SOME OPTIMIZATION PROBLEMS FOR SECOND ORDER
DIFFERENTIAL EQUATIONS

KJELL HOLMAKER

ABSTRACT. The problems studied in this paper are to find the minimum of fol |g(t)| dt or
essSupP;e (0,17 [9(t)], where g appears in one of the coefficients of a second order differential
equation whose solution satisfies certain boundary conditions. The infimum of the integral
is in general not attained for any L!'-function g, but by a special transformation a related
control problem is obtained where the infimum is attained and is the same as in the original
problem. The new problem is solved by a detailed analysis of the necessary conditions for
optimality. The other problem is solved in a similar way using a maximum principle for
minimax problems.

1. INTRODUCTION
In this paper we study the differential equation
y' —2by' + (c—q(t))y=0, tel0,1], (1.1)
with boundary conditions

y(0)=a, ¥'(0)=1, y(1)=0, (1.2)

and we consider the problem of minimizing

/0 lg(t) dt (1.3)

esssup |q(t)] - (1.4)
t€[0,1]

This problem generalizes or is related to optimization problems that have been studied
before. A special case (with a = b = 0) was studied by Borg [2] in connection with stability
questions. In the papers [5], [6], and [8] optimization problems for the equation (1.1) with
b = ¢ = 0 were solved. There the integral (1.3) has a given value, and the problem is to
maximize or minimize y(1). These investigations were motivated by some previous results by
Essén [3]. A differential equation of the form (1.1) (with ¢ = 0) was used in [7] to describe the
concentration of a substance being eliminated by enzymes in the liver, and some optimization
problems concerning the flux (related to y') were considered.

If y is replaced by ey, then we obtain a differential equation of the form (1.1) with b =0
and c replaced by ¢ — b%. In (1.2) the value of 3'(0) is changed to 1 — ab. It is therefore no
restriction to let b = 0, and we will use the following formulation:

y'+(c—qt))y=0, telo1] (1.5)
y(0) =a, y(0)=8, y(1)=0, (1.6)
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where « = 0 and 8 = 1, or @ = 1 and f arbitrary (8 = % — b in terms of the original
parameters). First we consider (1.3).

2. REFORMULATION OF THE PROBLEM

The infimum of (1.3) is in general not attained for any L!-function g. Following [5] we
will first transform the problem into an equivalent one with bounded controls. Then, after a
compactification and convexification, we obtain a problem whose infimum is attained, and it
turns out that this gives the solution to the original problem.

First, let us write (1.5)—(1.6) as a first order system

I
y} Y2, (21)
Yo = q(t)yr — ey,
with boundary conditions
y1(0) =, 12(0) =8, (1) =0. (2.2)

Here, ¢ € L'(0,1), and the solution of (2.1) is in the Carathéodory sense, i.e., y; and yy are
absolutely continuous functions that satisfy (2.1) almost everywhere. Assume that (2.1) and
(2.2) are satisfied for some ¢. Define

o(r) = /0 Ut lg))ds, T, = ().

Then ¢ is absolutely continuous, strictly increasing, and maps [0, 1] onto [0, ¢;]. Its inverse 1
is also absolutely continuous, and we define
a(y(t))

z(t) =), i =12 ult) = e

Using properties of absolutely continuous functions (see in particular [10, 1.4.43]) we see that
1, T2, and u satisfy

t e [0, tl].

) = (1 - [uf)z2,
zh = uzy — c(1 — |u|)z1, (2:3)
z1(0) =a, z2(0) =0, z1(t1) =0, (2.4)
where
lu(t)] <1, teo,t], (2.5)

and t; satisfies

1= /0 ") d. (2.6)

That w is measurable follows from the fact that an absolutely continuous function maps
measurable sets onto measurable sets. Conversely, if z; and zo satisfy (2.3) and (2.4) for
some ¢; and some measurable function u satisfying (2.5) and (2.6), we define

() = /0 (1~ fu(s)) ds, te[0,h])

which is absolutely continuous, strictly increasing, and maps [0, ¢;] onto [0, 1]. With ¢ as the
inverse of v, we let

u(ep(7))

=T fupe T €O

yZ(T) = xi((p(T)), =1, 2, Q(T)
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Then y; and y9 satsify (2.1) and (2.2). In any case

/0|q(7)|d7:/0 lut) dt = t1 — 1, (2.7)

so we have transformed the problem to the time optimal problem for (2.3)—(2.4) with con-
straints (2.5)—(2.6).

Because of the strict inequality in (2.5), the infimum of ¢; is in general not attained. We
therefore replace (2.5) by the constraint |u(¢)| < 1. This does not change inf ¢1, which we will
demonstrate later (at the end of Section 5) when the solution of the extended problem has
been obtained. To handle the constraint (2.6) we introduce a state variable z3 satisfying

oy =1—|u(t)], =z3(0)=0, z3(t1)=1.

Because of a lack of convexity in u we still cannot be sure that the infimum is attained.
Therefore we consider the relaxed problem (see [1, IV.3]) instead. Thus we will consider the
following problem: Find mint; subject to

T = Touy, (2.8)

Th = T1up — cT1UY, (2.9)

Th = uy, (2.10)

z1(0) =, z2(0) =0, z3(0)=0, (2.11)

z1(t1) =0, =z3(t1) =1, (2.12)

u1(+), uz(-) measurable, (2.13)

(u1(t),ua(t)) € Q= {(u1,u2) ERZ: 0 <wuy <1—|ugl}, t €[0,%]. (2.14)

According to an existence theorem such as |1, ITII.5.1] this problem has a solution (referred
to as an optimal solution of (2.8)-(2.14)). We shall see that any solution is such that u(t) =
1 — |ug(t)| a.e. and is therefore a solution of the original problem (with u = us).

Remark. To be on the safe side we should convince ourselves that the set of solutions to
(2.8)—(2.14) is not empty. This could easily be done now, but will follow from the next section
where we construct explicit solutions that are candidates for the optimal solution.

3. ANALYSIS OF THE NECESSARY CONDITIONS
Let (z,u) = (x1,22,23,u1,u2). Assume that (z*,u*) on [0,¢]] is an optimal solution of
(2.8)—(2.14). Let n = (n1,7m2,7n3) and introduce the Hamiltonian function

H(z,u,n) = mzous + n2(z1u2 — cxiur) + n3u;.

From the theory of necessary conditions for optimality (see, e.g., [1, Corollary V.3.1]) we know
that there exist absolutely continuous functions 7, (-), 72(-), 73(:) on [0,%;] and a constant Ag
such that



4 KJELL HOLMAKER

OH . .

m = T w2 + cnauy, (3.1)
8H .

g = T ory —Mmuj, (3.2)
13 = const., (3.3)
n2(11) =0, (3.4)
H(*(6) w" (6 1(0)) = max H(a* (0, w0(0) = =X > 0ace. on [0,6],  (35)
()‘Oa"]l (t)a772(t)7 7]3) 7£ (07 Oa 07 O) for all ¢. (36)

By changing u} and u} on a set of measure zero, if necessary, we may assume that (3.5) holds
for all ¢ € [0,¢7]. In the following we omit the stars on z*, u*, and ¢7.
As in [5] we write H as

H = s1u1 + saug, (3.7)

where

81 =M1x2 — CNL1 + 13, 82 =121,

and we will work in the s-plane, s = (s1, $2).

We see that the differential equations (3.1)-(3.2) for 7, and 7, are the same as (2.8)-(2.9)
if n1 is replaced by zo and 7y by —z1. From the conditions (2.12) and (3.4) it then follows
that there exists a constant § such that

m(t) = dz2(t),  me(t) = —dz1(2).
Thus

51 = 0x5 + cdz? + 13, s9 = —0x7. (3.8)

First, let us show that Ay # 0. Assume the contrary. It then follows from (2.14), (3.5), and
(3.7) that so(t) = 0, s1(t)ui(t) =0, and s1(t) < 0 for all ¢£. Since z; cannot be identically 0,
we must have § = 0 according to (3.8). Then s1(¢) = n3 < 0. By (3.6) we must have 73 < 0.
But then u;(¢t) = 0 for all ¢, which is impossible since fgl u1(t)dt = 1 [see (2.10)—(2.12)].
Therefore we must have Ay < 0, and we may assume that Ay = —1.

Thus the maximum principle (3.5) gives

s1(t)ui(t) + sa(t)ua(t) = Iq?eagc[sl(t)ul + s9(t)ug] =1 (3.9)

for all ¢ € [0,¢;]. This makes it possible to express u1(t) and u2(t) in terms of s;(t) and s2(t).
Indeed, if we let s = (s1, $2) and

Dy ={s:51 > |52},

Dy ={s:s9>0and s2 > 51},
D3 ={s:s9<0and ss < —s1},
Ly = {s:s9 =81 > 0},

L3 ={s: sy =—s1 <0},
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then it follows from (3.9) that

ui(t) =1, we(t) =0, ifs(t) € Dy,

ui(t) =0, wo(t)=1, ifs(t) € Do,

ui(t) =0, wue(t)=-1, if s(t) € Ds,
ui(t) +ue(t) =1, 0<wui(t) <1, ifs(t) € Lo,

ui(t) —ue(t) =1, 0<wu(t) <1, ifs(t) € Ls.

The location of s(¢) in the s-plane is illustrated in Fig. 1. To see how s(¢) moves we compute
the derivatives, using (2.8)—(2.9) and (3.8):

81 = Sua, 3.10
sy = —Suy, (3.11)
where
S = 26:E1:L‘2. (3.12)
Thus, the sign of S determines how s(¢) moves. This is indicated in Fig. 1.
S92 L2
UL +us =1
S>0 S<0
u; =0 S>0 p, wm=1
Dy uy =1 Vug =0
S1
Uy =
D; Uy = —1 S<0
S<0 S§>0

Ul—U2:1
Ly

FI1GURE 1. Possible movements in the s-plane.

We also need

d
S = 20— (z122) = 2(s1 — M3 + 2¢89)u1 — 289us.

dt
In particular,
S'=-2 inDyU D3, (3.13)
S' =2(1—n3) +4csy in Dy. (3.14)

By the same type of arguments as in [5] we find that the set of ¢-values for which s belongs
to Ly or L3 is empty or consists of a finite number of intervals. Let us assume that s(¢) € Lo
on an interval [t',¢"] of positive length. On this interval, S = (u; + u2)S = (s1 — s2)’ =0 by
(3.10)=(3.11). Since sy = —dz? = 1, (3.12) implies that x5 = 0 on [/, #"]. Then (2.9) gives
ug = cui, and since u; + ug = 1,

1 _c
1+c 2T 1+¢

U = (315)
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and we must have ¢ > 0. In the same way, if s(t) € L3 on [t',"], then we must have ¢ < 0.

Since s3(t1) = —6x2(t1) = 0, s(t) € Dy in the last stage. We may start in Dy, but once
s(t) has left Dy it cannot come back, because if it did, S would be negative and decreasing
[see (3.13)], and s(t) could not leave Dy again.

There are two main cases, ¢ > 0 and ¢ < 0, and also the special case ¢ = 0, and we shall
analyse them separately. We want to find all solutions of (2.8)—(2.14), (3.1)—(3.6). For some
values of the parameters there will be more than one solution. Then we must compare the
different candidates to find out which one is optimal.

4. THE CASE ¢ >0

In this section we assume that ¢ > 0. Let

k=+C.

Since s3(t1) = 0, there is a maximal interval [11, %] such that s(¢) € D for all t € (1,#1]. On
this interval we have u; = 1, ug = 0, and [by (2.8)-(2.9)]

T = z9, (4.1)
xh = —k%x;. (4.2)
Using z1(t1) = 0, we find that the solution is
1
:L‘l(t) = —.Tz(tl)z sin k(tl - t), (43)
x9(t) = x2(t1) cos k(t1 — t), (4.4)
so that
dx(t1) .
so(t) = — 2(2 ) sin? k(t; — t). (4.5)

We must have z5(t1) # 0 [otherwise z; and z2 would be indentically 0, contradicting (2.11)].
We now consider a number of cases classified after their behaviour in the s-plane.

Case 1. 1t is possible that s belongs to D; for all ¢ € [0, ;] except for some isolated points
where s may lie on Ly or L3 . In this case conditions (2.10)—(2.12) for z3 give

t1
/ ul(t)dt:tl =1.
0
The solution (4.3)—(4.4) holds for all ¢ € [0,¢1]. The initial conditions (2.11) give
_2(1)
k
Therefore this case may occur only if
sink =0, ifa=0,
B=—kcotk, ifa=1.
If this case does not occur, then 71 > 0 and |sg(71)| = 1. Let £ =¢; — 7. Then (4.5) shows
that we must have 0 < k£ < 5. We also define

A =kcotkl, (4.6)

sink = a, z2(1) cosk = L.

so that $2(11) = —A.
Consider first the case so(71) = 1. Before 71 we may have a Ds-stage; we call this a solution
of type DyD; following the notation in [5]. It is also possible [if S(71) = 0] for s to oscillate
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in D; between (1,1) on Lo and (1,0) a number of times, and each time s reaches Ly it may
stay there for a while before entering D;. We obtain the following possibilities:

DyDy, DaLy(D1Ly)" 'Dy (n > 1), Lo(D1Lo)" ' Dy (n>1),
D1 Ly(D1Lo)" 'Dy (n > 1).
By 71, 79, T3, ... we denote the ¢-values (in decreasing order) when we enter or leave Ly; some
of them may coincide.
Case 2 Dy D1. On [0, 7] we have u1 =0, ua =1, 1 = @, and z2(t) = B+ at. The following

equations must hold:

zo(m1) = B+ am = —Aa,
/Otl wn(t)dt = 0= 1.
Then A = kcotk, « =1, and 71 = —F—k cot k [see (4.6)]. Since 71 > 0 we have the conditions
B < —kcot k, O<k§g. (4.7)

Also, t1 =11 + £ =11 + 1, so that the value of the objective functional (2.7) is
ti—1=—0—kcotk.

Thus a solution of the type DyD; may be optimal only if (4.7) is satisfied. Conversely, as
soon as (4.7) is satisfied, a solution (optimal or not) of this type can be constructed. A similar
remark can be made for all the other cases.

In the cases involving Ly we must have k¢ = 7, because S(11) = —s5(m1) = 0. Also,
S(1j) = 0 and z2(1j) = 0 for all points 7; [for the last statement use (3.12) combined with
s2 = 1]. On a typical D;-interval [19;41, T9;] from Lo back to Lo we can solve the differential
equations with the conditions zo(72;1+1) = 0 and sa(2;+1) = 1 to obtain so(t) = —dz3(t) =
COSQk(t — T2i+1). Thus k(TQi — T2i+1) =T, Or T9; — T2;4+1 = 20 = %

Case 3a DyLy(D1Lo)™ 'D;. On the first interval [0, 72,] (the Dy-stage) we have as in
Case 2, z2(t) = f + at, so that z2(12,) = f+ amo, = 0. Thus @ =1, and o, = —f. If T, is
the sum of the lengths of all Lo-intervals [19;, 72;_1], we obtain from (3.15)

t 1 s s Ty,
t)dt = —1 T — _I\& 2 =1
/0 w(t) dt = (n )k+ iyt =yt e =t

™ ™

t1272n+(n—1)%+TL2+ﬂ:(n— )k‘ ﬁ+TL2,
k‘2
t1—1——ﬁ+TL21 % =—B+kk—(n—3)m]. (4.8)
The condltlons for this case are 79, > 0 and T, > 0, i.e., 6 <0 and k > (n — —) Ifn=1
and k = 7, this case is included in Case 2, so we consider only k > 7 here. However, since

the right- hand side of (4.8) is decreasing in n, we need only consider the largest n such that
(n — 3)m < k. For a fixed n the restrictions on k are

s 3m

— — ifn=1
5 k< 5 ifn ,
)

<
n—Hr<k<(m+i)r ifn>L
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Case 3b Ly(D1Ly)™ 'D;. The analysis is the same as in Case 3a with 8 = 0, except that
Tp, > 0 (T, = 0 is included in Case 1). Thus the conditions for this case are

B=0, (n—Hr<k<(n+i)m

Case 4 D1Ly(D1L2)" 'D;. On the first interval [0,79,] (the Di-stage) (4.1)—(4.2) and
(2.11) give

z1(t) = acoskt + %sin kt,

z2(t) = Bcos kt — ak sin kt.
From z2(72,) = 0 we get
B cos kTop, = ak sin ktoy,.

If o = 0, then krp, = T (since 0 < kmp, < ). If @ =1, then ktan ko, = 3, or

~—

k7o, = — — arctan —.

b | 3

As in Case 3 we must have

t1
/ u(t) dt = Top + (n — 3)
0

19

1
e Tl

k
1 7r
t1 = Top + (n - E)E +1T%,,
k2 k
tl —1= TLzl—{——kZ = k(k — nm + arctan B) (49)

The only further condition is T7,, > 0 (77, = 0 is covered by Case 1), i.e., k > nmw — arctan %,

but we need only consider the largest n for which this is true. For a fixed n the restriction
on k and (3 is

k
nm < k + arctan 3 <(n+1)m. (4.10)

Next we consider the case sa(71) = —1 in the same manner. Since ¢ > 0, there cannot be
any Ls-interval according to Section 3. The possible forms are

D3(D1D3)"D; (n>0), D1D3(D1D3)" 'D; (n>1).

If S(m1) = 0, then s cannot belong to D3 just before 71 (in D3, s{ = —S’ = 2), and we must
have Case 1. Thus S(r1) <0, and k¢ < 5. Consider a typical D3-interval [79;, To;_1] from L3
back to Ls. Since s| =2, s1(79;) = s1(72i—1) = 1, it follows that s} (72; +0) = —s)(72;-1 — 0),

i.e., S(mi) = —S(m2i-1), and also that 79,1 — 70; = S(79;). Furthermore, x; is constant on
the interval, and (3.12) implies that

i) 9

—(712;) = ——(m2i-1)-

$1( 21) 371( 21 1)

Consider a typical Dq-interval [79;41,7T2;] from Lg back to Ls. There so satisfies [see (3.11)
and (3.14)]

8’21 + 4]{}282 = 2(’]73 — 1),

s2(72i41) = s2(12i) = —1,
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the solution of which satisfies s5(79;11 +0) = —sh(m2; — 0). Thus S(m;4+1) = —S(72), and
(3.12) implies that
x x
o (1) = = 2(m).
Since s(t) = —Siné = sin? k(t;—t) on [y, t1], it follows that S(71) = —sh(71+0) = —2k cot kf =
—2); see (4.6). Also 22(r1) = —A. Thus
2 (1) = N=1)%, S(r5) = 2A(=1)’. (4.11)
Z1
Then Sg(t) = —Siné o, sin2k(t + L — TQZ') on [TQ,’+1,TQZ'], which shows that T2; — T2+1 = 24.

Thus all Ds-intervals [79;, 79; 1] have length 2), and all D;-intervals [79;11, 72;] have length
2¢. The sum of the lengths of all Di-intervals (including the first and the last one) is equal

to Ot "y (t)dt = 1, and t; — 1 is equal to the sum of the lengths of all Ds-intervals (including
the first one).

Case 5 D3(D1D3)"D;. On the first interval [0, 79,+1] we have u; = 0, us = —1, 1 = «,
and z2(t) = 8 — at. From condition (4.11) at 79,41 we see that @ = 1, and

B—Tont1=—A, Topp1 =0+

Furthermore,
1
Wl +L=1, (=
mett=14 m+ 1
and
—1= 2nA = 2 1 . 4.12
t Tont1 +2nA =6+ (2n + )kco‘52nle (4.12)
The conditions 0 < 79,41 < 2A give —A < 8 < A, ie.,
k T
—k cot < kcot 0< < —. 4.13
Cob o1 <SPS koot T M1 2 (4.13)

Since the right-hand side of (4.12) is increasing in n, we need only consider the smallest n for
which (4.13) holds. That is, for a fixed n we consider those k and [ that satisfy

—kcotk < B<kcotk, 0<k< g ifn =0,

—k cot

< —kcot
omg1 PSS TheotgTy or
. 1
kcot2n_1<ﬁ§kcot2n+1, ifk<(n—g3)m n>1,
k
—kcot2n+1<ﬁ§kcot2n+1, if(n—Hr<k<(n+3)mn>1L

Case 6 D1D3(D1D3)""'D;. On the first interval [0, 79,], 1 and x5 satisfy (4.1)-(4.2).
Using (4.11) the solution can be written

~ z1 (7o) sink(£ 4+t — 7o)

N sin k/ ’
_ kx1(mon) cos k(L +t — 7o)
B sink/ '

xl(t)

z9(t)
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We must have 0 < 75, < 2/, so that

—g<—ugkw—mg<u<g. (4.14)
Consider ¢t = 0. If @ = 0, then sink(£ — 1o,) = 0, and 79, = £ by (4.14). If @ = 1, then

B = zjgg; = kcot k(£ — 2p).

By (4.14), 8 # 0, and

k(¢ — T9,,) = arctan E

g

We must also have
Ton + (2’/7, — 1)@ =1.
If =0, then 79, = £ = 5=. If & = 1, then

2n°
1 1
k(2nf — 1) = arctan %, L= %(1 + Z arctan %)
By (4.14) the conditions on k and [ are
k k
_ < e .
2n_|_1_auvctamﬁ<2n_1, (4.15)
k
k + arctan — < nm. (4.16)

B
Finally,

1
t1 — 1 =2n)\ = 2nk cot [%(k + arctan %)]

Again it is enough to consider the smallest n such that (4.15) and (4.16) hold. For each n we
therefore only consider k and § that satisfy (4.15) and

n—Dr<k+ arctan% < nm.

So far we have found six different possible forms for the optimal solution. Let us summarize
the results by listing the conditions for each case and the corresponding value of ¢; — 1.

(1) B=—keotk ifa=1, sink=0 ifa=0,
t—1=0.
2) B < —kcotk, 0<k<g

t1—1=—B—kecotk = Fy(k, B).

s
3 Tek<Z n=1
(3) 5 <k<o :
(n—3r<k<(n+3)m n>1,
p <0,

t1—1=—p+klk—(n—g)n] = Fu(k,6) (n>1),
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(4) nr < k+ arctan% <(n+lm, pB#O0,
t1 — 1 =k(k — nm + arctan g) =Gp(k,B) (n>1),

[arctan% =0if o =0].

(5) —keotk < 8 < kcotk, O<k<g,n:O,
k
_ < _
kcot2n+1<ﬁ_ kcoth_1 or
< -1 >
kcot2n_1<ﬁ_kcot2n+1, 0<k<(n—g3)m, n>1,
_ < -bhr< 1 > 1.
kcot2n+1<ﬁ_kcot2n+1, (n—z)r<k<(n+3z)m n>1
1= = >0).
t1—1 ﬁ+(2n+1)kcot2n+1 H,(k,B) (n>0)
k
(6) (n—l)ﬂ§k+arctanﬁ<n7r, B #0,
k
< —
ﬁ>kcot2n_1>0 or < kcot2n+1<0,
1
t1 —1 =2nkcot [%(k + arctan g)] =Jn(k,8) (n>1).

Consider the region defined by the inequalities in (6); see Fig. 2.

/6 k—}—arctan%:Zﬂ
k—}—arctan%:n k+arctan%:37r
ﬁ:kcot%
_ k
B=kcotk B=keotg
k
B =—kcotk
8= —kcot &
8 ﬁ:—kcot%

k + arctan % =27

k +arctan§ =7

FIGURE 2. The regions defined by (6).

Let us show that Case 6 is always better than Case 5 in this region. If (k, ) is a point
there with 8 > 0, then

k cot

< B < kcot for some m > n.

2m —1 2m +1
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Since £ < 2L (k + arctan %) <7,

JIn(k,B) < 2nk cot % < B+ (2n+ 1)k cot
2nk

If 8 <0, then 8 < —k cot anﬁ, or arctan% > —anﬁ, so that k + arctan% 2 Gt and

2n+1

for some m > n,

—k cot < B < —kcot

2m + 3 2m +1

Jn(k, B) < 2nk cot

< 2 1)k cot
2n_l_l_ﬁ-l—( n+ 1)k co ]

= Hn(kaﬂ) < Hm+1(k7ﬁ)'

Let us compare Case 6 and Case 4 (with n — 1 instead of n, n > 2) in this region. Let
v = k + arctan %, so that (n — 1) < v < nw. Then

In (K, B) — Gn_1(k, B) = 2nk cot % — k[ — (n — 1)7]
= k[2n cot % —v+ (n— 1)
Let v, be the unique solution of the equation
2ncot%:v—(n—1)7r, (n—1)7m <v<nm.
Then
Gn-1(k,B) < Jp(k,8) if (n—1)7 <k+ arctan% < VUp,

Gn-1(k,B8) = Jn(k,B8) ifk+ arctan% = v,
In(k,B) < Gp-1(k,B) fv, <k+ arctan% < nmw.
If8<0andk+ arctan% > m, then

Gulk, ) ~ Fass(5,0) = -+ k(arctan 5 + 7)
= k(arctan% + g + g) <0,

so that G, < Fj41, and also G, < F,.
In the region

k
nm < k + arctan 5 < (n+ 1),

k
< kcot ——
0<pB<kco 1

we want to compare H, and G,,. The equation

k k
o+ 1 —k(k —n7r+arctanﬁ) =0
defines a curve that divides the region into two parts. In the left part G, < H,, and in the
right part H, < G,. If instead —k cot %kﬁ < B <0, we compare H,; and G,. In the same
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way we consider the regions where Cases (2) and (6), (3) and (6), and (3) and (5) overlap.
The result is illustrated in Fig. 3 where each region is labelled with the name of the function
that yields the smallest value of ¢; — 1.

B
J1 G1 J2 G2 J3 G3 J4
H() Hl H2 H3 k
F
R
J1 G1 Jo G2 J3

FI1GURE 3. Regions for different forms of the optimal solution.

5. THE CASE ¢ <0
First we assume that ¢ < 0. Let
k=+—c.
In this case we obtain for ¢ € [r1, 1]
(1) = —wg(tl)% sinh k(t, — 1),
x2(t) = wa(t1) cosh k(t; — t).

These formulae, like many others in this section, may be obtained from the corresponding
formulae in the previous section by replacing k by ik.

This time too sa(t) may belong to D; a.e., but only if 3 = —kcothk (see the argument in
Case 1). If this is not the case, then 71 > 0, and |sa(71)| = 1. As in (4.6) we obtain
Z2

—=(m1) = =\ = —kcoth K/, L=t — 1.
I

If s9(m1) = 1, then the only possibility is a solution of the form Dy D; (since we cannot stay
on Ly when ¢ < 0). As in Case 2, £ =1,

%(’Tl) =B+ 71 =—\= —kcothk,
1

and
t; —1 = —f — kcothk = Fy(k, f), (5.1)
where
B < —kcothk.
If so(71) = —1, we may have the cases

D3(D1D3)"D; (n>0), D;D3(D;D3)" 'Dy (n>1)
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as before. We still have the relations (4.11).

Case 5 D3(D1D3)"D;. Instead of (4.12) and (4.13) we get

K ~
t1 —1=p+(2n+ 1)k coth i Hy(k, ), (5.2)
K K
— < h .
KJCOth2n+1<ﬂ_KJCOt T 1

Since H,,(k, 3) is increasing in n, we need only consider

—kcothk < B < kcothk ifn =20,
K

K
— h < — h
K cot 2n+1<ﬁ_ K cot o —1 or
f<;(:oth2nm_1 <ﬁ§f<acoth2n':1 ifn>1.

Case 6 D1D3(D1D3)™ 'D;y. On [0, 72,] we have as in Case 6
%(t) = kcothk(€ +t — Top).
I
If @« =0, then 7, = ¢, and if « = 1, then

B = kcoth k(€ — T9,,).

Furthermore, T, + (2n — 1)¢ = 1, so that 7o, = £ = 5- if a =0, and

1 1
ﬁzﬁ(l—kgarctanh%) lfOézl
Also,
t1 — 1 =2n\ = 2nk coth sl
1 ~
= 2nk coth [—(k + arctanh E)} = Jn(k, B). (5.3)
2n B8
The conditions 0 < 79, < 2¢ imply ﬁ </l< %%1, so that
K K K
— tanh < - <tanh—
T A
ie.,
K K
h < — h .
B > kcot o — 1 or B< —kcot o 1

But if this is satisfied for some n, it is satisfied for n = 1, and since J,(k, 3) is increasing in
n, we need only consider the case n = 1.
If K coth 5. < B < K coth 5% (n > 1), then
(n+ 1k
1
and if — coth 'jrl < B < —kcoth 5% (n > 2), then

2n
~ (n—1)k K
J <2 th—— < 2 th
1(k, 8) < 2kco 5 — 1 < 2KcOo 1

For —kcoth § < 8 < —rkcoth k we have

Fo(k, B) = — — ki cothk < ﬁ+3ncoth§ = Hi(x, B).

jl(K”/B) S 2k coth < ﬁn(K‘JIB)a

< Hy(k,B).
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Finally, we must compare J; and Fy for 8 < —k coth 5. The equation

Ji(k,B8) — Fy(k, B) = 2k coth [%(n + arctanh %)] + B+ kcothk =0

determines a curve above which Fy < jl, and below which J; < Fj.
The solution in the case ¢ = 0 can be obtained if we let kK — 0 (or £ — 0 in the previous
section).

Now we know the solution for each (x, 3). The result is illustrated in Fig. 4. The minimum
values of ¢, — 1 are given by (5.1), (5.2), and (5.3) withn =0 or n = 1.

g

Ji B8 =kcothk

Fy B = —kcothk
-3 -2V2

J1

FIGURE 4. Regions for different forms of the optimal solution.

Remark. In Section 2 we stated that inf¢; is not changed when passing from the constraint
lu(t)| < 1to |u(t)] < 1. We now know that the optimal controls of the latter problem are such
that u(¢) = 0 on an interval (71,¢1]. Let u be such an optimal control. Define for 0 < ¢ < 1,

wnlt) = {(1 —e)u(t) on [0,71),

UuQ on (71,t1,¢),

where ug is a constant, and

/ Cua)dt = (1—¢) / " @) dt + o] (tre — 1)
0 0
= (1 — 8)(t1 — 1) + |’U,0‘(t1’5 — ’7'1) = tl,g —1,
(1 —|uo|)(t1,e — 1) =t1 — 11 — ety — 1). (5.4)

The corresponding solution (z1.,z2,) of the differential equations differs from (z1,z2) at 7
by O(e) (as € = 0). On [r1,%1,] we can write down the solution explicitly. The condition
z1,.(t1,e) = 0 gives an equation for ug [t1 . only appears in the expression (5.4)]. The solution
is ug = O(e), and then (5.4) gives t1 . = t; + O(g). This proves the statement about inf¢;.
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6. TWO MINIMAX PROBLEMS

Instead of the L'-norm in (1.3) we now consider the L®-norm (1.4). The corresponding
optimization problem (a minimax problem) is solved below (Problem 1). In [2] a problem of
this type was studied with the additional constraint fol q(t) dt = 0. We are going to solve this

problem too (Problem 2).
Problem 1. This time there is no transformation of the problem, but we prefer to use
standard notation, so we consider the following problem: Minimize

C(u) = esssup |u(t)] (6.1)
t€[0,1]
subject to
T = 19, (6.2)
Th = uz1 — cz1, (6.3)
71(0) = o, 32(0) =B, (6.4)
z1(1) = 0. (6.5)

There exists an optimal control — see [9, p. 262]. Let (z*,u*) = (z7,23,u*) be an optimal
solution of (6.2)—(6.5). We can apply [4, Theorem 2.2] to obtain necessary conditions for
optimality. Let

C*= min C(u)=-esssup|u*(t)].
u€L>(0,1) (u) t€[0,1] @)

As before we define
k=+/c if ¢ > 0,
Kk =+v—c if ¢ <0.
If C* = 0, then u*(t) = 0 a.e., and as in Section 4, Case 1, and the corresponding case in
Section 5 we must have
c>0 and sink =0, ifa =0,
8 =—kcotk, ifc>0, a=1,
B =—kcothk, ifc<0, a=1,
B=-1,ifc=0, a=1.
Now, assume that C* > 0. Then condition (vi’) in [4, p. 402] is satisfied because

esssup [u*(t) —eu*(t)| = (1 —e)C* < C*, f0<e<e<].
t€[0,1]

Introduce
H(z,u,n) = mzo + n2(uz1 — cz1). (6.6)

Then Theorem 2.2 in [4] tells us that there are absolutely continuous functions 7, (-) and 7a(-)
such that (n1(¢),n2(t)) # (0,0) for all ¢,

oH .

n = g, = TRW o, (6.7)
OH

g =—5—=— 6.8
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and the following maximum principle is satisfied:

H(z"(t), u™(t),n(t) = max H(z"(2), u,n(t)), (6.10)
where
Q={u:|ul <C*}.
Thus, if
s(t) = na2(t)z1 (1),
then

u*(t) = C*signs(t), if s(t) #0. (6.11)

Let us omit the stars on z* and u* in the following. We find from (6.2)—(6.3), (6.5), and
(6.7)—(6.9) that there exists a constant d # 0 such that

m(t) = dz2(t), m2(t) = —dz1(2). (6.12)

Thus, s(t) = —dz2(t), which shows that s can only have isolated zeroes and cannot change
sign. Thus [by (6.11)] u(t) = C* a.e. or u(t) = —C* a.e.
When u(t) = £C*, the solution of (6.2)—(6.4) gives

z1(t) = acoskyt + é sinkyt, (6.13)
where
ki =VecFCr.
If ¢ F C* < 0, we replace k+ by ik+, where
ke = VEC* —c,
and use the corresponding hyperbolic functions in (6.13). From (6.5) and (6.13) we obtain
acosky + % sinky =0, (6.14)
or
acoshky + % sinhky = 0. (6.15)

In the case @ = 0, only (6.14) is possible, and we get sinky =0, kx = nw (n = 1,2,...),
so that C* = ¢ — n?7% and C* = n?n? — ¢ in the two cases. In the first case we must have
¢ > n?n?, and we should choose n as large as possible. In the second case we must choose
the smallest n > 1 such that n?x2 > ¢. Thus
o — w2 —c¢ forc< w?,
~ | min(c—n?n%, (n+1)272 —¢) for n?7? <c < (n+1)%r%

In the case a = 1, we get from (6.14) or (6.15)
kycotky =—0 or K+ cothky = —f0.

Let for any § and n = 1,2,..., and for § > —1 and n = 0, k,(8) be the solution of
kcotk = -0, nt < k < (n+1)m, and let for § < —1, k() be the solution of kcothx = —f,
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k > 0. Let also k9(—1) = 0. Then we must have ki = k,(8) for some n > 1, or k1 = ko(f) if
B> -1, kx = ko(p) if 8 < —1. Thus, if 8 > —1, then

Cc* = kg(ﬂ)_c fOI‘C<kJ(2)(ﬂ),
~ | min(c—k2(B), k2.1(8) —c) for kZ(B) <c < k2, ((B), n>0,

and if 8 < —1, then

—c—rg(B) for ¢ < —r§(B),
C* = min (K§(B) +c, k{(B) —c) for —rf(B) <c <k (B),
min (¢ — k2(8), k2,,(8) —¢) for k2(B) <c< k2 ,(8), n>1.

Problem 2. Minimize (6.1) subject to (6.2)—(6.5) and fol u(t) dt = 0. The solution turns
out to be rather complicated, and therefore we restrict ourselves to the special case a = 0.

The analysis follows the same lines as in the previous problem. The Hamiltonian (6.6) is
modified by the addition of a term 7n3u, where 73 is a constant. Then s is defined as

s =1Mn2r1 + N3-

The equations (6.7)—(6.12) are still valid, but this time we have that 7;(t), 72(¢), and 73 are
not all zero.

If n3 = 0, it would follow that s is of constant sign (except for isolated zeroes). But then
u(t) = C*signs(t) cannot satisfy the condition fol u(t)dt = 0 (we are assuming C* > 0).
Thus n3 # 0. Also § # 0, since 6 = 0 would give s = n3 # 0.

The set {t : s(t) # 0} consists of finitely many disjoint open intervals (cf. Section 3), so
that s may only be 0 on finitely many intervals. Assume that s = 0 on an interval of positive
length. Then s’ = —2dz122 = 0 on this interval. We must have zo = 0 on the interval since
x? = n3/8 # 0. It follows from the differential equation (6.3) for zo that u(t) = ¢ on any
interval where s = 0.

As before we let 71 be the last zero of s(t). Since s(1) = n3 # 0, we have 1 < 1. On [r, 1],
(6.2)—(6.3) and (6.5) give

z1(t) = —acg(l)ki1 sinky (1 —t),

zo(t) = z2(1) cos k1 (1 — ¢t),

where k1 = k1 = Ve—C* if s > 0, and ky = k- = v/c+C* if s < 0. Here k; may be
complex, but if, for instance, c — C* < 0, we replace k by ik, kKt = VC* —c. We also get

1 .
s(t) =n3 — 5$%(1)k_—% sin? k1 (1 — ).
Put £; =1 — 7. Since s(71) = 0 and s(t) # 0 for t € (71, 1], we see that k1£; < 7, when k; is
real and positive. We get
ﬁ(7‘1) = —k)l cot klfl S 0.
Z1

If k1 = iK1, we get instead

g(7’1) = —k1cothkil < 0,

Z1
and if k; = 0, %(Tl) = —é < 0. Thus %(Tl) < 0 except when k14; = Z. Consider first
22(m1) < 0. Since s’ = —2n3 72 # 0 when s = 0, s must change sign at 71. Since s(0) = s(1),

there must be a 72, 0 < 7o < 71, such that s(m2) = 0 and s # 0 on (72,71). On (12, 71), k1
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in the differential equations is replaced by ks, where ky = k_ if k1 = k1 and vice versa. We
must have ko real and positive since if ky = ik2, we find for s on (72, 71) that

s(t) = 7)3{%22—?(71) sinh 265 (71 — 1) = [1+ %g(i_f(”)ﬂ sinh? ip (11 — t)},

and this cannot fulfil s(12) = 0. The same is true if k2 = 0. Now, define /5 by

%(71) = —kotankoly, 0 < kol < T
Il 2

Then s(t) can be written as

s(t) :—Cosgﬁsinkg(Tl—t)SinkQ(t—Tl+2€2), T <t< 711,
This shows that 71 — 75 = 2£,. We also see that s'(m2) = —s(71), so that $2(r2) = —22(71).
Then s changes sign at 7, and in the stage before 70 we have the same differential equations
as on (11, 1]. Using the condition s'(72) = —s'(71), we see that at t = 7o — £; we have the same
situation as at t =1 (i.e., z1 = 0 and s = n3), so either 79 —£; =0 or s =0 at 73 = 79 — 23,
and 22(73) = —22(72). In general we may have solutions of the form
=), DT s (2,

where the sequence of plus and minus signs indicates the signs of s.

The only remaining possibility is that k14; = §. Then s'(7;) = 0, and s may be zero on an
interval. If s # 0 on an interval with endpoint #' where s(¢') = 0, then s(t) = 73 sin® k4 (t — /)
on that interval. If s(1) = n3 > 0, then k4 = ki and k_ are both real. If 3 < 0, then k4
may be imaginary, k, = is,. Since —n3sinh? k. (t — ') has no other zero than #, s may be
positive only on an interval [0,¢') in that case. But this cannot happen because s(0) = s(1).
Thus s must have the same sign as n3 when it is not 0. To satisfy fol u(t) dt = 0, s(t) must be
0 on one or more intervals. There u(t) = ¢ (see above), and it follows from the definition of
C* that C* > |c|. If n3 > 0, then k; = k4 = /¢ — C*. But this is impossible since ¢ — C* < 0.
Thus 73 < 0, and we may have a solution of the form — 0 (— 0)*~!— .

Let us investigate the three possible cases.

Case 1 + — (+—)""'+ . In this case k; = ky, ko = k_. The length of each —-interval is
2¢_, and the length of each +-interval is 24, , except the first and the last one whose length
is £. We have the relation

B2 (1) = kycoth by = k_tank_f_, 0<kily < g 0<k_b_< g
A
or
kycothkily =k_tank_/0_.

The condition fol u(t) dt = 0 implies that

1 1
€++(n—1)2€++£+:§, ’I’L'2€7:§,

ie.,
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Consider the system

z x
ycot%:wtanﬁ, ycoth%zmtanﬁ,
z? 4+ y? = 2, or z? —y? =2,
0<y<z<2nm, O0<z<2nm y>0.
The solution (when it exists) gives k. = z, ky = y or s, = y, and then C* = k? —c. It

can be shown that z? + y? is decreasing along the curve ycot 4 = ztan g, and z? — 12

is decreasing along the curve ycoth % = ztan 4. Therefore the solution is unique, and as
Fig. 5 (in which the solid curves illustrate the case n = 2) shows it exists when ¢ < n?r%.
The value n7 is the solution of y cot % = ztan 5~ when y = z. The figure also shows that we
obtain the first form of the solution when ¢ > a2 /2, where o, is the solution of tan = =4n,
and the second form when ¢ < a2/2. In the figure, c; > a2/2, 0 < ¢ < &2/2, and c3 < 0.
Let us write f,(c) = k? — ¢, and also f,(n?7?) = 0. It is enough to consider the smallest n

such that ¢ < n?x2.
Y

w2+y2:2c

{—ycoth ¥ =ztan §
2 _ 2
T° —y® = 2c3

—ycot ¥ =aztan §

2 2
— =2
Tt —y c2 2 +y? = 2

Q2
FIGURE 5. Curves for finding k£ and k..

Case 2 — + (—+)""! — . This is like the previous case with + and — interchanged, but
this time k4 and k_ are both real and positive. We have the equation
k_coth_f_ =k, tank, ly, 0<k_f_ < g 0<kply < g
and as before £, =/_ = ﬁ. This time ky = z, k_ = y is the solution of
t L = ztan—
cot — = zrtan —
Y 4n’
z® +y? = 2
0<z<y<2nm,

and C* = k2 — ¢ = g,(c). We see from Fig. 5 (the dashed curves) that the solution exists
for n?n? < ¢ < 2n?x?. Tt is enough to consider the largest n that satisfies these inequalities.
Note that k_ < v/2c implies g,(c) < c.

Case 3 — 0 (— 0)" ' — . We have k_£_ = Z. If Ty is the total length of the intervals where
s =0, then

To+2nb_ =1,
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and
1
/ u(t)dt = Ty — 2nl_C* = 0.
0
Thus
1 k_
C* = — 1) =¢(— -1
g —V=c—-1)
and
k_
=Ve+C* =/ C—,
nm
so that k_ = ->. We must have Tp > 0, which implies ¢ > n?n?. The corresponding value of
C*is
C* = ¢ c 1).

n’r?
But we must also have C* > ¢, which gives ¢ > on2r?

When n > 3, then (n + 1)? < 2n?, and Case 3 cannot be optimal since Case 2 gives a
cost less than ¢. For n = 2, Case 3 may be considered for 872 < ¢ < 972, but then Case 1
is better. For n = 1, however, there is an interval 27% < ¢ < ¢ where Case 3 is better than
Case 1. This fact shows that Satz IV.I in [2] is not correct. A numerical computation gives
c ~ 21.81.

Now we have found that the solution of the problem is
( fi(c) ifc< w2,
gi(c) if 7% <c<2n?,

c(——l) if 272 <c<c’,

C* =« (c) if ¢ < ¢ < 4n?,

min(gs(c), f3(c)) if 47r <c< 82,

fa(c) if 872 < ¢ < 9n?,

| min(gn(c), fnr1(c)) 1fn 2 <c<(n+1)%22%, n>3.

This is illustrated in Fig. 6.

C*

FIGURE 6. The optimal value as a function of c.
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