oo.

Remark 5.6. If all ), are of the same shape and ¢t = k/(k — 1), then A, — A, since for some
1<a<2,v(Cy,Ch)/u(Cp) = a for all n. a

Proof. First we let t = k/(k — 1). It then follows from Corollary 5.4 that
P(Mc, <k)=P(W,=0) — exp{-A} (5.6)

as n — oo.

Let Wy, k-1 and Wy, j41 denote the number of covered (k—1)- and (k+ 1)-subsets, respectively,
and let A, r—1 and A 41 be their expectations. If k¥ = 2 then A, ,_1 — oo since every single
particle is of course covered by some C), + z. Furthermore, since t < (k —1)/(k —2), k > 2, and
t > (k+1)/k we get by (5.5) that

Ank—1 = 00 and Ane+1 — 0 as n — oo. (5.7)

Hence the probability that M, is strictly less than k& — 1 approaches 0 since u(C,) = en~k/(k=1)
so by Theorem 5.1 (%)

P(M¢, <k—1)

P(Wy k-1 =0)

= exp{—-Ank_1}+ o(n*ﬁ) -0 as n — 0o,
which together with (5.6) yields

P(Mg, =k—1) - exp{—A}.

Next we consider the probability that M, is greater than k:

P(Mg, > k+1)

P(Wp p41 > 1)
< E[Wpks1] 20 asn— oo,

by Markov’s inequality and (5.7). The only possibility that remains for M, in the limit is to be
equal to k:

P(Mg, = k) =1—P(Mg, < k) — P(Mg, > k) = 1 —exp{—A}

as n — oo. Hence the theorem is proved for ¢t = k/(k — 1).
For (k+1)/k <t < k/(k—1) it can be shown that P(M¢, < k) = 0and P(M¢, > k+1) -0
by arguments similar to those above. Hence

P(M¢, =k)=1—-P(M¢, <k)—P(Mc, >k+1)—>1 asn— o0

and the theorem is proved.

5.2 The process case

Let {2,152, and {\,;}%2, be the sequences of processes and measures, respectively, introduced in
Subection 4.1.2, which correspond to the sequence of sets {Cy, }22 ;. The bound on drv (L(E,), Po(A,))
in Theorem 4.3 equals the bound on dry (L(W,,),Po(\,)) in Theorem 4.1, except that it lacks
the factor min(1,1/A,), and is hence not as good when A, > 1. To obtain convergence of
drv (L(ZE,),Po(A,)) to zero, we can therefore not allow the areas of the sets to decrease as slowly

as in the previous case of sequences of variables. The order terms in Theorem 5.1 valid for A\, <1,
i.e. when min{1,n*u(C,)*=1} = n*u(C,)*¥! in (i), and when t > k/(k — 1) in (i), will be valid
for all A, here, and the counterpart of Theorem 5.1 then reads:
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Theorem 5.7 Let =, and X\, be defined as in Theorem 4.3. Then, for any sequence of sets
{Cn}zo:h Cn € ’C’

k—1

dry (£(Zn), Po(An)) = O n® ' u(Cn)** 7). (5.8)

1=1
For a sequence of sets {Cn}°2,, Cpn € K, with u(Cy) = o(nt), where t > (k + 1)/k is constant,

this bound tends to zero and is of the order

drv(L(Z,),Po(Ay)) = o(nk—8+1),

Note that the condition for convergence in the variable case, u(Cy) = o(1/n), does not depend on
k. Here the condition is u(C,,) = o(n~(¥+1)/); the smaller k the faster must the areas decrease.

5.3 The multivariate case
By studying the bound on the total variation distance in the multivariate case, given in Theo-

rem 4.5, we find that it is (') E[Ik;,1 ;1] which has to be examined to achieve conditions for
2
convergence. Note that it is obvious that we need at least that

nu(C)) = 0, (5.9)

which was the condition for convergence in the univariate case (Theorem 5.1 (ii)). Hence it is
enough to consider the terms corresponding to I = k; — 1 and [ = min{k;,k,} of the bound
on E[Iy, 1Z; 1] given in (4.12), since they are dominating if (5.9) is fulfilled. Collect the n-
dependent parts of these terms, to get the following conditions on M(Cr(bkj )) for convergence of
dry (C{EY ) ), T Po(AS))) to zero:

nkitty(Ckidyki 0 (5.10)
and
ke thi—min{k; ko } o
min {H(Cﬁlks))ks—lu(cékj))kj—min{kj,ks}7 u(CT(ij))kj—IH(CT(LkS))k,,—min{kj,ks}}
=0 (5.11)
asn — oo, forall j,s =1,...,m, j # s.

In the previous case, concerning one point process, it was the (k; —1)st term in the sum in (5.8)
which decided at which rate the areas of the sets in the sequence {C’T(ij )} must decrease for the
distance to tend to zero. The important part of this term originates from the expectation of the
product of two indicators connected to k;-subsets with k; — 1 common particles (i.e. E[Iy; 11, ,’:J’ 71]

in (4.15), using the notation in the proof of Theorem 4.6). This expectation is of importance also
in this multivariate case and turns up as condition (5.10). The other condition, (5.11), comes from
the expectation of products of indicators pertaining to k;-subsets and k,-subsets with min{k;, ks}
particles in common (E[Iks,llgm{k“k’}]).

If k; < ks condition (5.11) reads
min {nkm(Cﬁf“))k’_l,nksu(Cg“f))kj_lu(CT(Lks))ks_kf} -0 as n— oo,
and we can state the following theorem.
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Theorem 5.8 If {Cﬁ’”’};";l, Jj=1,...,m, k; € {2,3,...}, are sequences of sets such that

nFitty(CkiYki 50 as n— oo, (5.12)
forallj=1,...,m, and
min {nkS,u(C,(Lks))ksl,nkm(C,(ka))kflu(C’,(lks))kskj} =0 as n— o0, (5.13)

for all j,s =1,...,m, such that k; < ks, then

drv (LAWY, T, Po(AE))) < dry (£(EE)},), 7, Po(A()) = 0
as n — 0.

As expected, sequences {C$)} with p(C$)) = o(n=(ki+D/ki) j = 1,... m, which was the
critical rate for convergence in total variation norm in case of one process, are not decreasing fast
enough here; (5.12) is fulfilled, but (5.13) is not. An example which satisfies both conditions is

kit g

p(C) =om T,

j=1,...,m, while

_ _ 1
uCE) = ol ),
j=1,...,m, do not decrease fast enough.
If the expected numbers of covered k;-subsets, 7(1’” ), j=1,...,m, converge to finite values,

then joint convergence in distribution follows immediately.

Corollary 5.9 If E[Wr(bk")] = AE) 0 < XKD <00, j=1,...,m, and L(Z*)) = Po(A*3)) are
independent, then

(WT(Lkl),...,WT(Lk’"))E(Z(kl),...,Z(km)) as n — oo.

Furthermore, let TIk3) | § =1, ... m, be independent Poisson processes on A x [0,1] with intensity
measure dA%3) (z,y) = \#)2(k; — 1)y**i—3dz dy. Then

@k Ekey Boqrt ke,

Proof. Note that ,u(C’,(ij )) = O(n=*i/(ki=1)) and hence the conditions of Theorem 5.8 are fulfilled.
The result is then proved in the same manner as Corollary 5.4.
|

6 Possible extensions, improvements, and applications

6.1 Extensions

A natural extension of this paper is to generalize the results to higher dimensions. All the ap-
proximations make use of the probability of covering a number of independently and uniformly
distributed particles with some translate of a convex set. In three dimensions this probability can
be found in Mansson (1996) and, as shown in Section 3, the probability in an arbitrary dimension
can be obtained directly from results in Weil (1990). It should be straightforward, but tedious, to
extend the approximation results to an arbitrary dimension.

The starting point can be changed in various directions. An obvious variation is to let the
particles on A constitute a Poisson process rather than being a fixed number. To derive results,
corresponding these of the present paper, in that case should be easy, and it would be surprising if
it asymptotically would be any difference. Variations, more difficult to handle, are for instance to
let the particles follow some distribution other than the uniform, or to let the sets be non-convex.
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6.2 Compound Poisson approximation

The indicators pertaining to k-subsets with common particles are not independent, but have a
positive dependence, and the k-subsets which are covered tend to occur in clumps. The more
common particles and the larger sets, the stronger is the dependence. Then it seems natural to
approximate the process of the positions of the k-aggregates by some process in which clumps
are more likely to occur than in the usual Poisson process, and to approximate the number of k-
aggregates by some distribution other than Poisson. Natural candidates are the compound Poisson
process and the compound Poisson distribution. It seems possible that such approximations can
handle larger sets and improve the error bounds, especially in case of large k.

6.3 Statistical applications

As mentioned in the introduction, a common test statistic when testing whether a point pattern
originates from a Poisson process is the number of pairs of points closer than some distance r.
This number equals W in our terminology, in the case where k£ = 2 and C' is a disc with diameter
r. An idea is to study if the number of k-subsets, k¥ = 2,3, ..., which are covered by a set C,
which not necessarily is a disc, would be reasonable as a statistic when testing the randomness of
a sample. The crucial element in this matter are the rates of convergence.
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