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Abstract

We consider a weak Feller Markov chain with transition kernel P(z,-)
on a locally compact separable metric space (X, B). Let L(z, A) = Py{74 <
oo}VA € B. We look at the connection between probabilistic and topo-
logical stability when the function L(z,-) admits a continuous component
and at least one reachable point z* € X exists.
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0 Introduction

The purpose of this paper is to develop a set of convergence results for Feller
chains on a topological space X; since in the Feller situation with a reachable
point, -irreducibility is equivalent to the so-called T-property [2], we need to
look at the “Doeblin” decomposition of the state space X where the weaker
condition of the existence of a continuous component of L(z,-) is also necessary
and sufficient ([2], [3], [4])-

The first section describes the probabilistic and toplogical backgound; the
results on the convergence of the weak Feller chains are stated in the second one,
and the proofs are presented in Section 3. The work was motivated by [1]; in the
Feller case it seems quite natural to look at the weak convergence to stationary
distribution rather than at the total variation one.

1 Some preliminaries and background

1.1 Probabilistic concepts of stability

Let us consider a Markov chain {®,}5° living on a locally compact separable
space (X, B), (B — o-algebra of all open subsets of X), and let 74 be a stopping



time defined VA € B by 74 = inf{n > 1,®, € A}. Forany x € A, A € B let us
define functions L(z, A) and Q(x, A) by
L(z,A) = P,{1a < o0} = P,{® enters A};
Q(x, A) = Po{MyZ, Uil {®r € A}} =
=P {®P e Aio. }.

Definition 1.1. A set A € B is called “inessential” if Q(z,A) = 0 Vz € X
otherwise, it is called “essential”. If it cannot be written as a countable union of
inessential sets, A is regarded as properly essential.

Definition 1.2. Let ¢ be non-trivial o-finite measure on (X, B) such that
L(z,A) > 0 Vzr € X whenever ¢y(4) > 0, A € B. Then the chain {®,} is
y-irreducible, and 1 is called an irreducibility measure.

Probabilistic concepts of stability 1: Harris recurrence

Definition 1.3. Suppose that the chain {®,}° is 9-irreducible, and

Q(z,A) =1 VA € B such that ¢(A) > 0. Then the Markov chain {®,}3° is
called Harris recurrent ([2], [3], [4]). A subset B C X is called “absorbing” if
P(z,B) =1 Vx € B. If B is absorbing, then the chain {®,}$° may be restricted
to B, and B is called a “Harris” if the restricted chain is Harris recurrent.

Definition 1.4. A o-finite measure 7 on B with the property

T(A) = 7P(A) & / Pz, Ar(dz) YA€ B

will be called “invariant”.
It is shown in ([2], [3] and [4]) that if {®,}5° is Harris recurrent, then an
essentially unique invariant measure 7 exists.

Probabilistic concept of stability 2: positive Harris recurrence

Definition 1.5. Suppose that {®,}5° is Harris recurrent, and 7 is finite. Then
{®,}° is called positive Harris recurent

1.2 Topological concepts of stability

Topological concept of stability 1: non-evanescence:

Definition 1.6. A Markov chain {®,}$° will be called non-evanescent if P,{® —
oo} =0 VrelX.

Topological concept of stability 2: boundedness in probability

Definition 1.7. A Markov chain {®,} will be called “bounded in probability”
if Ve € X, Ve > 0dK C X, K-compact such that

liminf P,{®, € K} > 1—¢.
n—,oo



1.3 Continuous component, 7- and Feller chains

Definition 1.8. A kernel T is called a continuous component of a function K :

(X,B) = R, if
(i) For A € B the function T'(-, A) is lower semi-continuous;

(ii) For all z € X and A € B, the measure T'(z, -) satisfies K(z, A) > T(x, A).

The continuous component 7" is called “non-trival” at z if T'(z, X) > 0.

Definition 1.9. A chain will be called a T-chain if, for some a, the Markov
transition function K, 2 S o2, a(i)P?, where a is a probability on Z*, admits a
continuous component 7" which is non-trivial for all z € X.

Definition 1.10. A chain will be called “Isc-chain” if the function L(z,-) admits
a continuous component which is non-trivial Vz € X.

Definition 1.11. A chain will be called (i) weak Feller if Pf € C(X) Vf €
C%(X), (ii) strong Feller if Pf € C(X) for every bounded and measurable f on
X, and (iii) e-chain if Vf € C°(X), the sequence of {P¥f}%_, is equicontinuous
on compact sets.

1.4 Links between topological and probabilistic stability

Theorem 1.1 (The Doeblin decomposition (Th. 6.1 in [4])). Suppose that
X is a topological space and B is o-field containing all open sets. If (a) X is T3
(every singleton is closed) and has a countable basis for the topology; (b) L(z,-)
has a continuous component 7" which is non-trivial at every recurrent point of X,
then (i) X can be decomposed into

X:ZHH—E

el

where I is countable, each H; is a maximal Harris set, and E is not properly
essential. The set R of recurrent points is contained in the Harris part )., H;
of the space. The sets RN H; are both open and closed in the relative topology
of R and hence card (I) is at most the number of topological components of R.

(i) If (b) is replaced by (c¢) (L has an equivalent component), then each H;
is also topologically closed, and E can be further represented as £ = E' + E”,
where E' is open and L(z, > H;) >0 Vz € E’, while E” is both stochastically
and topologicall closed (or empty).

Remark 1.1. It was also shown by R. Tweedie in [4] that for a ’Doeblin de-
composition’ it is also necessary to have some topology in which (a) and (b) hold
true.



1.5 Recurrent points and chains with some topolgical sol-
idarity properties

Definition 1.12 (Open set irreducibility). (i) A point 2 € X is called “reach-
able” if for every open O 3 z, O € B and for any y € X

> P(y,0) > 0.
n=1
(ii) A chain {®,}° is called “open set irreducible” if every point z € X is

reachable.

Definition 1.13. A point z* € X is called topologically Harris “recurrent” (a
point of sure return) if | respectively, Q(z*, Oy) = 1, (L(z*,O4«) = 1) for every
open neighbourhood O« 3 x*.

Definition 1.14. A point z* € X is called “positive” if

lim sup P™"(z*, Oy+) > 0

n—o0

for every open neighbourhood O, > z*.

Theorem 1.2 ([2] Theorem 18.0.2). Suppose that @ is a chain on a topolog-
ical space for which a reachable state * € X exists.

1. If the chain is a T-chain, then the following are equivalent:

(a) @ is positive Harris;
(b) @® is bounded in probability;

(c) @ is non-evanescent and z* is positive.

If any of these equivalent conditions hold and if the chain is aperiodic, then
for each initial state x € X,

|P*(z,) —7|]| = 0 as k — oo.
2. If the chain is an e-chain, then the following are equivalent:

(a) There exists a unique invariant probability 7 and for every initial con-
dition z € X and each bounded continuous function f € C'(X),

1 n
lim — " f(®;) =7(f) in probability;
=1

n—oo N



(b) @® is bounded in probability on average;
(c) @ is non-evanescent and z* is positive;

If any of these equivalent conditions hold and if the reachable state is “ape-
riodic”, then for each initial state z € X,

P(z,) S 7 ask — co.
It seems quite natural to consider the asymptotic behavior of weak Feller

chains, “lying somewhere between” T- and e-chains. As preparation for that, we
state the following lemma:

Lemma 1.1. Suppose that the chain {®,}5° is weak Feller and the reachable
point z* exists. Then the following are equivalent:

1. ® is a T-chian
2. @ is a y-irreducible with ¢ = T'(z*, -).
Proof. The proof is based on Lemma 6.1.4 and Th. 6.2.9 in [2]. O

2 Main results

2.1 Chains on locally compact and separable (metric)
space X

Preparing for our first result, we look at the following lemma.

Lemma 2.1 ([2]. Lemma 18.4.1). If ® is a Feller chain and if a reachable
state z* exists, then for any pre-compact neighborhood O containing z*,

{® > 00} ={Pc0io}’ as. [P]

Proof. Since L(z,0) is a lower semicontinuous function (ii) of 2 by Proposition
6.1.1 in [2], and since by reachability it is strictly positive everywhere, it follows
that L(z,O) is bounded from below on compact subsets of X.

Letting {O,} denote a sequence of pre-compact open subsets of X with
O, 1 X, it follows that O,, ~> O* for each n, and hence by Theorem 9.1.3. in
[2], we have

{® €040} C{PecOio. } as. [Pl
This immediately implies that
{® = 00} =Up>1{P® € Oyi0.} C{®P € Oi.o} as.[P],

and since it is obvious that {® — oo} C {® € O i.0.}¢, this proves the lemma.
U

*)0,, ~> O see [2], Chapter 4.



Theorem 2.1. Suppose that the assumptions a) and b) of Th. 1.1 hold true
for a weak open set irreducible Feller chain. Then the following conditions are
equivalent:

1. {®,}22, is non-evanescent;

2. {®,}°}00, is Harris recurrent.

Remark 2.1. [t is easily seen that {®,} becomes a T-chain by Lemma 1.1.

Theorem 2.2. Suppose that the assumptions of Th. 2.1 hold true. Then the
following are equivalent:

1. ® is positive Harris;

2. ® is bounded in probability and P,(z,-) — 7 for any initial condition
r € X,

3. ® is non-evanescent and x* is positive;

If any of these equivalent conditions hold and if the chain is aperiodic, then
for each initial state z € X,

|P*(z,") —7|| =0 as &k — oo,
and @ is an e-chain.

Corollary 2.1. Suppose that a) and c¢) of Th. 1.1 hold for a weak Feller chain
with a reachable point x*. Let L(z*,O(x)) > 0 for every neighbourhood O(z) of
x and every x € X. Then the assertions of Th. 2.1 and Th. 2.2 hold true.

2.2 Chains on compact state space

Corollary 2.2. Let {®,} be a -irreducible weak Feller chain on a compact T-
space with a countable basis for the topology. If, in addition, the function L(x,-)
has an non-trivial continuous component Vx € X, then {®,} is positive Harris
recurrent.

Corollary 2.3. Let {®,} be a weak Feller chain with a reachable point x* on a
compact Ty -space with a countable basis for the topology. Suppose that the function
L(z,-) has a component which is non-trivial and continuous at x*. Then there
exists a unique invariant probability w such that for some p < 1, R < oo and
m>1

1 m
1= P ) —all < Rt € X k€ Z,.
=1



3 Proofs

1) Proof of Th. 2.1. (i) = (ii) Suppose that {®,}5° is non-evanescent. Then by
Lemma 18.4.1 in [2] for every pre-compact O > z*

Qz*,0)=Pp{® €O iol}=1,

which implies that every point of X is topologically Harris recurrent. Because
of reachability, it follows that L(z, (z*)) > 0 Vz € X and every neighbourhood
Oy« of z*; the assumptions of the Corollary 6.4 in [4] are satisfied and Harris
recurrence of the Markov chain {®,} follows.

(ii) = (i) Suppose that the chain {®,} is Harris recurrent. By Lemma 1.1, &,
is a T-chain. The non-evanescense of {®,} then follows by Th. 9.2.2 in [2]. O

Proof of Th. 2.2. By the assumptions of the theorem, {®,} is a ¢-irreducible
T-chain, and the assertions of the theorem follow by Th. 18.0.2 in [2]. O

Proof of Corollary 2.1. By Corollary 6.5 in [4], we can state recurrence of the
point x € X if for some recurrent point z* L(z*, O(z)) > 0 for every neighbour-
hood O(z) of z. If the chain {®,} is non-evanescent, then by Lemma 18.4.2
[2], x* is recurrent, and by the assumptions of the corollary, every point in X is
recurrent. Then the assumptions of Th. 2.1 are satisfied. O

Proof of Corollary 2.2. The proof of the corollary is based on the following result.
Proposition 3.5 in [4]: (i) Suppose that X is compact and K, has an everywhere-
non-trivial continuous component 7. If the chain is ¢-irreducible for some ¢,
then it is positive recurrent.

(ii) Suppose that X is a compact Ti-space with a countable basis for the
topology and L has an everywhere-non-trivial continuous component 7". Then
there is no stochastically closed set of non-recurrent points.*

By Proposition 3.5 (ii), {®,} has a reachable recurrent point 2* and by Lemma
1.1, {®,} is a T-chain. Then, by Proposition 3.5 (i), {®,} is positive Harris
recurrent. U

Proof of Corollary 2.3. By the assumptions of the corollary, there is a point z*
such that L(z,O,+) is bounded below on compact subsets of X for every neigh-
bourhood O, of z*. Then inf ey L(x, Oy) > 0 for every neighbourhood O« of
x*. Applying Th. 4.2 in [4], we obtain that the chain {®,} is Harris recurrent,
and hence, T-chain. Thus, the convergence result is an application of Th. 7.1 in
(3] O

*)See [4] for the necessary definitions.
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