A NUMERICAL METHOD FOR
THE BENJAMIN-ONO EQUATION

V. THOMEE AND A.S. VASUDEVA MURTHY

ABsTRACT. This paper is concerned with the numerical solution of the Cauchy prob-
lem for the Benjamin-Ono equation u¢+uugs —Huzy = 0, where H denotes the Hilbert
transform. Our numerical method first approximates this Cauchy problem by an
initial-value problem for a corresponding 2L-periodic problem in the spatial variable,
with L large. This periodic problem is then solved using the Crank-Nicolson approx-
imation in time and finite difference approximations in space, treating the nonlinear
term in a standard conservative fashion, and the Hilbert transform by a quadrature
formula which may be computed efficiently using the Fast Fourier Transform.

0. Introduction.

This paper is concerned with the numerical solution of the Cauchy problem for
the Benjamin-Ono equation

(0.1) up +uuy — Hugzy =0, forxze R, t>0,

where H denotes the Hilbert transform. This integro-differential equation arises,
e.g., in the study of long internal gravitation waves in deep stratified fluids, see
Benjamin [3] and Ono [9], and models the propagation of nonlinear dispersive waves
in a similar way as in the Korteweg-deVries equation. For mathematical analysis
we refer to Abdelouhab et al. [1], Case [5], and Iério [6].

Because of the nonlocal character of the equation, the numerical method we
propose replaces the pure initial-value problem for (0.1) by the periodic Cauchy
problem with a large spatial period L. This may be justified by the decay of
the solutions of the unrestricted problem as |z| — oo, but as this decay is only
polynomial, in contrast to the exponential decay for the KdV equation, L has to
be taken quite large in order to have a good approximation to the unrestricted
problem. Our numerical method uses the Crank-Nicolson approximation in time
and finite difference approximations in the spatial variable, treating the nonlinear
term in a standard conservative fashion, and approximating the Hilbert transform
by a quadrature formula, which may be computed efficiently by the Fast Fourier
Transform (FFT). We show second order error estimates in both space and time
for smooth solutions and also that the first two invariants of (0.1) are conserved by
our numerical method.

Earlier published work on numerical methods for (0.1) include James and Weide-
man [7] and Miloh et al. [8]. In both these papers Fourier methods are used, and in
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[7] also a method based on rational approximating functions. Good computational
results are reported but no error analyses are given. In recent work by Pelloni and
Dougalis [10], Ls-norm error bounds have been shown for a spectral approxima-
tion in the spatial variables, and numerical computations have been carried out for
associated explicit discretizations in time.

The first author gratefully acknowledges useful discussions with Professor G.
Akrivis on various aspects of this work.

1. The Cauchy problem for the Benjamin-Ono equation.

In this section we collect some known background material for the Cauchy prob-
lem for the Benjamin-Ono equation,

(1.1) ug +uty — Huge =0, forz e R, ¢t >0, withu(-,0) =wup, in R.

Here H is the Hilbert transform defined by the principal value integral

Hu(z) = PV% /R Wdy.

We recall (see, e.g., Abdelouhab et al. [1]) that this equation has an infinite
sequence of invariants, the first two of which are

(1.2) <I>1(u):/Ruda:, Py (u) = %/Ru? de,

In the first case it follows at once formally by integration of (1.1) over R and
integration by parts that (d/dt)®;(u) = 0, so that ®;(u) is constant in time. For
®5(u) we multiply (1.1) by u and integrate over R to obtain

d
%_dt”unz + (uug,u) — (Hugg,u) =0, fort >0,
where

(u, v) = / " w(@)o@) do, and [lul = (u, u)V2.

—00

Here the second and third terms vanish because
(1.3) (utig, u) = (um,u2) = —(u, (u2)$) = —2(uug, u),

and, noting that since H is a convolution with an odd function it is skew-symmetric
and commutes with differentiation,

(1.4) (Hugg,u) = —(Ugg, Hu) = —(u, (Htt)gz) = —(Hugg, u).

Thus (d/dt)®3(u) = 0, so that ®(u) = constant.
The equation (1.1) has soliton solutions, such as, for ¢ arbitrary,

4c

1+ 2(x —ct)?
2

(1.5) u(z,t) =




In fact, since H((1+x2)~!) = z(1+22%)~1, one finds easily for u defined in (1.5) that
(Hu)(z,t) = 4c*(z—ct)/(14c*(z—ct)?), from which (1.1) follows by differentiation.
Another family of soliton solutions is given by

4erea (1 A] + c2A3 + (e + co)3citey t(er — c2)7?)
(6102)\1)\2 — (c1 4 c2)%(c1 — Cz)_2)2 + (e1d1 + Cz)\z)Z’

(1.6) u(z,t) =

where A\; = \j(z,t) = x—ct—d;, j = 1,2, and ¢1, cg, d1, dg are arbitrary constants.
We have the following existence and uniqueness result from [1]. Here we denote
by H® = H?(R) the Sobolev space defined by

fulle = ( [ @+ 2ao)ra) "

Theorem 1.1. Let s > 3/2 and assume ug € H®. Then there exists a unique
solution u of (1.1) such that u € C¥(R,; H*~2k) for integer k < (s +1)/2.

We are also interested in the behavior of the solution for large |z|. For this we
introduce the weighted Sobolev spaces F* defined by the norms

lullFe = llull3s + 111 +2%)*2ullZ,.

We quote the following result from Ié6rio [5]:

Theorem 1.2. Let ug € F2. Then there is a unique solution u of (1.1) such that
U € C(R+,F2) and U € C(R+, Lg)

Let ug € F3 with ®1(ug) = 0. Then there is a unique solution u of (1.1) such
that u € C(Ry; F3) and ®1(u(t)) = 0. The condition ®1(ug) = 0 is necessary for
the existence of a solution in C(R,; F3).

If u € C([0,T); F*) for some T > 0, then u(t) =0 fort € [0,T].

For smooth initial functions ug which decay rapidly we thus have essentially
u(z,t) = O(|z|72) as |r| — oo, but even if ug satisfies ®1(ug) = 0, faster decay
than u(z,t) = O(|z|~3) in the above sense is not possible.

For the Fourier transform of the Hilbert transform we have (see [4])

(1.7)  Hu(&) = —isign(€)a(¢), where 4(¢) = N / ~iwy (1) da,

with sign(§) = £/[¢] for £ # 0, sign(O) = 0. The limit in the decay of the solution is
related to the lack of regularity of Hu u; note that the condition ®4(ug) f R Uo dr =
0 means that 4(0) = 0.

For the purpose of indicating an argument in the subsequent analysis of our
numerical method, we now show that the solutions of (1.1) are stable under per-
turbations of the initial data.

Theorem 1.3. Let u be a smooth solution of (1.1) with u, uniformly bounded.

Then, if v is any other smooth solution of (1.1), we have

(18) o) —u@®)] < e v(0) —u(0)|l, fort>0, where M = |lug|r.,
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Proof. We have at once by subtraction
(v —u)s + vvy —uugy — H(v — u)ge = 0.
Setting e = v — u and multiplying by e, we obtain
(1.9) (et,€) + (Vv — uug, e) — (Hegy,e) = 0.
Here the last term vanishes as in (1.4). For the second term we have
(1.10) (vvg —uug,e) = (u+e)(ugy + ;) — Uy, e) = (uge, e) + (ueg, e) + (eey, e).
The last term vanishes as in (1.3) and, using integration by parts,
|(uze, ) + (ues, €)| = |3 (uze, e)| < 2M|e]|.

Thus (1.9) implies (d/dt)||e]|* < 2M]||e||* which shows (1.8). O

We remark that since f g Uz ds = 0, cancellations are possible in (uze,e), so
that our choice of M could be pessimistic. For instance, if it is known that both
u(z,t) and v(z,t) are symmetric in  around some point Z(t), then so is e(z,t),
and u,(z,t) is antisymmetric around z(t), so that (uze,e) = 0. Thus in this case

|le(t)|| is constant. We also note that by the invariance of the energies, |le(t)|| <
|u(0)|| + ||v(0)]|, and thus ||e(¢)]| is uniformly bounded for ¢ > 0.

2. The periodic problem.

In order to be able to define a finite-dimensional approximation, we shall consider
instead of (1.1) the corresponding 2L-periodic problem and consider thus functions
u(z,t) with u(x + 2L,t) = u(z,t) and such that
(2.1) wp + utly — Hgy = 0, forzeR, t>0, withu(-,0)=uy, inR,
where wg is 2L-periodic. Here H is the periodic Hilbert transform (cf. [4])

fu@) =PV.L [ cot(E gt - g)d
u(x) = %7 _Lco or YulE —y)dy.

To see formally that this is what Hu reduces to for u periodic, we use the
periodicity of u and transform ((2k — 1)L, (2k + 1)L) into (—L, L) to obtain

/ u(r —y) dy
e<lyl<@N+1)L Y

/ u(z —y) dy + i /L < 1 N 1 ) ( \d
= - ay u(z — y) dy,
e<|y|<L Y k=—N. k0 _L \Y— 2k L 2kL

where the second term in the parantheses may be added since the positive and
negative ones cancel. By the Mittag-Lefller representation of coty we have

T T 1 > 1 1
T oot (Lgy) = = ( ) for |y| < L,
oz, <t (51Y) g T k__zk;éo y—okL Topp) forlls

and taking limits, ¢ — 0 and N — oo, we obtain the representation claimed.
Also in the periodic case one shows as earlier that

L L
<I>1(u):/ udzr and (Dg(’u,):%/ u? dz

—L —L
are conserved for any solution of (2.1).
The main existence result for (1.1) carries over to the periodic case; with H?
now denoting #*(R/[—L, L]) we have the following (cf. [1]).
4



Theorem 2.1. Let s > 3/2 and assume uy € H5. Then there erists a unique
solution u of (2.1) such that u € C*(Ry;H*~2F) for integer k < (s +1)/2.

We also note that the formula (1.7) for the Fourier transform of Hu has an
analogue for the Fourier coefficients of 2L-periodic functions Hu, namely (cf. [4])

= 1

L
(2.2) Hu,, = —isign (n) 4,. where 4, = Y / . e~nam/Ly(z) da.

The periodic equation (2.1) also has soliton solutions, e.g., for ¢ arbitrary

(2.3) wi (@, 1) = 2¢0° with § =
' B VT = 0% cos(cd(z — ct))’ cL’

This follow easily as earlier from the fact that

~ 1 _ pl, sin(cdx)

H(

1—pcos(cdz)” /1 — p21— pcos(coz)’

We remark that it is easy to see that for L — oo, i.e., 6 — 0, this 2L—periodic
soliton solution uy, tends to the one defined in (1.5).

3. The numerical method.

In order to define our numerical method for the periodic problem (2.1), we need
some preliminaries. We introduce a spatial mesh with mesh-width h = L/N, so
that the periodicity interval [—L, L] is divided into 2N mesh-intervals by the nodal
points z; = jh,j € Z. We consider the set Sp of discrete 2/N-periodic functions
V = {V;}32_ defined on this mesh, thus satisfying Vj oy = V; for all j, and
introduce for this section the discrete inner product and norm

] Nt p 21 p 2N 1/2
(VW)= 3= S ViW,= o= S VW, and V= (52 D IVil?)
=0 §=0 §=0

For the purpose of discretizing uu, and H Uz on the mesh, we set

Ujtr —

h Uj7 oU; = Y=l

Uj+1 = Uj—
ho '

oU; = 5T

and éUj =

Note that by summation by parts (8U,V) = —(U,dV) and (OU,V) = —(U, dV).
For our approximation of uu, we choose, following Zabusky and Kruskal, cf. also
Richtmyer and Morton [11, Section 6.3],

(3.1) Fn(U)=10(U% + LU0U = QU AU, (QuU); = L(Uj_1 +U; + Ujt1);

clearly, for u smooth, Fj,(u) — uug, = O(h?) as h — 0. To approximate u,; we use
ApU; =h 10 - 0)U; = h™2(Uj41 — 2U; + U;_1),

which is also second order accurate.



To define a quadrature formula for the 2L-periodic Hilbert transform H we
assume N even, N = 2M, and divide the periodicity interval (—L, L) into the
N = 2M intervals (zog, Tok42), k = —M,..., M — 1 of length 2h. We then apply
the midpoint rule on each of these intervals, and set

M—
1
(3.2) (HhV _L Z 2hC0t —.’L‘2k+1)Vj_2k_1.

This may be thought of as a discrete convolution, writing

N-1 h wkh : :
~ 7 cot (55 if k¥ is odd
33 (V)= Y Vi whew o= { BN TR0
ey , if k£ is even.
Since c; is odd, i.e., c_; = —¢;j, fIh is skew-symmetric. Note also that H r commutes

with translations, so that, in particular, ﬁhAhU = AthI nU.
We wish to express the operator Hj in terms of a discrete Fourier transform.
For W = {W,};ez € S we define the discrete Fourier transform by

N-1
(3.4) Wj: Z Wk6_27rijk/N.

k=—N

which also belongs to Sp. The inverse Fourier transform is then

2

-1

1 —_—~—~ . .
(3.5) Wi = N Wje27rzjk/N'
=N
We note Parseval’s formula
(3.6) W]l = V2N||W].

The following lemma shows that our discrete Hilbert transform defined in (3.2) has
inherited the property (2.2) of the Fourier transform; this is, in fact, the reason for
our choice of quadrature formula.

Lemma 3.1. We have for the operator H, defined in (3.2) and sign € Sy,
- 1, f1<k<N-1,

Hy,V; = —isign(j)V;, where sign(j)={ -1, if —N+1<k<-1,
07 ij - _N, 0.

Proof. Since with c¢; defined in (3.2)
N-1 N-1

HhV = Z > Ve ™R = &V,
“NI=N

S
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we need to show ¢; = —i 51gn( /). This is equivalent to showing that if W
—isign(j), then Wy = ¢x. But by (3.6)

. N— N-1
» y 1
W, = _% ‘ (emk/zv _ e—mjk/N) =¥ Z sin(mjk/N)
Jj=1 j=1
_ { + cot(mk/N), if k is odd,
1o, if k£ is even,
which shows the lemma since h = L/N. O

Together with (3.6) the lemma immediately shows
(3.7) IHRVI < [V

Since obviously

-1
- et 5,

we have thus I;ThAth = ujvj where p; = —2¢ sign(j)h~2(cos(mj/N) — 1). In our
numerical work the evaluation of H rARV, for V given, is therefore done by taking
the Fourier transform of V', multiplying by p;, and then taking the inverse Fourier
transform; in practise these operations are done using the FFT.

Although the midpoint rule is of second order accuracy when the integrand is
smooth, it is now applied in (3.2) to a function with a singularity at the origin. In
spite of this, ﬁhu is a second order approximation to Hu when u is smooth.

Lemma 3.2. For u 2L-periodic and smooth we have

|Hpu — Hulloo < Ch?|ullcs, where ||U]|oo = max|Uj|.
J

Proof. We may think of (ﬁ ru); as the result of applying the midpoint rule to

fu(e)) = 57 [ eotlGpn(ute; — ) —ule; + ) dy= [ sz,

where, with ¢ (y) =y cot(ry) and w(z;y) = (u(z —y) — uw(z +y))/y,

Ly w(asy).

1 U
d(z;y) = = cot( oL

— cot(5=y)(u(w — y) - ulz +3)) = b

By the standard error estimate for the midpoint rule we therefore obtain, since 1)
is smooth (D, = 0/0y),

(Hy); — Huz)| < Ch? max | D28(w; )| < Ch? max||w(; ller < Ch2 Julles,
T,y T

which completes the proof. O



Let £ > 0 be a time step and ¢, = nk. With U™ defined for n > 0 we set
U™ = U" U™ Yk and U™ Y2=LU"+U"?), forn>1.
Then the Crank-Nicolson scheme for our problem is

(3.8) U™ + Fp (U™ 1/?) — Hy A U2 =0, forn>1,

UJQ =ug(x;), forje Z.

For U™~1 given this is a nonlinear equation for U™. We shall return later to
discuss the existence, uniqueness and computation of this solution, but start by
showing that the discrete analogues of the invariants defined in (1.2) are conserved.

Theorem 3.1. The functionals ®1,(U) = (U,1) and ®5,(U) = 3||U||* are con-
served for solutions of (3.8).

Proof. By summation by parts we have (fIhAhU, 1) = (AhﬁhU, 1) = 0 and sim-
ilarly (Fr(U),1) = £(0U,U) + £(8(U?),1) = 0. Hence 9;®1,,(U™) = 0. Further,
multiplying (3.8) by U"~'/2 we obtain

(39) (5,5(]", Un—1/2) + (Fh(Un_1/2), Un—1/2) _ (ITIhAhUn—l/2’ Uvn—1/2) = 0.
For any U we have
(BU,U) +

(3.10) (Fn(U),U) = UdU,U) = -1(U?,dU) + 1(UJU,U) = 0.

W=

1
3
Further

(3.11) (HoARU,U) = —(ALU, HyU) = —(U, Ay HLU) = —(Hp AR U, U).

Using (3.10) and (3.11) in (3.9) shows 0;®5 ,(U™) = 0, completing the proof. [
Lemma 3.3. For U"! given there erists a solution U™ of (3.8).

Proof. In terms of X = U™ the equation may be written
U(X)=2(X —U"Y) — kHALX + kF,(X) = 0.
Using (3.10) and (3.11) we find
(P(X), X) =2(X —U", X) = 2| X||* - 2(U"%, X) > | X||* — [|lU"~%,

and hence (¥(X),X) > 0 for | X|| = ¢ := ([U |2 + 1)/, say. The equation
U(X) = 0 therefore has a solution X € B, = {Y;||Y| < ¢}. In fact, if we
assume that U(Y) # 0 for Y € B, then the mapping A(Y) = —¢¥(Y)/||¥(Y)]| :
B, — By, is continuous, and hence it has a fixed point X € B, by Brouwer’s
fixed point theorem. For this fixed point we have ¢* = ||[A(X)]]? = (A(X), X) =
—q(¥(X), X)/||¥(X)||, which contradicts (¥(X), X) > 0. O

We postpone the discussion of uniqueness and turn to the error estimate. For
this we shall need the following (cf. (1.10)).
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Lemma 3.4. If u, is uniformly bounded we have

(Fi(U) = Fu(u), U —u)| < MU = u|l?,  where M = 3lusl|z.,

Proof. Set e = U — u. We have U? — u? = (2u + e)e = 2ue + €2, and hence

(B(U? — u?),e) = 2(d(ue), e) + (D(e?),€).

Similarly X X X X X
(UOU — udu, e) = (edu,e) + (ude, e) + (ede,e).

Thus A R
(Fr(U) — Fy(u),e) = —1(ude, e) + 3(edu, €) + (Fr(e), e).

Setting (7e); = e;j41 we have ede = 39(eTe) and hence
—(ude, e) = —1(u,0(eTe)) = 1(Ou,ete) < M|le|*.

Since (edu,e) < 2M||e||2 and (Fj(e),e) = 0 by (3.10), the result follows. O
We now show the following error estimate:

Theorem 3.2. Let u be a smooth solution of (2.1) and U™ be a solution of (3.8).
Then
U™ —u™|| < Cp(u)(h? +k?), fort, <T.

Proof. Set e™ = U™ — u™ where u™ = u(t,). Then, since u satisfies (2.1),
(3.12) dpe™ — HyApe"~V/2 = —F, (U"2) + Fy(a"~Y/?) - g™,
where G™ = Jyu™ + Fy, (@"~V/2) — HyApa™ "% — (ug + utty — Hugy)" V2,

with u"~1/2 = u(t, — 1k). Here, since both approximations are of second order,

2
||8tu — fu,t" 1/2” 4+ ||Fh(’l7,"_1/2) . (uuﬁ)n—1/2” < C(u)(h2 + k2),
and, using also (3.7),
||fNIhAh’En_1/2 H’un 1/2” < ||Hh(Ah’U,n 1/2 _ an- 1/2)”
+ ||H (@ 1/2 u 1/2)|| + ||(Hh — )Um” < Cu)(h? + k?),

so that |G"|| < C(u)(h? + k2).
Multiplication of (3.12) by &*~1/2 gives

(5 el é"_1/2) _ (ﬁhAhén—lﬂ —n—1/2)
(Fh( n— 1/2) F, (Un 1/2) Sn— 1/2) (Gn,én_1/2).
By (3.11) and Lemma 3.4 we thus obtain

le™ 12 = lle™ > < Cklle™ V2| + Ck||G™|| "2

< Ck(lle™]|* + [le" ") + CRIG™|I?,
9



and hence, for small k&,
le™[1* < (1 + CR)[le"*||* + Ck(h* + k*)*.
By repeated application we have, since e = 0,
le?||? < eCT|€%||? + Cnk(h? + k)2 < CT(h% + k?)%, fort, <T,

which completes the proof. O
With U"~! given, the nonlinear equation to be solved in (3.8) at time level n
may be put in the form

(3.13) W - %kﬁhAhW =g — kEFp(W), where Fyp(W)=F,(A(W+U"")),

with g = U™~ + %kﬁhAhU n=1_ For the solution of this equation we consider the
iterative scheme

(3.14) (I — LkH AWt = g — kF,(WP), for j >0, Wo=U""1.

Since HpA}, is skew-symmetric, the matrix on the left is nonsingular, so that this
linear problem has a unique solution for given right hand side. The following lemma,
shows the linear convergence of (3.14) for appropriately small k.

Lemma 3.5. For R > 0 given and v < 1, let kh™! < yR~! and assume that the
Wi defined in (3.14) are such that ||W7||, < R. Then
W7 — W < y||W7 = WY, forj > 1.

In particular, W7 converges to a solution of (3.13).

Proof. We first note that since Fy(U) — Fy(V) = QuUI(U — V) + Qu(U — V)V,

(3.15) IFr(U) = Fa(V)II < 2RRHU = VI, i [Ulloo, [V lloo < R-

We have for 57 > 1
Wt — Wi — SRH AR (WO = W) = —k(FQ(W7) = By (W97)).

Taking inner products with W7+ — WJ and using the skew-symmetry of fIhAh,
we get by (3.15), since ||2(W7 + U™ 1)||o < R,

(3.16) [WItE = W || < k|| Fp(W7) = Fp (W97
= K|lEx(GW7 + U™ Y) = Fu(GW 1+ UM )| < RERTH WY — W

which implies the convergence stated since Rkh™! < 7. U

We are now finally in a position to complete the proof that, for k£ appropriate, our
numerical method has a unique solution, which may be obtained by the iterative
scheme (3.14), and which approximates the exact solution as stated in Theorem
3.2.
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Theorem 3.3. Let u be a smooth solution of (1.1). Given T > 0 and y < 1, there
is a number R = Rt such that if h and k are small and k < yhR™1, then there exists
a unique solution of (3.8) such that [|[U"||cc < R for t, < T, and the conclusion of
Theorem 38.2. holds. Further the W7 defined in (3.14) satisfy |[W7 || < R.

Proof. Setting B = Br = sup;<r ||u(t)||cc we shall show the theorem with R =
B + 2. We first note that by Theorem 3.2, as long as U™ exists, we have since
k < yhR™!, for h small,

U™ — u™|oo < Ch™Y2|U™ — u™|| < Cr(u)h™Y2(h2 + k?) < 1,

so that ||[U™||cc < B + 1.

Assume now that U"~! exists, and consider the iterative scheme (3.14) with
g=U""14 %kﬁlhAhU"_l. We want to demonstrate that |[W7|. < R for j > 1
which then shows, by (3.15), that W7 converges to a solution of (3.13). This solution
is then unique. In fact, if W and W’ were two solutions we would have

W' —W — LkHp Ay (W — W) = —k(Fp(W') — Fr(W)).

After multiplication by W’ — W this shows, cf. (3.16), |W' — W|| < ~||W' — W||
so that W/ = W.

It follows from (3.16) that |[W7 —WP?|| < (1—~)~}||W1—-W?|. In order to bound
Wt — W9, with W° = U"~!, we note that using the equations for W' and U™

W — U™ - JkH AR (W — U™) = —k(FR(U™Y) — F(U™))).
Hence, after multiplication by W' — U™, cf. (3.15),

W —un| <clum -
<C(IU™ —u | + U = ut T+ " = ut ) < Ok + 1),

This yields
W7 —U" Y < C(IWH = U™+ [[U™ = U"7H]) < Ck + h?).

We conclude that ||[W7 — U Y| < Ch=Y/2(k + h%) < ChY/2 < 1 for h small, so
that ||[W7|leo < U™ |eo + 1 < B + 2 = R. The proof is now complete. O

4. Numerical illustrations.

We have applied our method to simulate the periodic single soliton solution
(2.3), with L = 15, ¢ = .25. Sample results are shown in Table 1, where the /2-norm
|le|| and the maximum-norm ||e|| of the error are listed at ¢ = 10,100 for certain
combinations of N and k, and where the second order convergence can be observed.
For instance, doubling N and halfing £ with N = 512, k = .2 reduces the error by
a factor 3.9. Figure 1 shows the result for N = 1024, k = .25.

We have also simulated the double soliton solution (1.6) of the unrestricted
Cauchy problem (1.1), using its given initial values on an interval (—L, L) as inital
values for a 2L-periodic problem; numerical results at ¢ = 10,90, 180 (¢ = 90, 180
were employed in [7]) are shown in Table 2 for L = 100,¢; = 0.3,¢2 = 0.6,d; =
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—30,dy = —55. We note that in this case the error stems from both the approx-
imation of the unrestricted initial-value problem by a periodic one, and by the
numerical approximation of the latter. In this case, in contrast to the single soliton
case which is just a translation, there is interaction between the two solitons. We
see that the error (especially in the maximum norm) is larger than the single soliton
case; note the phase error which is evident in Figure 2 (N = 2048,k = .1).

We note that the spectral methods used in [7], [8], and [10] need fewer parameters
in the spatial discretization, but use shorter time steps.

In our calculations we have used the iterative scheme (3.14) with a tolerance of
10~6. This tolerance was chosen because it was found that decreasing the tolerance
further did not change the error in the first four significant digits. The number of
iterations required are listed in the tables under I. For faster convergence we have
also considered the extrapolated initial approximation W° = 2U"~1 —U"~2, which
resulted in a certain reduction in the number of iterations needed, listed within
parantheses under It. For even faster convergence one could consider Newton’s
method. Since straightforward application of this method would require the solution
of linear systems which are not in convolution form and therefore not immediately
suitable for the FFT technique, it is then natural to use a modification proposed by
Akrivis, Dougalis and Karakashian [2], in which an inner iteration with the matrix
in (3.14) would be applied. We shall not pursue this here.

t  N/k |lell |lelloo It

10 256/0.5 0.713e-4 0.171e-3 5.0 (4.0)
256/0.25 0.629e-4 0.155e-3 4.0 (3.0)

512/0.5 0.279¢-4  0.608¢-4 5.0 (4.0)
512/0.25  0.181le-4 0.436e-4 4.0 (3.0)

1024/0.5  0.18le-4 0.358e-4 5.0 (4.0)
1024/0.25 0.711e-5  0.157e-4 4.0 (3.0)

100 256/0.5 0.480e-3  0.909e-3 5.0 (4.0)
256/0.25 0.375e-3  0.730e-3 4.0 (3.0)

512/0.5  0.227e-3  0.409e-3 5.0 (4.0)
512/0.25  0.121e-3  0.229e-3 4.0 (3.0)

1024/0.5  0.164e-3  0.286e-3 5.0 (4.0)
1024/0.25 0.574e-4 0.104e-3 4.0 (3.0)

Table 1.
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u(x,t)

0.9

0.8

- Exact
... Numerical

t=0

N=256
k=0.25

t N/k Iel] llefloo It

10 512/0.2 0.194e-1  0.158 9.0 (7.0)
512/0.1 0.190e-1  0.155 6.0 (5.0)
1024/0.2  0.574e-2  0.470e-1 9.6 (8.0)
1024/0.1  0.528e-2  0.435e-1 7.0 (5.0)
2048/0.2 0.203e-2  0.158e-1  10.0 (8.0)
2048/0.1 0.156e-2  0.121e-1 7.0 (5.0)

90 512/0.2 0.624e-1  0.336 7.8 (6.3)
512/0.1 0.613e-1  0.331 5.5 (4.2)
1024/0.2  0.182e-1  0.979e-1 8.4 (7.0)
1024/0.1  0.168e-1  0.912e-1 5.9 (4.5)
2048/0.2  0.580e-2  0.305e-1 6.6 (5.1)
2048/0.1  0.480e-2  0.248e-1 4.6 (3.2)

180 512/0.2 0.195 1.399 7.9 (6.4)
512/0.1 0.192 1.377 5.6 (4.2)
1024/0.2  0.678e-1  0.520 8.6 (7.2)
1024/0.1 0.617e-1  0.475 6.0 (4.6)
2048/0.2  0.242e-1  0.188 8.9 (7.3)
2048/0.1 0.175e-1  0.136 6.2 (4.7)

Table 2.
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