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Abstract

Consider a finite alphabet 2 and strings which consist of elements from 2.
For a given string w, let cor(w) denote the autocorrelation, which can be seen
as a measure of the amount of overlap in w. Furthermore, let a,(n) be the
number of strings of length n which do not contain w as a substring. Eriksson
[4] stated the following conjecture: if cor(w) > cor(w'), then ay(n) > ay/ (n)
from the first n where equality no longer holds. We prove that this is true if
|| > 3, by giving a lower bound for aw(n) — a,s(n).

1 Introduction

In this paper we consider a finite alphabet Q = {w1,...,w,} of size ¢ > 2. A finite
sequence of elements from the alphabet (2 is called a string. For a given string
w = (wy,...,wg), w; € Q, k> 2, which we refer to as pattern, we consider the
number of strings of length n which do not contain w as a substring. Following the
notation of Eriksson [4], we denote this number by a,,(n) and say that these strings
avoid w. Furthermore we write |w| for the length of the pattern w.

Guibas and Odlyzko [6] introduced the notion of autocorrelation of a pattern w.
If |w| = k, it is defined to be the binary sequence (bybg—1 ...b1), where b; = 1if w; =
Wk—i+j,J = 1,...,4, i.e. if there is an overlap of size i. This sequence can be viewed
as a binary number, and with some abuse of notation we let cor(w) denote both the
sequence and its value as a binary number. For example, if Q = {4,C,G,T}, i.e.
the DNA alphabet, and w = AACATTAACA, then cor(w) = (1000001001) and if
it is viewed as a binary number, then cor(w) = 2% + 23 + 29,

In Guibas and Odlyzko [6, 7] several results are derived in terms of autocor-
relations and correlations (which concern the overlap between different patterns).
One of their results is that asymptotically a,,(n) ~ c,0%, where ¢,,8,, > 0 are
constants which depend on the autocorrelation of w. Eriksson [4] shows that if
cor(w) > cor(w') then 6, > 6., and from these facts his main theorem follows:
there exists an N such that a,,(n) > a,(n), n > N, if and only if cor(w) > cor(w').
Furthermore, Eriksson [4] states a conjecture concerning the value of N which reads
as follows: if cor(w) > cor(w'), then ay(n) > aw (n) from the first n where equality
no longer holds.

In this paper we prove that this conjecture is true for ¢ > 3. In fact, we prove
more than the conjecture; we give a lower bound for a,,(n) — a,(n). We also give

*This work was done while the author was visiting Universitdt Ziirich.
fThis work was done while the author was visiting Universitit Ziirich, supported by the Swedish
Natural Science Research Council (NFR).



the precise value of n for which a,(n) # aw (n) for the first time, if ¢ > 2. In the
case of ¢ = 2, Eriksson [4] proved the conjecture in one special case and we have
succeeded in another special case. The general case for ¢ = 2 remains open.

Considering a sequence of independent random variables with a uniform distri-
bution over (2, we state the results in terms of probabilities. Finally, we discuss the
connection between the autocorrelation of a pattern and the expected waiting time
for its first occurrence in a random sequence.

2 Results

In this section the results are presented, while the proofs are deferred to Section 4.
The main result of this paper is the following.

Theorem 2.1 Assume w and w' are patterns of length k with cor(w) > cor(w'),
where cor(w) = (bg ...b1) and cor(w') = (b}, ...b1), and let r = max{i : b; # b}}.

(i) Then
Ay (N) = Ay (1), n<2k-—r, (2.1)
and

Gy (2k —7) = @y (2k — 1) + 1. (2.2)

(i) If ¢ > 3, then forn > 2k —r,

() = @ () > (1 =2) 3 (i) = aur i), (2.3)

(43¢) If the patterns are of different length; |w| =k and |w'| = j, j < k, then 2k —r
in the above formulae should be replaced by j.

Observe the assumption of Theorem 2.1 (éi): ¢ > 3. In the case of ¢ = 2, Eriksson
[4] proved the following proposition which handles one special case.

Proposition 2.2 (Proposition 0.2. Eriksson [4].) Assume ¢ = 2 and that the
autocorrelations of w and w' satisfy cor(w) = 2¥ and cor(w') = 2% — 1, ie. |w| =
kE+1, |w'| =k, cor(w) = (100...00) and cor(w') = (11...11). Then ay(n) —
Ay (N) = ay(n —k) for allm > k. ’ *

We have succeeded in another special case:

Proposition 2.3 If jw| = |w'| = 2 with cor(w) = (11) and cor(w') = (10), then,
forq=2 andn > 2,

(M) — ay(n) > ayp(n —1) —ay(n—1) + ay(n —2) — ay (n — 2).

We will now consider independent random variables X1, Xa, ..., taking values
in Q with the probabilities P(X; = w;) = 1/g, for all i and w; € Q. Let s,(n) be
the probability that w does not occur in the first n trials. Since the total number of
outcomes of X,..., X, is ¢", and among them a,,(n) do not contain w, it follows
that

sw(n) = aw(n)/q",
and we can state Theorem 2.1 in terms of probabilities.



Corollary 2.4 Let the assumptions of Theorem 2.1 be in force.
(i) Then sy(n) = sy (n), n < 2k —r1, and 5,(2k — 1) = 54 (2k — 1) + 1/¢%F 7.
(i) If ¢ > 3, then forn > 2k —r,

n—1

sw(n) — sy (n) > (¢ —2) Z[sw(@) — 54 ()] g~

i=1

(é44) If the patterns are of different lenghts; |w| = k and |w'| = j, j < k, then 2k—r
in the above formulae should be replaced by j.

Of course, Proposition 2.2 and Proposition 2.3 can also be formulated in probabilis-
tic terms.

Let T, denote the waiting time until the first occurrence of w, i.e. if |w| = k then
Ty, is the smallest i such that X;_,y; = w;, j =1,...,k. From e.g. Chryssaphinou,
Papastavridis and Tsapelas [3] we get the following formula for the expectation of
Tw:

||

E[T,] =) biq'.
i=1

Hence E[Ty] > E[Ty] if and only if cor(w) > cor(w') and the corollary below
follows immediately.

Corollary 2.5 The results of Theorem 2.1 and Corollary 2.4 hold if E[Ty,] >
E[Ty]-

For more literature concerning waiting times, we refer to e.g. Blom and Thorburn
[1] and Li [8], and in case of dependent X;’s, to Chryssaphinou and Papastavridis
[2], Gerber and Li [5] and Rudander [9].

3 Preparatory results and remarks

In this section we present some results, remarks and conventions which will be useful
in the sequel.

Strings which are shorter than the pattern w can, of course, not include w as a
substring. Also all strings of the same length as w, except the pattern itself, avoid
w. Hence, if |w| = k then

aw(n) =q"n=1,...,k—1, and ayu(k)=¢" —1. (3.1)

The following proposition, which is the key tool in this paper, gives a recurrence
equation for a,,(n) for all n > 0, when the convention that a,,(0) = 1 is used.

Proposition 3.1 Assume that w is a pattern of length k with autocorrelation cor(w)
(bpbg—1...b1). Then, for n >0,

k
ap(n) = Zbi[qaw(n+i—1)—aw(n—|—i)]. (3.2)

i=1

A proof of the above proposition can be found e.g. in Eriksson [4]. In (3.2) a,(n)
is expressed in terms of “future” values of a (i), i.e. ¢ > n. For us it is however
more convenient to express a,(n) in terms of a, (i), i < n, as in the following
two equations which follow immediately from (3.2). In the second one, we use the



convention that by = 1. This convention will be used repeatedly throughout the
paper. For n > k,

k-1
aw(n) = qay(n—1)—ay(n—k)+ Zbi[qaw(n —k4+i—1)—ay(n—k+1i)]
) (3.3)
and
k-1
aw(n) = Z[q bit1 — bilaw(n — k +1). (3.4)
=0

Remark 3.2. Note that it follows immediately from the recurrence equations for
aw(n) that a,(n) = ay (n) for all n if cor(w) = cor(w'). That the reverse impli-
cation holds follows from Theorem 2.1 (%), which in turn is a consequence of the
recurrence relation, as can be seen in its proof. (|

The number of strings of length n + 1 for which w does not occur in the first n
positions is equal to ga,(n). These strings can be divided into two groups; those
that end with w and those that do not end with w. The number of strings in the
latter of these groups is a, (n+1). Thus q ay(n) —ayw(n+1) is the number of strings
of length n + 1 ending with w and avoiding w in its first n positions. It is hence
true that forn < k-1

gay(n) —ay(n+1)=0, (3.5)

and forn >k —1
gay(n) —ay(n+1)>0. (3.6)

Furthermore, we have the following lemma valid for n > k — 1 and all ¢ > 2.

Lemma 3.3 If ¢ > 2, then forn >k —1

gay(n) —ay(n+1) >(q—2)niqaw(i)—aw(i+1). (3.7

A proof of this lemma is given in the next section.

Remark 3.4. By the definition of autocorrelation it follows that if a pattern w =
(w1, ..., wg) is of length k, then by = 1. Furthermore, if by_; = 1, then

k
cor(w) = (11...11),

since if by_1 = 1, then wy = wy, w3 = wa, ..., Wi = Wk_1, by the definition of by_1,
and hence wy; = wy = --- = wyg, which implies by = ... = b = 1. O
4 Proofs

In this section proofs of the results in the previous sections are given. To simplify
the notation, we will in the sequel let

a(n) = aw(n), a'(n)=aw(n), A)=aw(n)—aw(n),

f(n) =qau(n) —aw(n+1) and f'(n) =qaw(n) —aw(n+1), (41)

when this is more convenient.



Proof of Lemma 3.3. By (3.6) the inequality (3.7) is true if ¢ = 2. In the rest of
the proof we assume that ¢ > 3, and prove the inequality (3.7) by induction on 7.
By (3.1) we first note that (3.7) obviously holds for n = k — 1;

l1=qa(k—1)—a( an —a(i+1)=0.

Assume that (3.7) is true for all m such that k —1 < m < n. By (3.4) the
difference f(n) can be written as

>
|
—

fn) = qZ[qbz’+1_bi]a(n_k+i) [gbit1 — bila(n —k+i+1)

o
Il
<

= Ylgbiss — bilf(n— i+ (4.2)

We will distinguish between the cases where b1 = 0 and bg_; = 1. Assume first
that bx_; = 0 and recall that by = 1 (Remark 3.4), in which case gby, — bx—1 = q.
It is clear that

[gbr = bea]f(n=1) = [¢g—-2+2]f(n-1)
= (@=2)f(n=1)+2f(n—-1).

Apply the induction hypothesis on the right-most part of the above equation to get

n—2

[ab, —bea]f(n=1) > (g=-2)f(n—1)+2(g—2) ) f(i),

i=1

which inserted in (4.2) yields

k—2
fn) > (g=2)f(n—1)+2(¢—2 Zf )+ D lgbirs — bilf(n —k +1).(4.3)
=0

The troublesome part of (4.3) is [gb;r1 — bi]f(n — k + 4), since ¢b;11 — b; can be
negative, while f(n — k +4) > 0 by (3.5) and (3.6). To handle this, each such
term will be considered together with the corresponding term in the other sum in
(4.3). By the assumption that ¢ > 3 we have that 2(q —2) + gb;y1 —b; > 2¢—5 =
(g—2)+(g—3) >q—2. Thus

—k— k—2
fn) > (¢-2)f(n—1) +2q—22 i)+ Y _[2a=2) + b —bilf(n—k +1)

> @-2Y £,

and the lemma, is proved in case of by_; = 0.
k

If by—1 =1, then cor(w) = (11...11) by Remark 3.4, and minor changes of the
reasoning are needed. Inserting gb; 11 —b; = ¢— 1, for all 4, in (4.2) yields

k—1

f) = Y (a-1)f(n—k+i). (4.4)

=0



Now we apply the induction hypothesis on the summand (g — 1) f(n — k):
(¢-1f(n—k) = (¢=-2)f(n—k)+ f(n—k)

n—k—1

> (a=2fn—k)+(@=2))_f().

Inserting this bound in (4.4) gives the result in this case. ]

Now the main theorem, Theorem 2.1, will be proved. This is done mainly by
means of Lemma 3.3 and ideas similar to those used in the proof of that lemma.

Proof of Theorem 2.1. (%) From (3.1) we know that a(n) = da'(n),n =1,...,k.
We will now show that equality hold also for n = K+ 1,...,2k —r — 1. Pick an
ne€{k+1,...,2k —r — 1} and make the induction hypothesis that a(m) = a'(m)
for all m < n.

Using (3.3) and that f(i) =0 for i < k — 1 by (3.5), we get

k—1

aln) = qa(n—l)—a(n—k)+2bif(n—k+i—1)
-

= qa(n—l)—a(n—k)—l—Zbif(n—k+i—1).
i=2k—n

This sum involves only b;,i > 2k —n > r, and a(i), ¢ < n. These b;’s satisfy b; = b}
and a(i) = a'(i), i < n, by hypothesis. Hence

k-1
aln) = qd(n—-1)—-d(n—-k)+ Zb;f’(n—k+i—1).

i=2k—n

Furthermore, since f/(i) =0, ¢ < k — 1, by (3.5), we get that a(n) = da'(n).
The next step is to show that a(2k — r) = a/(2k — r) + 1. Using (3.3) and, as
above, that f(i) = f'(i) =0,i < k— 1, we get

k—1
a(2k—r) = qa(2k—r—1)—a(k—r)+Zbif(k—r+i—1)
- k—1
= qa@k—r—1)—alk—r)+bf(k—1)+ > bif(k—r+i—1).
i=r+1

Since f(k—1) =1 by (3.1), b, =1, b, = 0 and a(n) = a'(n), n < 2k — r, we have
al2k—r) = f(k—-1)+ad(2k-r)
= d@2k-r)+1,
which completes the proof of (7).
(#¢) From (i) it follows that

2k—r—1

1=a(2k—-71)—d' (2k—71) > (q—Z)Za(i)—a'(i) =0,

i=1

so (2.3) is true for n = 2k — r. To prove the case of an arbitrary n, we will use
induction and make the assumption that (2.3) is true for all m such that 2k —r <
m < n.



First we will consider the case where b,_1 = b;cq = 0. Note that this assumption
implies that & > 3. We use (3.4) and the fact that b; = b},7 = r+1,...,k, to express
the difference as

k—1
a(n) —a'(n) = Z[qbi_l,_l—bz'] (n—k+1i)— Z[qbwrl a'(n—k+1)
i=0

k—1
- Z[qu—bi]{a(n—kﬂ)—a'(n—kw)} (4.5)
i=r+1
+ lgbiss —bila(n —k+i) = Y _[qbly, —bila'(n — k +i)(4.6)
' i=0
The lines (4.5) and (4.6) in the equation above will be considered separately, and
we denote them by (A) and (B), respectively. Recall that A(7) = a(i) —a’(i). Since
br =1 and b;_1 = 0, it follows that

k—2
(A) = qAn -1+ [gbiy1 —b]An —k+1i), (4.7)
i=r+1
and by the induction hypothesis
gAn—-1) = (¢—2)A(n—-1)+2A(n-1)
> (g—2)A(n—1)+2(qg—2 ZA (4.8)

Combining relations (4.7) and (4.8) and arguing similarly as in the proof of Lemma 3.3,
we get

A) > (¢g—-2)A(n—-1)+2(¢g—2 ZA +i[qbi+1—bi]A(n—k+i)

i=r+1
n—k+r k—2
= (@-2Am-1)+2(¢—-2) ZA(i) fz [2(q = 2) + gbiy1 — bi]A(n — k +1)
n— :c+r o n—k+r n—2
> (¢-2)An-1)+(g—2 ZA +(g—2))_AG) +(g-2) D> A®)
i=1 i=n—k+r+1
n—1 n—k+r o
= (=23 A0+ (-2 A0 49)

Note that the goal is to show that (A) + (B) > (¢ — 2) 2?2_11 A(7). The latter

sum on the right-hand side of (4.9), which we know is positive by the induction

hypothesis, will be used to handle (B), which might be negative, as we shall see.
The next step is to rewrite (B) in a more tractable way as follows.

B) = qbr+1a(n—k+r)—boa(n—k)-i-ibif(n—k-i-i—l)

i=1
(qu_la(n—k‘—f—r)—b{]an— Zb' n—k—}—i—l)).

Using bo = by =1,b, =1,b;. =0, b1 = by, b1,...,0p10 >0, 07,04 <1,it
follows that

(B) > qerA(n—k—}—r)—A(n—k)+f(n—k+r—1)—if’(n—k+i—1).

i=1



(4.10)

By Lemma 3.3

r—1

Zf’(n—k+i—1) < éf’(n—k%—r—l)
=1

< flln—k+r-1),
which together with (4.10) yields
B) > gbry1iAn—k+r)—An—k)+f(n—k+r—1)—fn—k+r—1)
= [gbry1—1JAn—k+7r)—A(n—k)+qgAn—k+r—1). (4.11)
Furthermore ¢b,y; —1> —1 and A(n—k+7—1) > 0 by the induction hypothesis,
so that
(B) > —-A(n—k+r)—A(n—k). (4.12)

This expression is clearly negative, but recall that we have an “extra” contribution
from (4.9), which is positive. Summing (4.9) and (4.12) concludes the proof of (i)
in the case where by_; = b}, ; = 0:

n—1 n—k+r
An) > (¢=2)D AW +(@—2)D Al - An—k+r) —An—k)

n—1 n—k+r—1

= (-2 AD)+(a-2)Y A6 + (g - 3)[AMn —k+7)+A(n — k)]
=1 i=1,i£n—k

> (g—2) i A). (4.13)

What remains of the proof of (i) is to examine the special case where by_; = 1.
This means that b; = 1 for all ¢ = 1,...,k by Remark 3.4. Furthermore b}, , =0,
otherwise the autocorrelations would be the same.

What we need to show is that A(n) > (¢ — 2) 2?2_11 A(i) when the hypothesis
that this inequality hold for all m such that 2k —r < m < n is made. We use (3.3)

and the fact that by = ... =bg_1 =1 and bj,_, = 0 to write
k—1
A(n) = gqa(n—1)—an—k)+Y fln—k+i-1)
i=1

k—2
- (qa'(n—l)—a'(n—k)+Zb§f’(n—k+i—1)> .

Using b; < 1, that (¢ — 2) Zf:_f ffln—k+i—-1) < f'(n—2) by Lemma 3.3, and
that Y F7' f(n —k 414 —1) > f(n —2), since f(i) > 0 for all i by (3.5) and (3.6),
yields
An) > qAn—-1)—-An—-k)+f(n—-2)—f'(n—-2)
= (¢g—-1DAn-1)-An—k)+qA(n-2). (4.14)

Now we need to distinguish between the cases k¥ = 2 and k£ > 3. When k£ > 3, we
apply the induction hypothesis on 2A(n — 2) to conclude the proof:

n—3
An) > (@—-DAn—-1)—A(n—k) +(g—2)A(n—2)+2(qg—2) Z A(i)



Y

n—1 n—3
(¢—-2) Z AG) + (g =3)AMn —k) + (g —2) ) A(i)

i=1,iEn—k
n—1
> (¢-2) ) Ax).
i=1

If k = 2 it follows from (4.14) that
An) > (¢=1)An-1)+(¢—1)A(n—-2). (4.15)

Observe that this inequality holds also for ¢ = 2. Now the induction hypothesis can
be applied to either of the terms in (4.15); we choose the latter one to get

n—3
Am) > (¢-DAM-1)+(@-2)AMn-2)+(¢-2) Z Ai)

n—1
> (q - 2) Z A(l)a
i=1
which ends the proof of Theorem 2.1 (ii).

(#i%) What remains of the proof of Theorem 2.1 is to show the results corresponding
to () and (4) in case of different lengths of the patterns; |w| = k and |w'| = j < k.
This case requires a somewhat different technique, but the first step is as before: by
(3.1) a(n) = a'(n) for n < j, and for n = j we have a(j) = ¢/, while a'(j) = ¢/ — 1.
Hence the equalities in (2.1) and (2.2) hold if 2k — r is replaced by j.

As usual the proof proceeds with induction and by the above the basic step
follows:

J

=

1=a(j) —d'(j) > (¢-2) ) _a(i) —a'(i) =0.

=0

We assume that (2.3) is true for all m, j < m < n, and will show that it then
holds for n. First we will consider the case where |w| = k, |w'| = k — 1, cor(w) =

(100...00) and cor(w') = (11...11).
—— ———

k—1 k—1
Since b) =---=bj,_; =1,
k—2
a(n) = Z(q— a'(n—k+1+14),
=0

by (3.4). Hence
a'(n)—a'(n-1)=(¢-1)dn-1)-(¢g—1)a'(n-k),

which yields

a'(n) = gqd'(n—-1)—(¢g—1)d(n—k). (4.16)
Furthermore b; = --- = bg_1 = 0 so that by (3.3)
a(n) = gqan—1)—a(n—k). (4.17)

Using (4.16), (4.17) and applying the induction hypothesis on 2A(n — 1) yields



An) = (¢—2)A(n—-1)+2A(n—-1)-An—k)+(g—2)a’'(n— k)

> (q—2)A(n—1)—A(n—k)+(g—2)a'(n—k) +2(q — 2) i A(4)
i=1

= W=D Y A0+ (@-3Am-B)+ =D -K) +G-D Y AG)

i=1,i#n—k
n—1
> (-2YA0). (4.18)
i=1
In the general case we assume |w| = k and |w'| = j < k. Choose patterns v;
and v}, ¢ = 0,...,k — j with autocorrelations cor(v;) = (100...00) and cor(v}) =
k—i
(11...11). Note that such patterns always exist. Then a(n) —a’'(n) can be written
————
k—i

as a telescoping sum as

k—j—1
+) (ay(n) — ay, (n) + ay,_ (n) —d'(n)
=1

By (4.18)

n—1

Qy; (n) — Gy (n) > (q - 2) Z Ay, (Z) — Ay (Z)7

j=1
i=1,...,k — j. Furthermore w and v; are of the same lengths, which holds also
for v; and viy1,¢=1,...,k—j — 1, and for v}c_j and w’', so the other summands

can be handled by Theorem 2.1 (4) and we finally get

n—1 k—
a(n) —ad'(n) > (¢-2) Z {a(j) —ay, () + Y (av: () — au (4))
h—j—1
+Z(av:(.7) Qi1 (7)) + ay () _aI(J)}
n—1
= @-2) Y a() - ()

Proof of Proposition 2.3. Follows directly from (4.15) and the observation fol-
lowing it. [ ]
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