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Abstract

We introduce a class of binary lattice gases which can be viewed as a lattice
analogue of the continuum Widom—Rowlinson model, and which also is related to
the beach model of Burton and Steif. This new model is shown to exhibit phase
transition for large particle intensities. Stochastic monotonicity results of varying
strength are derived in various parts of the parameter space. The main tool is a
random-cluster representation of the model, analogous to the Fortuin—-Kasteleyn
representation of the Potts model.

Key words: Phase transition, Gibbs measure, Widom—Rowlinson model, lattice
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1 Introduction

In 1970, Widom and Rowlinson [21] introduced a stochastic binary gas model which
informally can be described as follows. We have two types of particles A and B living
in R?, and the distribution of particles is that of two independent Poisson processes,
with respective intensities A4 and Apg, conditioned on the event that no two particles of
different type are within distance r from each other. By scaling, we can without loss of
generality set r = 1. Widom and Rowlinson conjectured that for d > 2, this model would
exhibit a phase transition in the symmetric high-intensity regime where Ay = Agp = A
and A is sufficiently large. That this indeed is the case was soon established by Ruelle
[19], and more recently Chayes et al. [6] gave a modern stochastic-geometric proof of
this result. By phase transition, we here mean the nonuniqueness of infinite-volume
DLR (Dobrushin-Lanford-Ruelle) states with prescribed conditional distributions on
compact subsets of R?. It is also known (see e.g. [6] or [15]) that phase transition does
not occur when A is small. This strongly suggests that the following conjecture should
be true:

Conjecture 1.1: For d > 2, there exists a critical value A, = X.(d) € (0, 00) such that
the Widom—Rowlinson model in R? with Ay = Ag = X\ exhibits a phase transition for
A > A, but not for A < A..

What current rigorous knowledge about the Widom—Rowlinson model is lacking in this
conjecture is the monotonicity property that if Ay < Ay and there is phase transition
at A = Ay, then there should be phase transition also at A = A,. The corresponding
monotonicity is well known for several lattice models such as the Ising and Potts models
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(see e.g. [10] and [15]). At first, one might therefore think that the problem with proving
the monotonicity in A for the Widom—Rowlinson model would have something to do with
the fact that the particles live in the continuum R?, rather than on a discrete lattice.
This, however, is not the case. Lebowitz and Gallavotti [17] introduced a binary lattice
gas closely analogous to the Widom—Rowlinson model, and established phase transition
in the “high-intensity” regime, but also for this model the conjectured monotonicity in
the intensity escapes a rigorous proof. The principal difficulty, which will be discussed in
Section 6 of the present paper, appears to be essentially the same for the lattice analogue
as for the original Widom—-Rowlinson model; see also Sections 7 and 8 in Haggstrom
[15].

The purpose of this paper is to find some other lattice model that (i) is close in
spirit to the Widom—Rowlinson model, and (ii) is mathematically sufficiently tractable
to admit a proof of a statement analogous to Conjecture 1.1. In Section 2 we present
such a model, which we call the volume-perturbed lattice Widom—Rowlinson
(VLWR) model, and state our main results. Section 3 and 4 provide additional
motivation for the VLWR model by establishing intimate relations with other lattice
models (the beach model of Burton and Steif [4], and a certain trinary lattice gas). In
Section 5, we introduce a so-called random-cluster representation of the VLWR model.
This representation is the key tool used to prove the main results; this is done in Section
6. Finally, in Section 7, we will discuss a multitype generalization of the VLWR model.

Before closing this introductory section, let us say a few general words about the
method we exploit in order to prove our main results: the use of a random-cluster rep-
resentation. This approach involves a geometric representation of the original model.
The types of particles are unidentified, and this allows a priori difficult questions
about phase transition to be translated into easier questions about percolation (i.e. into
stochastic-geometric questions about long-range connectivities). The original random-
cluster model can be used to represent Ising and Potts models, and was introduced by
Fortuin and Kasteleyn [8]. Aizenman et al. [1] later demonstrated how this represen-
tation could be used to study the phase transition phenomenon in simple and elegant
probabilistic terms. Subsequently, random-cluster representations of several other mod-
els were introduced and exploited. For instance, Chayes et al. [6] studied the phase
transition behaviour of the Widom—Rowlinson model by such means, and Haggstrom
and Georgii [11] used similar methods to study a wider class of models allowing e.g.
soft-core interactions between particles. We refer to Haggstréom [15] for a general intro-
duction to such methods, and to Grimmett [13] for a modern probabilistic discussion of
the original (Fortuin-Kasteleyn) random-cluster model.

2 The model and the main results

We first describe the VLWR model on a finite graph. Let G = (V, E) be a finite
connected graph with vertex set V and edge set F. For v,w € V, write d(v, w) for the
graph-theoretical distance between v and w, i.e. d(v,w) is the number of edges in the
shortest path between v and w. Each v € V' can be in one of three states A, B and 0,
where A and B represent two different types of particles, and 0 is void. The state space
{A,0, B} is equipped with the ordering A < 0 < B. For each W C V we write < for
the induced coordinatewise partial order on {A,0, B}, so that for &, € {A,0, B}V
we have £ < nif and only if £(v) < n(v),Vv € W.

The VLWR model on GG has two parameters A (the activity parameter) and v (the



volume-interaction parameter). A particle configuration & € {A,0, B} is called feasi-
ble if for no pair of vertices v, w € V with d(v, w) < 2 we have {(v) = A and &(w) =

In other words, for a configuration to be feasible we need that no two particles of dif-
ferent type sit within distance 2 from each other. Writing | - | for cardinality of a set,

we define, for € € {4,0, B}V,

na(§) = HveV:E(v)= A}
np(§) = HveV:&(v)=Bj] (1)
ns(§) {v eV : &(w)=0forall we V such that d(v, w) < 1}|.

Definition 2.1: The VLWR measure I/()\;”Y on {A,0, B}V with parameters A\ > 0 and
4 > 0 is the probability measure which to each &€ € {A,0, B}V assigns probability

L \ralOFnE) (&) if ¢ is feasible

v () = { Z

0 otherwise.

Here Zg\;’w is a normalizing constant.

When v = 1, the factor y*(¢) disappears and the VLWR measure ZG arises by lettlng
each 51te 1ndependently be in state A, 0 or B with respective probabilities 1+2A, 1+2A

and and then conditioning on the event that the arising configuration is feasible.

7
It is 11;2‘5?11“&1 to interpret the feasibility condition by thinking of each particle as having
a nonzero radius which makes it occupy not only the site at which it is centered, but
also all neighbouring vertices in G. The feasibility condition then says that particles
can overlap only if they are of the same type. With this interpretation, n, becomes the
number of sites that are not covered by some particle. Taking v > 1 then amounts to
biasing Z(A;’1 in favour of configurations where the amount of such “vacuum” is large,
so that particles tend to be packed closer together, whereas taking v < 1 instead biases
the measure towards spreading the particles more evenly over G. (The way in which the
~ parameter perturbs ZE\;’I is similar in spirit to a certain perturbation of the Poisson
process known as the area-interaction process; see Baddeley and van Lieshout [2].)

Of course, it would be natural to allow the particles A and B to have two different
intensities A4 and Apg, but in this paper we will deal exclusively with the symmetric
case A4 = Ap, so we save some ink by writing simply A for their common value.

We now go on to define the VLWR model on Z? in accordance with the usual
DLR formalism. We think of Z¢ as a graph with edges connecting vertices whose
(Fuclidean) distance is 1. For a finite set S C Z¢ and configurations ¢ € {A,0, B}® and

"e{A,0, B}Zd\s, we define (£V &) € {A,0, B}Zd to be the configuration on Z% which
coincides with € on S and with ¢ on Z?\ S. For such S, ¢ and &', we define

na(S,6) = H{ves:ew) =AY
np(5,§) = HveS:{(v) =B}
ne(S,6,8) = [{v e SUIS : (EVE)(w) =0 forall w e Z? such that d(v, w) < 1},
where 05 denotes the “outer boundary” of S, i.e.

S ={ve Z%\S: Jw e S such that d(v,w) = 1}.



For a feasible configuration & € {A,O,B}Zd\s, we define ug’g, to be the probability
measure on {A,0, B}® which to each £ € {A,0, B}® assigns probability

Ay
ZS,&’

;)\TLA(Sq&)‘}'?’LB(Sy&),)/’)’L*(Sy‘Ey&’) if (f vV f,) is feasible
0 otherwise,

where Zg:g, is a normalizing constant (Z with various sub- and superscripts will always
denote normalizing constants).

Definition 2.2: Let v be a probability measure on {A,O,B}Zd, and let X be a
{A,0, B}Zd—valued random object distributed according to v. We say the v is a Gibbs
measure for the VLWR model on Z% with parameters A > 0 and v > 0 if it is concen-
trated on feasible elements of {A, 0, B}Zd and for all finite S C Z% admits conditional
probabilities such that

v(X(S) =€ X(Z2'\S)=¢) = v3l(§) (2)

for all feasible & € {A,0, BY2\S and all ¢ € {A,0, B}S.

Note that the VLWR model on a finite graph has similar conditional distributions, and
that for any nested sequence S; C Sy C -+ C Z%, (2) gives a consistent set of conditional
distributions. Furthermore, if v is a Gibbs measure for the VLWR model on Z?, then
the conditional distribution of X (S) given X (Z?\ S) depends on X (Z%\ S) only via its
values on vertices w € Z%\ S sitting within distance 2 from some v € S. In other words,
X is a Markov random field with range 2, justifying the term “Gibbs measure” used
in the definition. The existence of some Gibbs measure for the VLWR model on Z?
with the given parameter values A and « follows by standard compactness arguments
(see e.g. [10]). Here we focus on the question of uniqueness (or nonuniqueness) of such
measures. In particular, we are interested in how the multiplicity of Gibbs measures
varies with A when « is kept fixed. For d = 1, there is a unique Gibbs measure for any A
and v (as is the case for all finite state Gibbs models in one dimension satisfying a mild
irreducibility condition) so we will focus on d > 2 only. It turns out that for general
~ > 0, we can do no more than what has been done for the other gas models discussed
in the introduction:

Theorem 2.3: For fixed d > 2 and v > 0, the VLWR model on Z? with parameters
and v has a unique Gibbs measure if A is taken to be sufficiently small. If instead A is
taken to be sufficiently large, then the model has more then one (Gibbs measure.

If we restrict to v > 2 then the situation is somewhat more satisfactory, as we can prove
the following analogue of Conjecture 1.1.

Theorem 2.4: For fixed d > 2 and v > 2, there exists a critical value A\, = A.(d,~)
such that for A < A., the VLWR model on Z% with parameters A\ and v has a unique
Gibbs measure, whereas for A > A. the model has more then one (Gibbs measure.

It seems reasonable to expect that the assertion in Theorem 2.4 should be true for any
~ > 0, but the monotonicity arguments that we will use in Section 6 are not sufficiently
strong to yield such a conclusion. (Another issue left open is that of whether or not
there is a unique Gibbs measure at the critical value A..) Hence, the model exhibits a
kind of threshold at v = 2 as far as amenability to certain monotonicity arguments is



concerned. It turns out that there is another such threshold at v = 1; see Proposition
2.5 below. We need some more preliminaries before we can state that result.

For V finite or infinite, and two probability measures v; and vy on {4,0, B}V, we
say that vy is stochastically dominated by vy, writing 11 < vy, if for all increasing (with
respect to <) local functions f: {A,0, B} — R we have

/ fdr < / fdvs,.
{A707B}V {A707B}V

By a celebrated theorem of Strassen (see [20] or [18]), this is equivalent to the existence
of a coupling of two {A,0, B}Y-valued random elements X; and X, (i.e. of a joint
construction of X; and Xy on the same probability space) such that X, has distribution
v, and Xy has distribution vy, and with the property that X; < Xy with probability 1.

We equip {A4,0, B}Zd with the usual product topology, so that weak convergence of
a sequence {v;}:2, of probability measures on {A,O,B}Zd to a limting measure v, is
equivalent to having lim;, v;(C') = v(C) for any cylinder event C' (a cylinder event is
an event which depends on finitely many coordinates only).

For finite S C Z?, we let &, denote the configuration on Z%\ S consisting of A’s only,
and define l/gg to be the probability measure on {4, 0, B}Zd for which X (Z?\ S) = ¢,

almost surely, and X (9) has distribution l/g’g, .
&

We define £ and Z/g% analogously.

Proposition 2.5: Fixd > 2, A\ > 0 and vy > 1, and let S = {S;}{2, be any sequence of
subsets of Z which is increasing in the sense that Sy C So C +--, and which converges
to Z% in the sense that each v € Z% is in all but finitely many S;’s. Then the limiting

measures

Ay e Ay

vy = ih_ggo'/s;,A (3)
and

Aﬂ/ J— 1 A7’Y

G W

on {A,0, B}Zd exist and are independent of the choice of S (and therefore also transla-
tion invariant). Both limits are Gibbs measures for the VLWR model with parameters
A and v, and furthermore

vA" Za M 24 v (5)

for any other Gibbs measure v for the VLWR model with the same parameters. This
means, in particular, that the existence of more than one Gibbs measure for the VLWR
model with the given parameters is equivalent to having

A, A,
vy # vyl (6)

All these results will be proved in Section 6.

3 Relation to the beach model

In this section, we will show how the VLWR model with v = 2 in a certain sense is
equivalent to the so-called beach model, which was introduced by Burton and Steif [4]
and further studied by Higgstrom [14].



Let My and M; be positive integers such that M; < M;. The beach model on a
finite graph G with parameters M; and My can be described as follows. Define the set
I’ of attainable values at each vertex v € V as

FP=FRUF,UF;UIF,

where
o= {—;Mg,—;Mg-l—l,...,—Ml—l}
F2 = {_M17_M1+17"'a_1}
s = {1327"'3]\/[1}
11 = {M1+1,M1+2,...,M2}.
Call fe F
negative if feFUF,
positive if fekb3Uky

unprivileged if fe€ FyUFy
privileged if feF,UFs,

and call a configuration ¢ € FV feasible if for all u,v € V such that d(u,v) = 1 we
have that ((u) and ((v) are either both positive, both negative or both privileged. In
other words, negatives and positives are not allowed to sit next to each other unless
they are both privileged. The name “beach model” comes from the interpretation in
two-dimensional lattices that if a symbol represents altitude above sea level, then the
feasibility condition prevents shores from being too steep.

Definition 3.1: The beach measure ¢GM1’M2 for the graph G = (V, F) with parameters
My and M, is the probability measure on IV which is equidistributed over all feasible
elements of FV .

This definition extends in a natural way to infinite-volume Gibbs measures as follows.

Definition 3.2: Let 1 be a probability measure on de, and let U be an 2" valued
random object with distribution . We call ¥ a Gibbs measure for the beach model
on Z% with parameters M, and M, if it is concentrated on feasible elements of FZe
and admits conditional probabilities such that for all finite S C Z® and all feasible
¢' € FZ\S the conditional distribution of U(S) given U(Z?\ S) = ¢ is uniform over all
¢ € F5 for which (¢ V (') is feasible.

The beach model in d > 2 dimensions with %ﬁs sufficiently large exhibits a phase tran-
sition, as shown in [4]. It was later shown in [14] that for d > 2, there is a critical value

M. = M.(d) € (1,00) such that there is a unique Gibbs measure for % < M, and

multiple Gibbs measures for % > M,.

Here we shall demonstrate a certain equivalence between on one hand Gibbs mea-
sures for the VLWR model with A = MQM;]Ml and v = 2, and on the other hand Gibbs
measures for the beach model with parameters M; and M;. One consequence of this
equivalence is that

Ae(d,2) = Mc(d) -1 (7)

where A, is defined as in Theorem 2.4. The exact value of M.(d) is not known in any
dimension; some very crude upper and lower bounds can be found in [4] and in [14],
respectively.

We begin with the finite graph case. Consider the following way of picking a random
configuration U € FV. First pick X € {A,0, B}V according to the VLWR measure for



?With A= MZA}TML and v = 2. Then, for each v € V independently, pick U(v) uniformly
rom

I it X(v)= A

Fy if X(v)=0and X(w)= A for some w with d(v,w) =1

F,UFs if X(v) =0and X(w) =0 for all w with d(v,w)=1 (8)
F3 if X(v) =0 and X (w) = B for some w with d(v,w) =1

Fy it X(v) = B.

Write 7,7)2;[1’]\/[2 for the distribution of U € IV obtained in such a way.

Proposition 3.3: The above procedure yields an I'V -valued random object distributed
according to the beach measure for G with parameters My and M, i.e.

/M1 M2 _ Ml M2
Ya ! = Q/)G T

Proof: It is clear from the construction that ’J)(]\;Jl’Mz assigns positive probability only

to feasible elements of F'V. It is therefore sufficient to show that

P M (G) = DM (¢ 9)

for any two feasible configurations (1,(o € FV. Write & for the (unique) element of
{A,0, B} from which {; can be obtained by the above procedure, and define &; similarly.
Recall the definitions of n4(£), ng(€) and n.(§) in (1). In addition to these, define

g {veV:&w)=0,3w €V such that d(v,w) = 1 and {(w) = A}|
ny, = |[{veV:E&w)=0,3w eV such that d(v,w) =1 and {(w) = B}|,

and note that for £ feasible, we have

n4 (&) + 14 (&) + 1 () + 16 (§) + np(§) = |VI.

We get
¢g1,M2 (Cl) _
¢M1,M2 (42)
A2 na(é1)+np(ér) a(€1)+n4(&1) 7 (
v (&) (3 ()" ()"
A2 na(&2)+np(é2) a(€2)+n4(€2) 7 (
v (&) (M;M]) (ML (211)
—L_\ra(&)+np(&1)gns(ér) (M 1M )” alé)+np(é) (ML)% (€1)+np(€1) ]\14 nx (1)
_ ZG 2= 1 1
= ] R , ne(Es 1 71,4(‘52 +np 52 1 Na ‘52)+7’Lb ‘52 1 n*(£2)
L Xna(6) i €:)gn (3557) () ()
1 1 na(&)+na (&) +ne(é1)+np(é1)+np (&)
_ 2w »
o 1 1\ ma(&2)+na(é)+na(E2)+np(é2)+np(62)
77 ()
so (9) holds, and we are done. O



One can also go the other way (from the beach model to the VLWR model): Suppose
we pick U € FV according to the beach measure u’vé\;fl’Mz’, and then pick X € {A,0, B}V
by letting

A ifUw) e R

B if U(v) € Fy.

Then X has distribution I/(A;’W, with A = MQM;1M1 and v = 2; this follows immediately
from Proposition 3.3.
The next result is an infinite-volume analogue of Proposition 3.3.

Proposition 3.4: Suppose that we pick X € {A,0, B}Zd according to a Gibbs measure

AY for the VLWR model with A = M"’MMl and v = 2, and that we then obtain U € Pz
from X by the procedure described in (8) Then the d1str1but10n of U is a Gibbs measure
for the beach model with parameters M; and M.

Proof: Write »M1:Mz for the distribution of U € 2% 1t is clear from the construction
that »M1:M2 is concentrated on the set of feasible elements of F'V', so all we need to do is
to show for any finite § C Z? that ¢)™1:M2 satisfies the uniform conditional probability

property of Definition 3.3. Define
S*={vez: Jwe S such that d(v,w) < 2}.

Since X is a Markov random field with range 2, we have that U is a Markov random
field with range at most 2. In other words, the conditional distribution of U(S) given
U(Z%\ S) depends only on U(S*\ S). Let G be a finite graph whose vertex set V
is some cubic portion {—k,...,k}? of Z? where k is large enough so that V contains
S*, and whose edge set I consists of Eucliedan nearest neighbours (just as in the Z¢
lattice). Pick a {A,0, B}Y-valued random element X according to the VLWR measure
VE\;’Z, and pick Ug € FV as in (8) using Xg. By the Markov random field properties
of X and X, and the construction of U and Ug, we have for any ¢’ € F5"\5 that the
conditional distribution of U(S) given U(S*) = ¢’ must be the same as the conditional
dostribution of Ug(S) given Ug(S*) = ¢’. But the latter conditional distribution has
the desired uniformity property by Proposition 3.3, so we are done. a

We thus have a simple way to create Gibbs measures for the beach model from Gibbs
meaures for the VLWR model. The next result shows that we can also go the other
way.

Proposition 3.5: Suppose that we pick U € rz according to a Gibbs measure for
the beach model with parameters My and M,, and that we obtain X € {A,O,B}Zd by
pointwise application of (10). Then X is distributed according to some Gibbs measure
for the VLWR model with A = 22580 and = 2,

Proof: Let #M? be any Gibbs measure for the VLWR model on Z? with the given
parameter values, let X € {A,0 B}Z have distribution #*2, and obtain U € FZ* from
X as in Proposition 3.4. Then, by the same proposition, ‘rhe distribution MMz of X
is a Gibbs measure for the beach model. Let P be some probability measure supporting
the random configurations U, X, U and X. Define $* as in the previous proof, and
further define

S** ={v e Z%: Jw € S such that d(v,w) < 3}.



In order to show that X is distributed according to a Gibbs measure for the VLWR
model, we need to show

(i) that X is feasible with probability 1,

(ii) that for any finite S C Z? the conditional distribution of X (S) given X (Z?\ S)
depends only on X (S**\ S), and

(iti) that for any feasible & € {A,0,B}%"™\5 the conditional distribution of X(S5)
given X (S**\ S) = ¢’ is the same as the conditional distribution of X(S) given
X(S=\S)=¢.

That (i) holds is immediate from the construction. Toshow that (ii) and (iii) hold, we let
¢" be some feasible element of F5"*\5". By Definition 3.2, the conditional distribution
of U(S*) given U(Z?\ S*) depends only on U(S**\ S*), and the corresponding statement
holds for I/. Furthermore, by the same definition, the conditional distribution of U/(S*)
given that U(S**\ S*) = (" is the same as the conditional distribution of U(S*) given
that U(S**\ $*) = (. Tt follows that the conditional distribution of X (S*) given
that U(S**\ S*) = ¢ is the same as the conditional distribution of X (S*) given that
U(S**\ S*) = ¢". This, in turn, implies that the conditional distribution of X (S) given
[X(S*\ S) =¢, U(S*™ — 5*) = ("] is the same as the conditional distribution of X ()
given [X(S*\ S) = ¢, U(S* — S*) = ("]. But the latter conditional distribution agrees
with Definition 2.2, so the former must do so as well, whence (iii) is proved. By noting
that the last two conditional distributions are independent of ¢” and of any further
information about configurations on Z?\ S*, we also get (ii). O

It is easy to see that the two mappings in Propositions 3.4 and 3.5 constitute a bijection
between Gibbs measures for the VLWR model and Gibbs measures for the beach model.
This implies, in particular, that uniqueness of Gibbs measures for the VLWR model with
parameters M; and M, is equivalent to uniqueness of Gibbs measures for the beach
model with A = MQM;fMl and v = 2. Hence, (7) is established.

Let us finally point out that there exists yet another Gibbs model which is equivalent
to the other two; namely, the so-called site-centered ferromagnet which was introduced
in [14]. The site-centered ferromagnet has state space {—1,1} at each vertex and is
obtained from the beach model similarly as in (10) by setting all positives to +1 and
all negatives to —1. While the beach model is a Markov random field with range 1,
both the VLWR model and the site-centered ferromagnet are Markov random fields
with range 2.

4 Relation to a trinary lattice gas

To readers who find the ~ factor in the definition of the VLWR model unnatural, we
here give an alternative representation of the ¥ > 1 VLWR model. We call this new
model the particle-perturbed lattice Widom—Rowlinson (PLWR) model. In
this alternative representation, the volume-interaction factor is disposed of, at the cost
of having to introduce a third particle type C'. The AB symmetry of the VLWR model
is preserved in the PLWR setting, but the third particle type C plays a role which is
different from the other two.

As usual, we begin with the case of a finite graph G = (V, F). Bach v € V will be
in one of four states A, B, C and 0. A particle configuration ¢ € {A, B,C,0}V is said
to be feasible if



(i) for no pair of vertices v, w € V with d(v, w) < 2 we have ((v) = A and ((w) = B,
and

(ii) for no pair of vertices v,w € V with d(v,w) = 1, we have ((v) = C and ((w) €
{4, B}.

As in the VLWR model, the feasibility condition should be thought of as preventing
particles of different type from overlapping each other. We then have to think of A and
B particles as having the same (large) radius, and of C' as having a different (smaller)
radius.

For ¢ € {A,B,C,0}V, define n4(¢) and ng(¢) as in Section 2, and define n¢(()
analogously (i.e. n¢(¢) is the number of vertices v € V for which {(v) = C).

Definition 4.1: The PLWR measure ﬂ'é”\c on {A, B,C,0}V with parameters A > 0 and
Ao > 0 is the probability measure which to each ( € {A, B,C,0}V assigns probability

G
0 otherwise.

Ao { Zx,lxc )\nA(C)'l'nB(C))\gC(C) if ¢ is feasible

Now consider the following way of obtaining a random element W € {A, B,C,0}".
First pick X € {A,0, B}V according to the VLWR measure z/é’w with v > 1. Then let
W (v) = X (v) for every v € V with the property that X (v) € {A, B} or X (w) € {A, B}

for some w € V with d(v, w) = 1. Finally, let A\c =~ — 1, and let all remaining vertices
Ac
Ac+1"

Proposition 4.2: The random element W € {A, B,C,0}V, obtained as above, is
distributed according to the PLWR measure Fé’/\c.

get value 0 or C' independently, with respective probabilities /\clﬁ and

We omit the proof of this result, which is an easy adaption of the proof of Proposition
3.3. An immediate consequence of the result is that if we pick W € {A, B,C,0}V
according to ﬂé\;’Ac and then just delete all the C-particles (i.e. turn them into 0’s), then
the arising {A, 0, B}Y-valued random element has distribution ,LLE\;’v with v = Ao + 1.
The PLWR model may be extended from finite graphs G to the lattice Z¢ in the same
way that such extensions of the VLWR and beach models were made in Definitions 2.2
and 3.2. A straightforward adaption of the proofs of Propositions 3.4 and 3.5 then give
us an equivalence between Gibbs measures for the VLWR model on Z? with parameters
X and v on one hand, and Gibbs measures for the PLWR model on Z¢ with parameters
A and Ac = v — 1 on the other, completely analogous to the equivalence between Gibbs
measures for VLWR and beach models in Section 3. This means e.g. that once we have
proved Theorems 2.3 and 2.4, we can immediately claim the corresponding results for

the PLWR model.

5 The random-cluster representation

We now introduce the random-cluster representation of the VLWR model on a finite
graph G = (V, ). In this representation, each site can only be in one of two states, 0
and 1, where a 1 signifies the presence of a particle (of either type A or type B), and a
0 means that no particle is present.

10



Given a random-cluster configuration 5 € {0,1}V, we define an edge configuration
w=w(n) € {0,1}¥ by letting each e € I take value

(c) = 1 if p(v) = 1 for at least one of the endpoints v of e,
Y70 0 otherwise.

We then consider the connected components in the random graph obtained from G
by deleting each edge e € F with w(e) = 0. We write ky(n) for the number of such
connected components that contain only a single vertex v € V', and k2(n) for the number
of connected components that contain at least two vertices (note that kq(n) counts
exactly those connected components that contain some v € V' such that n(v) = 1). We
also let n(n) denote the number of vertices v € V' for which n(v) = 1.

Definition 5.1: Forp € [0,1] and v > 0, we define the VLWR random-cluster measure
p on {0,1}V to be the probability measure which, to each 5 € {0,1}V, assigns
probability

1
HE (1) = p" P (1= p)lV IR gk, (1)
‘G

For A > 0 and v > 0, consider the following way of picking a random configuration
X € {A,0,B}V. First pick Y € {0,1}Y according to the VLWR random-cluster measure
pl | where p = /\%-1 Then let X (v) = 0 for each v € V for which Y (v) = 0. Finally,
for each connected component C' of w(Y), we flip an independent fair coin, and if it
comes up heads, then we let X (v) = A for every vertex v in C such that Y (v) = 1,
while if tails, then we let X (v) = B for every v in C' with Y (v) = 1. Write ﬁé"y for the
distribution of X € {A,0, B}V obtained in this way.

Proposition 5.2: The above procedure yields an {A,0, B}V -valued random element
distributed according to the VLWR measure for G with parameters A and v, i.e.

SAY LAY
1 —I/G’ .

Proof: This proof resembles closely the proof of Proposition 3.3. It is immediate from
the construction that ﬁg”y(f) > 0 if and only if £ is feasible. Therefore, it suffices to

show that \ \
75" (&) _ vy (&)
75" (6) vy (&)

for any two feasible configurations &;,&, € {A,0, B}V. Pick two such configurations &
and &, and define 71,12 € {0,1}V to be the corresponding random-cluster configura-
tions, i.e.

oy ) 1 if&(v) € {A, B}
m(v)—{ 0 if&v) =0

fori = 1,2 and each v € V. Note that n(n;) = n4(&)+np(&), and that ki (n;) = n.(&).
We get

PE) 2 g ()
D7 (&) ue ()27 tm) Qop V(b yntna) b (r2)
e
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A7) b (m) A a(€)+n5(E1) yna (&)

- A (72) k1 (n2) - Ana(é2)+np(€2)yns(é2)
V(A;W(fl)

V(A;W (&2)

as desired. O

In the next section, we will use the random-cluster representation to study the VLWR,
model on Z%. Fortunately, this does not require an extension of the VLWR random-
cluster model to the case of infinite graphs (for the Fortuin—-Kasteleyn random-cluster
model, such an extension is not entirely elementary (see e.g. [13]) and although a sim-
ilar extension for the VLWR random-cluster model is possible, it does invlove certain
technicalities). However, we will need a random-cluster representation of the measure

1/:9\”21 defined prior to Proposition 2.5. This turns out to be a straightforward extension
of the finite graph case, because yg’A is concentrated on a finite subset of {4, 0, B}Zd.

As usual, we let S be a finite subset of Z%. Let Vs denote the set of configurations
n € {0, 1}Zd with the property that n(v) = 1 for each v € Z%\ S (note that Vs is
finite). For n € Ys, define w(n), ki(n) and ky(n) as in the case of a finite graph G.
Note that both kq(n) and kq(n) are finite for each n € Vg, because the random graph
corresponding to w(n) will contain a single infinite connected component, and a finite
number of finite connected components, all of which are contained in S. Also define
n(S,n) to be the number of vertices v € S for which n(v) = 1.

Definition 5.3: For p € [0,1] and y > 0, we define the measure 1%y on {0, l}zd to be
the probability measure which is concentrated on Ys and which to each n € Yg assigns
probability

pb = Nl
71 ng'ly

pn(Sm)(l _ p)IVI—n(Sm)fyh(n)ka(n)_

An {A,0, B}Zd—valued random element X with distribution yg”A can now be obtained by
a procedure analogous to the one described prior to Proposition 5.2. First let p = 1-%\
and pick the random element Y € {0,1}" according to ,ug’}. Then let X (v) = 0 for
each v for which Y (v) = 0, and let X (v) = A for each v € Z? which sits in the infinite
connected component of w(Y') and which has Y (v) = 1. Finally, for each finite connected

component C' of w(Y'), flip an independent fair coin to determine whether all vertices v
in C' with Y (v) = 1 should take value A or B in X.

Lemma 5.4: The random configuration X € {A,0, B}Zd, picked as above, has distri-
bution I/:S\vg.

We omit the proof, as it is completely analogous to the proof of Proposition 5.2. Of
course, ug’z can also be used to obtain a random element X € {A4,0, B}Zd with distri-
bution l/g%; just modify the above construction by assigning value B instead of A to
vertices in the infinite connected component of w(Y).

The next simple lemma plays a key role in the analysis of phase transitions in the
VLWR model. It relates the effect that the “boundary condition” X (Z¢\ S) has on
the distribution of X (v) to a certain connectivity probability in the random-cluster
representation. Given the finite set S C Z%, a vertex v € S, and a random configuration
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Y € {0,1}2" write v ¢ Z4\ § for the event that v is in a connected component of w(Y)
which intersects Z?\ S.

Lemma 5.5: With S and v as above, and A,~v > 0, we have
A, A, ’
Vs (X (v) = A) —vgh (X (v) = B) = p&{(Y (v) =1, v & 27\ 5)

where p = 1-1-%

Proof: Write Dg, for the event that Y (v) = 1 and v is in a connected component of
w(Y) which does not intersect Z? \ S. By Lemma 5.4, we have that

7A — — ’ — 4 ’
vEa(X(v) = A) = pgi (Y (v) = 1,0 & 27\ 5) + 3451 (Ds,)

and that
7A —_— P b
V:SY',A (X(U) - B) - %/qu(DS,u)-

The desired equality follows. |

We end this section by remarking that in the ¥ = 2 case, the random-cluster represen-
tation presented here reduces to the random-cluster representation of the beach model
introduced in [15].

6 Proofs of main results

In addition to the random-cluster representation given in the previous section, the
other basic ingredients in the proofs of the main results of this paper are (i) a simple
percolation model and (ii) a comparison result (Lemma 6.1) which is essentially due to
Holley [16] and which is closely related to the celebrated FKG inequality [9].

For a finite set V, we generalize the partial order < defined in Section 2 to the
coordinatewise partial order on RY. For a finite set 7" and a probability measure P
on TV, we say that P is irreducible if the set {n € TV : P(n) > 0} is connected
in the sense that any element of 7V with positive P-probability can be reached from
any other via successive coordinate changes without passing through elements with zero
P-probability.

Lemma 6.1 (Holley): Let V be a finite set and let T' be a finite subset of R. Let P
and P' be two probability measures on SV, and let X and X' be random elements with
respective distributions P and P'. Assume that P’ is irreducible and that it assigns

positive probability to the maximal element of TV . Suppose furthermore that for every
v eV, everyt € T, and every &, € TV\{"} such that ¢ <, P(X(V\ {v}) =& >0
and P'(X'(V\{v}) =n) > 0, we have

P(X(v) 2 t] X(V\{v}) =€) < PI(X'(v) 2 | X'(V\{o}) = n).

Then P <4 P'.

Proof: The result follows by copying (almost verbatim) Holley’s [16] original proof, a
variant of which can also be found in [15]. O

We next introduce a percolation model on Z¢ as follows. Let ﬂ%d denote the probability

measure on {0, 1}Zd corresponding to letting each v € Z? independently take value
1 or 0 with respective probabilities p and 1 — p. Let Y be a {0, 1}Zd—valued random
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configuration with distribution ﬂ%d, define the edge configuration w(Y') as in Section 5,
and write v ¢ oo for the event that v € Z¢ is in an infinite connected component of
w(Y). Of course, fit 4 (v 4+ 00) is independent of the choice of v.

Lemma 6.2: For d > 2, there exists a critical value p. = p.(d) € (0,1) such that

P (v —
:uZd(Y(U) =lLve OO) { >0 pr > Pe.

Proof: Consider standard independent site percolation with retention parameter p
on the graph Z% whose vertex set is Z? and whose edge set consists of all pairs of
vertices within L-distance 2 from each other. Write #(p) for the probability in this
model that a given vertex v is in an infinite connected component. Then there exists a
ps =pi(d) € (0,1) such that

=0 if p<p*
0 [+
(p){ >0 if p> pk

as follows from a completely straightforward adaption of the usual proofs of the corre-
sponding result for site or bond percolation on the nearest neighbour graph of Z%; see

e.g. Grimmett [12]. But a moment’s thought reveals that (p) = figq(Y (v) = 1,v ¢ 00),
so the lemma follows with p. = p. |

Proof of Theorem 2.3: The first assertion (that sufficiently small A implies a unique
Gibbs measure) is easily shown by applying either of two standard techniques: Dobrush-
in’s uniqueness theorem (see [7] or [10]) or the disagreement percolation approach of
van den Berg and Maes [3]. We omit the details.

Instead, we go on to prove the second assertion (that sufficiently large A implies
non-uniqueness of Gibbs measures). Let S = {S;}72; be an increasing sequence of finite
subsets of Z? converging to Z? as in Proposition 2.5. Consider the sequence {I/:S\VJ’A}?il of
probability measures on {4, 0, B}Zd. By compactness, we can find some subsequential
weak limit of these measures; write 172’” for some such limiting measure. By general

Gibbs theory (see [10]), 73 is a Gibbs measure for the VLWR model with the given
parameter values. Pick a vertex v € Sy. In order to prove non-uniqueness of Gibbs
measures for large A, it is sufficient to show that

(X (v) = A) = 5" (X () = B) > 0 (12)

because if we had a unique Gibbs measure, then by the symmetry of the VLWR model
(with respect to interchange of A and B) the left-hand side of (12) would have to equal
0. To show that (12) holds for A large, it suffices to show that

lim inf (137, (X (v) = A) = 137, (X (v) = B)) > 0

21— 00

for A large. By Lemma 5.5, this is equivalent to showing that
li_rginf ps (Y (v) =1,v ¢ Z4\ S;) >0 (13)

for p sufficiently close to 1. The strategy for proving (13) will be to compare ug’jl

to the percolation measure ,L_Lg; for a certain choice of p*, using Lemma 6.1. To this
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end, we need to compute the single-site conditional distributions for ,uzd and for 'up,"/
Obv10usly,

figa(Y (w) = 1|Y/(27\ {w}) = 1) = p
for any w € Z% and any ' € {0, 1}Zd\{w}. The corresponding relation for ,ug’vl is of

course more complicated: For w € S; and 5’ € {0, 1}Zd\{w}, define nj = (' Vv 0), i.e. i
is the element of {0, 1}Zd which is 0 at w and agrees with 5’ elsewhere. Furthermore,
define xq(w,n)) (resp. ka(w,n))) to be the number of connected components in w(n)
which intersect the set {u € Z% : d(u,w) < 1}, and which contain exactly one (resp.
more than one) vertex of Z%. We only need to consider those ' for which ) € Vs. For
such 7', a direct application of Definition 5.3 yields

Py (wymg) 91=r2(w,m0)

KB (Y () = 1] Y (24 {w)) = o) = (14)

p,y—ﬂl(w,n(’))Ql—nz(w,n(’)) +1- p

Since k1 and kg both take their values in {0,...,2d + 1}, we have for v < 1 that the
right-hand side of (14) is bounded from below by

p2—2d
p27 +1-p
while for v > 1 it is bounded from below by
—2d-19-2d

Py
p7—2d—12—2d + 1— P

Combining these observations, we thus have, for any v, any w € S; and any 7' chosen
as above, that

/'LpS?,Il (Y(w)=1] Y(Zd \{w}) = 77/) > min py=20=12-2d {1 — p’ p2=2d 11 —p

(15)
Note that the right-hand side of (15) tends to 1 as p /1. Pick p* € (p., 1), where p. is
defined as in Lemma 6.2, and then pick p < 1 close enough to 1 so that the right-hand

side of (15) is at least p*. We can then apply Lemma 6.1 to the projections on {0, 1}

{ p7—2d—12—2d p2—2d

of ,uzd and ,ug’wl to show that the latter dominates the former stochastically. Since
s (Y (Z%\ S;) = 1) = 1, this extends trivially to

—p* PyY
Fza 2d s -

Since (Y (v) = 1,v < Z%\ S;) is an increasing event which furthermore is implied by
(Y(v) =1,v 4> 00), we get that

hmmf,up’7 (Y(v)=1,ve 29\ S;) > hmlnf,uzd(}_/(v) =1,v 2%\ S)
1= 00
> sz(?(v)zlvaoo)
> 0
so (15) is established, and the proof is complete. O

The next task is to prove Proposition 2.5. To this end, it is convenient to isolate a
couple of lemmas.
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Lemma 6.3: Let S C Z% be finite, and let & and " be two feasible elements of
{A,0, B}Zd\s satisfying & < &". For A > 0 and v > 1, we then have

VS 5, =4 I/S 5,, (16)

Proof: By Lemma 6.1, it is sufficient to prove (16) in the case where S consists of a
single vertex v. For this, it suffices to show that

Vie (X(0) = 4) 2 1] (X (0) = 4) (17)
and that . :
Ve (X (0) = B) < v e (X (v) = B). (18)

For £ € {A,0, B}Zd\{”}, define m4 (&) to be the number of vertices w with d(v,w) <1
that either have value A or have some nearest neighbour with value A, i.e.

mu(€) = |[{w e Z%: d(v,w) <1,3u € Z%\ {v} such that d(w,u) < 1 and &(u) = A}

and define mp(£) analogously. A direct calculation using the definition of ng shows

that
0 if mp(&) > 0
—2d—1 .
X(v):A) = 2/\)?_2% if mA(f) :mB(f) =0
A’y_2d_1+mA(€)
A’y_2d_1+m14(5)+1

Ay
Yoy
otherwise.

A key observation now is that 1/{ }5( (v) = A) is increasing in my4 (§) and decreasing in
mp(&) (this is where the assumption v > 1is needed). Moreover, m 4(§) is dec1easing in
& and mp (&) is increasing in £&. Combining these observations, we get that 1/{ 1 ‘E(X(v) =

A) is decreasing in &, so we can conclude that (17) holds. The other inequality (18)
follows similarly. |

Lemma 6.4: Let S; and Sy be finite subsets of Z® such that S; C S,. For A > 0 and

~ > 1, we then have

vy 2avgy. (19)

Proof: Let X; and X3 be random elements of {A, 0, B}Zd with respective distribution
1/;\;111 and VggA. By conditioning X5 on its values off S7 and applying Lemma 6.3, we get
that the projection on {A 0 B}S1 of Vg’ "4 1s stochastically dominated by the projection
on {A,0, B} of 1/ . Since I/b (X (Z2\ S1) = A) =1, we get (19) as an immediate

consequence. O

Proof of Proposition 2.5: By Lemma 6.4, we have
vy, < <
5,4 2d Vs A 2d

so that the limiting measure 1/2”7
general Gibbs theory as in the proof of Theorem 2.3, this limiting measure is a Gibbs

measure for the VLWR model with the given parameter values. Let v* be any Gibbs

exists by monotonicity. By the same reference to
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measure for VLWR model with the same parameters. By conditioning on the configu-
ration off S;, as in the proof of Lemma 6.4, we get that

A, A,
VSL-:YA 24V 77

and this inequality is preserved under limits, so that
le’w < v, (20)

This implies that le’w is independent of the choice of § = {S5;}%2, by the following
argument: If 1/2’7 and 172’7 are two limiting measures arising with two different choices
of S, then 1/;\1’W <4 17;\1” and 172’” <4 I/;\X’W by two applications of (20). This of course
M M Aﬂ/ ’“Aﬂ/
implies that vy" = 7",

We have thus shown (3) and the first half of (5). To show (4) and the second half
of (5) we use the exact same arguments with the roles of A and B interchanged. The
equivalence between nonuniqueness of Gibbs measures and (6) follows immediately from
(5). O

It remains to prove Theorem 2.4. Again, it is convenient to isolate two lemmas.

Lemma 6.5: For A >0, v > 1 and any v € Z¢, we have

lew — Vgn/
if and only if
Ay Ay
vy (X(v) = A) = vy (X(v) = B). (21)

Proof: The ‘only if” direction is immediate from the A B symmetry of the VLWR model,
so we proceed to prove the ‘if” direction. Suppose that (21) holds. Then, by translation
invariance of 1/2’”, we have

A, A,
V(X () = 4) = v} (X (w) = B) (22)
for all w € Z%. Further application of the AB symmetry of the model yields
1/;\1”\/()((?1)) =A) = V%’W(X(w) = B) (23)

and
(X (w) = B) = vy (X (w) = A) (24)

so that all four probabilities considered in (22), (23) and (24) are equal. By (5), we have

"/, so by Strassen’s Theorem we can construct a coupling of two {4, 0, B}Zd—

szy jd Vg
valued random objects X and X’ with respective distributions 1/3’7 and 1/%’7 such that
X =< X' almost surely. Writing P for some probability measure supporting such a

coupling, we get

P(X(w) = A, X'(0) 2 0) = v}"(X(v) = 4) = v (X (v) = A)
= 0

B) = 0. Hence P(X (w)# X'(w)) = 0. Countable

A A .
=0, s0 vy =vy" as desired. O

and similarly P(X (w) < 0, X'(w
additivity implies P(X # X')
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Lemma 6.6: Let S be a finite subset of Z%, and pick v > 2 and 0 < p; < py < 1. Then

iR <a i (25)

Proof: In view of Lemma 6.1, it is sufficient to prove that the right-hand side of (14)
is increasing in p and 7n’. That it is increasing in p is immediate, and to see that it is
increasing in 5’ it is sufficient to show that the expression

=1 (wm5) 91 =2 () (26)
is increasing in nj. To do this, we define k(w,n)) = K1(w,nf) + ka(w,n)) and rewrite
(26) as

~y —k1 (w,nf) 1 ,

s 9l—k w,n) 27

() (27)

Since 7 > 1, we have that this expression is decreasing both in k;(w,np) and in
k(w,ny), so it only remains to show that ki(w,n}) and k(w,n)) are decreasing func-
tions of nj. This, however, is immediate upon recalling that x;(w,n;) is the num-
ber of single-site connected components of w(w, n}) that intersect the “neighbourhood”
{u € Z%: d(u,w) < 1} of w, and noting that x(w,n}) is the total number of connected
components of w(w, n}) intersecting this neighbourhood. O

Proof of Theorem 2.4: By Theorem 2.3, we only need to show the monotonicity
statement which is implicit in Theorem 2.4, i.e. that if Ay < Ay, then the existence of
more than one Gibbs measure at intensity A; implies the same thing at intensity As. So
suppose that we have more than one Gibbs measure at intensity A;. By Proposition 2.5
and Lemma 6.5, this implies that

VM (X (v) = A) — v3"(X (v) = B) > 0,

i.e. that
li A1y X —A) — Aryy X - B 9
fim (VX (0) = 4) =g T (X () = B)) > 0 (28)
(the limit exists by Proposition 2.5). Set p; = 1_?_—1/\1 and py = 1-|A-—2AQ By Lemma 5.5,
(28) is the same as having

lim &7 (Y(v) =1, v ¢ Z'\ S) > 0.

=00
By Lemma 6.6, this implies

lim p27(Y (v) =1, v 4 Z*\ S) > 0,

—00

so that another application of Lemma 5.5 yields

. AQ, )‘27
lim (V32 7(X (v) = A) - V32 ](X(0) = B)) > 0.

1—00

Hence
v (X (v) = A) > v (X (v) = B)

so by Lemma 6.5 again we have more than one Gibbs measure at intensity As. O
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7 A multitype generalization

A natural generalization of the VLWR model is to allow three or more different types of
particles, rather than just the two types A and B. Let ¢ > 2 be an integer, let as usual
G = (V, E) be a finite graph, and let Ay, ..., A, represent ¢ different types of particles.
Call a configuration £ € {A;,..., A,,0}" feasible if for no 7,5 € {1,...,q} with i # j
and no v, w € V with d(v, w) < 2 we have £(v) = A; and {(w) = A;. Let n4,(§) denote
the number of vertices v € V for which £(v) = A;, and define n,(£) as in Section 2.

Definition 7.1: The multitype VLWR measure Z/qG’A’A’ on {Ay,..., A, 0}V with pa-
rameters ¢ € {2,3,...}, A > 0 and v > 0 is the probability measure which, to each
¢e{A,..., A, 0}V, assigns probability

1A nai@ama(©)  jf € s feasible
Vg;,)\y’Y(g) :{ ZLC];,A,V Y 5

0 otherwise.

Taking ¢ = 2 and identifying A; (resp. Ay) with A (resp. B) yields the ordinary VLWR
model. Note, however, that taking ¢ = 3 gives something entirely different from the
trinary model considered in Section 4. The multitype VLWR model can, of course, be
extended to Z¢ in the usual way, and it turns out that much of the theory for the VLWR
model obtained in previous sections can be extended in a straightforward manner to the
multitype VLWR model. For ¢ > 3 and v = ¢, the results in Section 3 can be extended
to yield an euqivalence between the multitype VLWR model and a kind of multitype
beach model considered by Burton and Steif [5]. For v > 1, we can also replace the
volume-interaction factor by a (¢ + 1)st particle type, and get multitype analogues of
the results in Section 4.

The multitype VLWR, model also admits a random-cluster representation as in Sec-
tion 5; the factor 2%2(") in (11) then has to be replaced by ¢*2(" . The proof of Theorem
2.3 can then be extended in a completely straightforward manner to prove the following
multitype generalization.

Theorem 7.2: For fixed d > 2, ¢ > 2 and v > 0, the multitype VLWR model on Z*
with parameters q, A and v has a unique Gibbs measure if A is taken to be sufficiently
small. If instead X is taken to be sufficiently large, then the model has more than one
Gibbs measure.

The extension of Theorem 2.4 to the multitype case is somewhat trickier, but can still
be done: The proofs of Lemma 6.5 and Theorem 2.4 easily extend to show that for
d>2,q>2and v > ¢, there exists a critical value A\. = A.(d, ¢,7) such that

YAy A v >0 if A> A,
v (X (v) = Ay — vl ()‘(”):‘41'){:0 if A< A, (29)

for j # i, where yg’_’y’A is defined analogously to I/A’A. It then only remains to prove

a multitype analogue of Lemma 6.5, i.e. to show that we have uniqueness of Gibbs
measures if and only if

VETNX () = A) = v (X (v) = A;). (30)

As before, the ‘only if’ direction is obvious, but the ‘if” direction is not. The proof of
Lemma 6.5 does not extend to the multitype case, because it makes essential use of
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stochastic domination with respect to the ordering A < 0 < B, and the state space
{A1,..., Ay,0} does not admit any natural such ordering. Instead, we have to make use
of the random-cluster representation in a careful adaption of a proof of a Potts model
analogue of the equivalence asserted in (30). That proof is due to Aizenman et al. [1]
and can also be found in [15]. Although somewhat tedious, this approach does work,
and we obtain the following generalization of Theorem 2.4.

Theorem 7.3: For fixed d > 2, ¢ > 2 and v > q, there exists a critical value A\, =
Ae(d, q,7) such that for X < )., the multitype VLWR model on Z? with parameters ¢,
A and v has a unique Gibbs measure, whereas for A > A. the model has more then one
Gibbs measure.

The lack of a natural total ordering of {A4,..., A;,0} makes parts of Proposition 2.5
impossible to extend to a multitype setting; there seems to be no sensible analogue of
(5) for ¢ > 3. On the other hand, the random-cluster approach shows that for v > ¢,

A Ay

the limit 47 = lim; 00 Vs A is well defined, a result that we made implicit use of in

writing down (29).
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