On the connection between probabilistic and topological stability of weak Feller chains I

Marina Tsygan

Abstract

We consider a weak Feller Markov chain with transition kernel $P(x,\cdot)$ on a locally compact separable metric space (X,\mathcal{B}) . Let $L(x,A)=P_x\{\tau_A<\infty\}\forall A\in\mathcal{B}$. We look at the connection between probabilistic and topological stability when the function $L(x,\cdot)$ admits a continuous component and at least one reachable point $x^*\in X$ exists.

Key words: Feller chains, continuous component, stability

0 Introduction

The purpose of this paper is to develop a set of convergence results for Feller chains on a topological space X; since in the Feller situation with a reachable point, ψ -irreducibility is equivalent to the so-called T-property [2], we need to look at the "Doeblin" decomposition of the state space X where the weaker condition of the existence of a continuous component of $L(x,\cdot)$ is also necessary and sufficient ([2], [3], [4]).

The first section describes the probabilistic and toplogical backgound; the results on the convergence of the weak Feller chains are stated in the second one, and the proofs are presented in Section 3. The work was motivated by [1]; in the Feller case it seems quite natural to look at the *weak* convergence to stationary distribution rather than at the *total variation* one.

1 Some preliminaries and background

1.1 Probabilistic concepts of stability

Let us consider a Markov chain $\{\Phi_n\}_0^{\infty}$ living on a locally compact separable space (X, \mathcal{B}) , $(\mathcal{B} - \sigma$ -algebra of all open subsets of X), and let τ_A be a stopping

time defined $\forall A \in \mathcal{B}$ by $\tau_A = \inf\{n \geq 1, \Phi_n \in A\}$. For any $x \in A$, $A \in \mathcal{B}$ let us define functions L(x, A) and Q(x, A) by

$$L(x, A) = P_x \{ \tau_A < \infty \} = P_x \{ \Phi \text{ enters } A \};$$

$$Q(x, A) = P_x \{ \cap_{n=1}^{\infty} \cup_{k=n}^{\infty} \{ \Phi_k \in A \} \} =$$

$$= P_x \{ \Phi \in A \text{ i.o. } \}.$$

Definition 1.1. A set $A \in \mathcal{B}$ is called "inessential" if $Q(x, A) = 0 \quad \forall x \in X$; otherwise, it is called "essential". If it cannot be written as a countable union of inessential sets, A is regarded as properly essential.

Definition 1.2. Let ψ be non-trivial σ -finite measure on (X, \mathcal{B}) such that $L(x, A) > 0 \quad \forall x \in X$ whenever $\psi(A) > 0$, $A \in \mathcal{B}$. Then the chain $\{\Phi_n\}$ is ψ -irreducible, and ψ is called an irreducibility measure.

Probabilistic concepts of stability 1: Harris recurrence

Definition 1.3. Suppose that the chain $\{\Phi_n\}_0^{\infty}$ is ψ -irreducible, and $Q(x,A) \equiv 1 \quad \forall A \in \mathcal{B}$ such that $\psi(A) > 0$. Then the Markov chain $\{\Phi_n\}_0^{\infty}$ is called Harris recurrent ([2], [3], [4]). A subset $B \subset X$ is called "absorbing" if $P(x,B) = 1 \quad \forall x \in B$. If B is absorbing, then the chain $\{\Phi_n\}_0^{\infty}$ may be restricted to B, and B is called a "Harris" if the restricted chain is Harris recurrent.

Definition 1.4. A σ -finite measure π on \mathcal{B} with the property

$$\pi(A) = \pi P(A) \stackrel{\Delta}{=} \int P(x, A) \pi(dx) \quad \forall A \in \mathcal{B}$$

will be called "invariant".

It is shown in ([2], [3] and [4]) that if $\{\Phi_n\}_0^{\infty}$ is Harris recurrent, then an essentially unique invariant measure π exists.

Probabilistic concept of stability 2: positive Harris recurrence

Definition 1.5. Suppose that $\{\Phi_n\}_0^{\infty}$ is Harris recurrent, and π is finite. Then $\{\Phi_n\}_0^{\infty}$ is called positive Harris recurrent

1.2 Topological concepts of stability

Topological concept of stability 1: non-evanescence:

Definition 1.6. A Markov chain $\{\Phi_n\}_0^{\infty}$ will be called non-evanescent if $P_x\{\Phi \to \infty\} = 0 \quad \forall x \in X$.

Topological concept of stability 2: boundedness in probability

Definition 1.7. A Markov chain $\{\Phi_n\}$ will be called "bounded in probability" if $\forall x \in X, \ \forall \epsilon > 0 \exists K \subset X, \ K$ -compact such that

$$\liminf_{n \to \infty} P_x \{ \Phi_n \in K \} \ge 1 - \epsilon.$$

1.3 Continuous component, T- and Feller chains

Definition 1.8. A kernel T is called a continuous component of a function K: $(X, \mathcal{B}) \to \mathbb{R}_+$ if

- (i) For $A \in \mathcal{B}$ the function $T(\cdot, A)$ is lower semi-continuous;
- (ii) For all $x \in X$ and $A \in \mathcal{B}$, the measure $T(x, \cdot)$ satisfies $K(x, A) \geq T(x, A)$.

The continuous component T is called "non-trival" at x if T(x, X) > 0.

Definition 1.9. A chain will be called a T-chain if, for some a, the Markov transition function $K_a \stackrel{\Delta}{=} \sum_{i=1}^{\infty} a(i)P^i$, where a is a probability on Z^+ , admits a continuous component T which is non-trivial for all $x \in X$.

Definition 1.10. A chain will be called "lsc-chain" if the function $L(x, \cdot)$ admits a continuous component which is non-trivial $\forall x \in X$.

Definition 1.11. A chain will be called (i) weak Feller if $Pf \in C(X) \ \forall f \in C^0(X)$, (ii) strong Feller if $Pf \in C(X)$ for every bounded and measurable f on X, and (iii) e-chain if $\forall f \in C^0(X)$, the sequence of $\{P^k f\}_{X=0}^{\infty}$ is equicontinuous on compact sets.

1.4 Links between topological and probabilistic stability

Theorem 1.1 (The Doeblin decomposition (Th. 6.1 in [4])). Suppose that X is a topological space and \mathcal{B} is σ -field containing all open sets. If (a) X is T_1 (every singleton is closed) and has a countable basis for the topology; (b) $L(x,\cdot)$ has a continuous component T which is non-trivial at every recurrent point of X, then (i) X can be decomposed into

$$X = \sum_{i \in I} H_i + E$$

where I is countable, each H_i is a maximal Harris set, and E is not properly essential. The set R of recurrent points is contained in the Harris part $\sum_{i \in I} H_i$ of the space. The sets $R \cap H_i$ are both open and closed in the relative topology of R and hence card (I) is at most the number of topological components of R.

(ii) If (b) is replaced by (c) (L has an equivalent component), then each H_i is also topologically closed, and E can be further represented as E = E' + E'', where E' is open and $L(x, \sum H_i) > 0 \quad \forall x \in E'$, while E'' is both stochastically and topological closed (or empty).

Remark 1.1. It was also shown by R. Tweedie in [4] that for a 'Doeblin decomposition' it is also necessary to have some topology in which (a) and (b) hold true.

1.5 Recurrent points and chains with some topolgical solidarity properties

Definition 1.12 (Open set irreducibility). (i) A point $x \in X$ is called "reachable" if for every open $O \ni x$, $O \in \mathcal{B}$ and for any $y \in X$

$$\sum_{n=1}^{\infty} P^n(y,0) > 0.$$

(ii) A chain $\{\Phi_n\}_0^{\infty}$ is called "open set irreducible" if every point $x \in X$ is reachable.

Definition 1.13. A point $x^* \in X$ is called topologically Harris "recurrent" (a point of sure return) if, respectively, $Q(x^*, O_{x^*}) = 1$, $(L(x^*, O_{x^*}) = 1)$ for every open neighbourhood $O_{x^*} \ni x^*$.

Definition 1.14. A point $x^* \in X$ is called "positive" if

$$\lim_{n\to\infty} \sup P^n(x^*, O_{x^*}) > 0$$

for every open neighbourhood $O_{x^*} \ni x^*$.

Theorem 1.2 ([2] **Theorem 18.0.2**). Suppose that Φ is a chain on a topological space for which a reachable state $x^* \in X$ exists.

- 1. If the chain is a T-chain, then the following are equivalent:
 - (a) Φ is positive Harris;
 - (b) Φ is bounded in probability;
 - (c) Φ is non-evanescent and x^* is positive.

If any of these equivalent conditions hold and if the chain is aperiodic, then for each initial state $x \in X$,

$$||P^k(x,\cdot) - \pi|| \to 0 \text{ as } k \to \infty.$$

- 2. If the chain is an e-chain, then the following are equivalent:
 - (a) There exists a unique invariant probability π and for every initial condition $x \in X$ and each bounded continuous function $f \in C(X)$,

$$\lim_{k \to \infty} \bar{P}_k(x, f) = \pi(f)$$

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n f(\Phi_i) = \pi(f) \quad \text{in probability;}$$

- (b) Φ is bounded in probability on average;
- (c) Φ is non-evanescent and x^* is positive;

If any of these equivalent conditions hold and if the reachable state is "aperiodic", then for each initial state $x \in X$,

$$P^k(x,\cdot) \stackrel{\mathrm{w}}{\to} \pi$$
 as $k \to \infty$.

It seems quite natural to consider the asymptotic behavior of weak Feller chains, "lying somewhere between" T- and e-chains. As preparation for that, we state the following lemma:

Lemma 1.1. Suppose that the chain $\{\Phi_n\}_0^{\infty}$ is weak Feller and the reachable point x^* exists. Then the following are equivalent:

- 1. Φ is a T-chian
- 2. Φ is a ψ -irreducible with $\psi = T(x^*, \cdot)$.

Proof. The proof is based on Lemma 6.1.4 and Th. 6.2.9 in [2]. \Box

2 Main results

2.1 Chains on locally compact and separable (metric) space X

Preparing for our first result, we look at the following lemma.

Lemma 2.1 ([2]. Lemma 18.4.1). If Φ is a Feller chain and if a reachable state x^* exists, then for any pre-compact neighborhood O containing x^* ,

$$\{\Phi \to \infty\} = \{\Phi \in O \text{ i.o.}\}^c \text{ a.s. } [P_*]$$

Proof. Since L(x, O) is a lower semicontinuous function (ii) of x by Proposition 6.1.1 in [2], and since by reachability it is strictly positive everywhere, it follows that L(x, O) is bounded from below on compact subsets of X.

Letting $\{O_n\}$ denote a sequence of pre-compact open subsets of X with $O_n \uparrow X$, it follows that $O_n \sim O^{*}$ for each n, and hence by Theorem 9.1.3. in [2], we have

$$\{ \Phi \in O_n \text{i.o.} \} \subseteq \{ \Phi \in O \text{ i.o. } \} \quad \text{a.s. } [P_*].$$

This immediately implies that

$$\{\Phi \to \infty\}^c = \cup_{n \ge 1} \{\Phi \in O_n \text{i.o.}\} \subseteq \{\Phi \in O \text{i.o.}\} \quad \text{a.s.}[P_*],$$

and since it is obvious that $\{\Phi \to \infty\} \subseteq \{\Phi \in O \text{ i.o.}\}^c$, this proves the lemma.

^{*)} $O_n \sim O \overline{\text{see [2], Chapter 4.}}$

Theorem 2.1. Suppose that the assumptions a) and b) of Th. 1.1 hold true for a weak open set irreducible Feller chain. Then the following conditions are equivalent:

- 1. $\{\Phi_n\}_{n=0}^{\infty}$ is non-evanescent;
- 2. $\{\Phi_n\}_{n=0}^{\infty}\}_{n=0}^{\infty}$ is Harris recurrent.

Remark 2.1. It is easily seen that $\{\Phi_n\}$ becomes a T-chain by Lemma 1.1.

Theorem 2.2. Suppose that the assumptions of Th. 2.1 hold true. Then the following are equivalent:

- 1. Φ is positive Harris;
- 2. Φ is bounded in probability and $\bar{P}_k(x,\cdot) \stackrel{\text{w}}{\to} \pi$ for any initial condition $x \in X$:
- 3. Φ is non-evanescent and x^* is positive;

If any of these equivalent conditions hold and if the chain is aperiodic, then for each initial state $x \in X$,

$$||P^k(x,\cdot) - \pi|| \to 0$$
 as $k \to \infty$,

and Φ is an e-chain.

Corollary 2.1. Suppose that a) and c) of Th. 1.1 hold for a weak Feller chain with a reachable point x^* . Let $L(x^*, O(x)) > 0$ for every neighbourhood O(x) of x and every $x \in X$. Then the assertions of Th. 2.1 and Th. 2.2 hold true.

2.2 Chains on compact state space

Corollary 2.2. Let $\{\Phi_n\}$ be a ψ -irreducible weak Feller chain on a compact T_1 space with a countable basis for the topology. If, in addition, the function $L(x,\cdot)$ has an non-trivial continuous component $\forall x \in X$, then $\{\Phi_n\}$ is positive Harris
recurrent.

Corollary 2.3. Let $\{\Phi_n\}$ be a weak Feller chain with a reachable point x^* on a compact T_1 -space with a countable basis for the topology. Suppose that the function $L(x,\cdot)$ has a component which is non-trivial and continuous at x^* . Then there exists a unique invariant probability π such that for some $\rho < 1$, $R < \infty$ and $m \ge 1$

$$\left\| \frac{1}{m} \sum_{i=1}^{m} P^{k+1}(x, \cdot) - \pi \right\| \le R\rho^{k}, \ x \in X, \ k \in Z_{+}.$$

3 Proofs

1) Proof of Th. 2.1. (i) \Rightarrow (ii) Suppose that $\{\Phi_n\}_0^{\infty}$ is non-evanescent. Then by Lemma 18.4.1 in [2] for every pre-compact $O \ni x^*$

$$Q(x^*, 0) = P_{x^*} \{ \Phi \in O \text{ i.o.} \} = 1,$$

which implies that every point of X is topologically Harris recurrent. Because of reachability, it follows that $L(x,(x^*)) > 0 \quad \forall x \in X$ and every neighbourhood O_{x^*} of x^* ; the assumptions of the Corollary 6.4 in [4] are satisfied and Harris recurrence of the Markov chain $\{\Phi_n\}$ follows.

(ii) \Rightarrow (i) Suppose that the chain $\{\Phi_n\}$ is Harris recurrent. By Lemma 1.1, Φ_n is a *T*-chain. The non-evanescense of $\{\Phi_n\}$ then follows by Th. 9.2.2 in [2].

Proof of Th. 2.2. By the assumptions of the theorem, $\{\Phi_n\}$ is a ψ -irreducible T-chain, and the assertions of the theorem follow by Th. 18.0.2 in [2].

Proof of Corollary 2.1. By Corollary 6.5 in [4], we can state recurrence of the point $x \in X$ if for some recurrent point $x^* L(x^*, O(x)) > 0$ for every neighbourhood O(x) of x. If the chain $\{\Phi_n\}$ is non-evanescent, then by Lemma 18.4.2 [2], x^* is recurrent, and by the assumptions of the corollary, every point in X is recurrent. Then the assumptions of Th. 2.1 are satisfied.

Proof of Corollary 2.2. The proof of the corollary is based on the following result. Proposition 3.5 in [4]: (i) Suppose that X is compact and K_{α} has an everywhere-non-trivial continuous component T. If the chain is φ -irreducible for some φ , then it is positive recurrent.

(ii) Suppose that X is a compact T_1 -space with a countable basis for the topology and L has an everywhere-non-trivial continuous component T. Then there is no stochastically closed set of non-recurrent points.*)

By Proposition 3.5 (ii), $\{\Phi_n\}$ has a reachable recurrent point x^* and by Lemma 1.1, $\{\Phi_n\}$ is a T-chain. Then, by Proposition 3.5 (i), $\{\Phi_n\}$ is positive Harris recurrent.

Proof of Corollary 2.3. By the assumptions of the corollary, there is a point x^* such that $L(x, O_{x^*})$ is bounded below on compact subsets of X for every neighbourhood O_{x^*} of x^* . Then $\inf_{x \in X} L(x, O_{x^*}) > 0$ for every neighbourhood O_{x^*} of x^* . Applying Th. 4.2 in [4], we obtain that the chain $\{\Phi_n\}$ is Harris recurrent, and hence, T-chain. Thus, the convergence result is an application of Th. 7.1 in [3].

^{*)}See [4] for the necessary definitions.

References

- 1. Getoor, R. K. (1979) Transience and recurrence of Markov processes. In Séminaire de Probabilités XIV, ed. J. Aséma and M. Yor, p.p. 397-409, Springer-Verlag.
- 2. s. P. Meyn and R. L. Tweedie. Markov Chains and Stochastic Stability, 1993, Springer-Verlag.
- 3. S. P. Meyn and R. L. Tweedie, Stability of Markovian processes I, AAP, 24, 1992, Springer-Verlag.
- 4. P. Tuominen, R. Tweedie, Markov chains and continuous component, Proc. London/Math. Soc. (3), 1979.