1997:42 ISSN 0347-2809

Pointwise estimates of the weighted
Bergman projection kernel in C" using a
weighted L? estimate for the 9 equation

HENRIK DELIN

NO 1997-42/ISSN 0347-2809






Pointwise estimates of the weighted
Bergman projection kernel in C" using a
weighted L? estimate for the 0 equation

HENRIK DELIN

NO 1997-42/ISSN 0347-2809

1997
Mathematics
Department of Mathematics
Chalmers University of Technology
and Goteborg University
S-412 96 Goteborg, Sweden






POINTWISE ESTIMATES OF THE WEIGHTED BERGMAN
PROJECTION KERNEL IN " USING A WEIGHTED
L? ESTIMATE FOR THE 0 EQUATION

HENRIK DELIN

ABSTRACT. Weighted L? estimates are obtained for the canonical so-
lution to the § equation in L?(Q,e”¥d)), where Q is a pseudoconvex
domain, and ¢ is a strictly plurisubharmonic function. These estimates
are then used to prove pointwise estimates for the Bergman projection
kernel in the same L? space in the case Q = C*. The weight is used
to obtain a factor e~**(*%) in the estimate of the kernel, where p is the
distance function in the Kihler metric given by the metric form i09¢.

1. INTRODUCTION

Let 2 C C" be a pseudoconvex domain, and ¢ be a plurisubharmonic
function in Q. Consider the space L2(Q) := L?(Q,e “d)) of square inte-
grable functions on 2 with the measure e"¥d\, where d\ is the Lebesgue
measure. The subspace H, g(Q) of holomorphic functions is then a closed sub-
set of Li(Q). We define the orthogonal projection and the corresponding
integral kernel in the following way.

Definition 1. The Bergman projection operator S, is the orthogonal pro-
jection

Sp: LE(Q) — H2(Q).
The Bergman integral kernel, S,(-,-), of this bounded operator is defined by
the relation that, for v € Li(Q),

5,(v)(z) = / 82 O0(Q)e * Q).

As a reference for the basic properties of the (unweighted) Bergman kernel
see e.g. the paper by Bergman [1].

In Theorem 2, we will give the main result in this paper, which is a growth
estimate of S,(z,() in the whole of C* when |z — (| — oco. Previously,
Hérmander [11], has given estimates for S,(z,z) for points on the diagonal
of 2 x Q, close to the boundary in strictly pseudoconvex domains. In 1991,
Christ [5] proved pointwise estimates of various weighted kernels in C'. One
of the kernels was the Bergman projection kernel S,(-,-). The function
@ was supposed to belong to a certain class of subharmonic functions in
C', satisfying some extra conditions on the measure Ap. Theorem 2 of
this paper is a partial generalisation of Christ’s result on S,(-,-) to several
variables.

1991 Mathematics Subject Classification. 32H10. - -
Key words and phrases. Bergman kernel, weighted L? estimates, 0 equation, O-
Neumann problem, Kihler metric.
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The unweighted kernel was studied by Kerzman [12], published 1972. He
proved differentiability at the boundary in smooth, strictly pseudoconvex,
bounded domains in C2. In his proof, he used the §-Neumann solution
operator to construct the Bergman kernel. We will essentially use the same
idea, in the following way. The kernel may be written as a projection onto
Hg(Q) of a given C§°-function v supported around (. We may then write

v==Sv+u=S5(¢)+u,
where u is orthogonal to Sy, i.e. u is the La—minimal, or canonical, solution
to Ou = Ov. We use the solution to the 0-Neumann problem to obtain u, or
at least a weighted estimate of u. This weighted estimate for the canonical
solution to the d equation is stated in Theorem 1.

The technique by Kerzman was also used by McNeal [14], who extended
Kerzman'’s results by giving estimates for the Bergman kernel and its deriva-
tives in domains of finite type in C2. Nagel, Rosay, Stein and Wainger [16]
also studied domains of finite type in C? proving estimates similar to the
ones of McNeal. We will not study this type of regularity of the kernel,
though. The presence of the weight e~% makes regularity results much more
complicated.

As mentioned, the proof of Theorem 2 is based on Theorem 1, a weighted
L? estimate for solutions to the O equation. There exists several vari-
ants of weighted L? estimates of Hormander type for the 0 equation. In
Donnelly-Fefferman [8], there can be found related ideas concerning the
condition on the weight, though not used in the same way as in this paper.
Ohsawa-Takegoshi [17] used ideas which are similar to ours, and the paper
by Diederich and Ohsawa [7] include a result on the existence of solutions
that satisfy a similar weighted L? estimate. Related papers, which also
prove existence of solutions satisfying weighted estimates are McNeal [15]
and Diederich-Herbort [6].

In [2], Berndtsson gave a proof of a weighted estimate for the L2-minimal,
canonical, solution, with a weight w. Unfortunately for us, it imposes a
condition on 90w, which does not fit the purposes of this paper. To prove
Theorem 2, we would like w to depend on a certain distance function, and
then a condition on the norm of dw is more suitable. To that end, we will
prove the following result.

Theorem 1. Assume that f is a closed (0,1)-form on a pseudoconvex do-
main Q C C" and that ¢ is strictly plurisubharmonic and C? there. Let w be
a weight function on Q satisfying [Ow|;55, < €w, on Q, where 0 < € < V2.

Then the Li(Q)—minimal solution to Ou = f satisfies

2
1.1 Ze® d>\<7/ 2 5o€ Pwd.
[ rerwins o [ g,

Here, | - [;55, denotes the norm in the Kéhler metric with Kéhler form

i00¢. Generally, we will let w denote a Kihler form, and then apply our
results to the particular metric with form

w = i00¢p.
Theorem 1 strengthens the mentioned estimate of Diederich and Ohsawa
somewhat. The main differences are, that their estimate is not given for the
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L?-minimal solution, and it also assumes the manifold is complete. The L?-
minimality of u is necessary for the way we use it to estimate the Bergman
kernel.

Before stating the main theorem, we need some more notation. In order
to replace the Kahler form w by something simpler to handle, we let yu, be
a constant (1,1)-form that dominates w close to z in the following way.

Given w and a point z € C*, let u, := p(w)(z) to be any constant her-
mitian (1, 1)-form, such that

(1.2) pz > w(C) for ¢ € By, (2,1),

i.e. it majorises w in the unit ball in the Kahler metric with metric form
given by p,. If the inequality in (1.2) holds in (the larger set) B,(z,1),
then certainly (1.2) holds, so there are no problems finding such a u, if w is,
say, continuous. A linear change of coordinates, that makes y become the
Euclidean metric, will make w become bounded by the Euclidean metric.
That is, w < § on the Euclidean unit ball, where

(1.3) B:= %Zdzk A dz

is the Kahler form for the Euclidean metric.

Now, the eigenvalues of w with respect to u can now be defined as follows.
If w and p are seen as matrices through some basis, the eigenvalues of w with
respect to u, denoted by \;(w|u), are the solutions to

det(A\p —w) = 0.

Since this equation is invariant under both left and right multiplication by
nonsingular matrices, this definition is independent on the choice of coordi-
nate representation for w and pu. The minimal eigenvalue can also be given
by

Amin(w|g) = min  w(v,v).
vip(v,0)=1

The relative determinant is
det(w|u) = [ ] Xi(wlw).

When given with respect to the Euclidean metric, we omit this notation,
writing det(w).

For further notational convenience, let

cou(C) == _ inf )‘min(w(é)mg)
C€BL(¢1)

be the minimal eigenvalue of w with respect to u¢ that occurs in the given
ball around (. Observe that by (1.2), ¢, ,({) < 1, but it may also be a lot
smaller.

Now, we may state the following theorem.

Theorem 2. Let ¢ be a strictly plurisubharmonic C? function on C*. Let
., satisfy (1.2), with w = 100y, and assume that 0 < € < /2. Then the
weighted Bergman kernel satisfies the estimate

(14)  |S,(2,0))* < det (1) det (u¢) e H0(0)epu(z0).

C
(V2 = €)%cu,u(C)

where the constant C only depends on the dimension n.
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Remark. Note that actually, S, (-,) is conjugate symmetric in the two vari-
ables. Hence, in the denominator, one could replace

Cw,pu (g)
by

Cou(2)
(or the larger one of these). I don’t know if this factor is really necessary,
or what would be the optimal factor in general. In some way, it measures
how far w is from being constant around a point.

As long as w doesn’t vary too much inside B, (z,1), staying uniformly
equivalent to u, for every z, we could replace p1, and p¢ in (1.4) by w(z)
and w((), respectively. This would also imply that Amin(w|p,) is bounded
from below by some constant. Under this (rather vague) condition on w, we
would obtain the more desirable estimate

|Sp(z, I < ~ det(w(2)) det(w(¢))e? IO (20,

_¢
(V2—¢)
where now C' also depends on the uniformity of w.

Another observation that might be interesting to mention is for the case
when the weight is e V%, for large N. Let wy = i00Ny. As N grows,
the balls B, (2,1) = B;s5,(2, 1/V/N) shrinks. Hence, for N large enough
(depending on the continuity of i00¢p at z), u, := 2wy (z) = 2Nw(z) would
dominate wy on B, (z,1) in the sense of (1.2), and likewise for ¢. It follows
that, for N large enough,

2n
_ONT det(w(z)) det (w(¢))eN N —VNp(2.0),
(VZ—cp?

In the case of one complex variable, and under the extra condition that
i00¢ is a doubling measure, it is possible to make a slight improvement of
Theorem 2. We will discuss this in Section 6.

Finally, I want to thank Prof. Bo Berndtsson for giving me the idea of
this problem, and for valuable support and inspiration during the time I
have been working on it.

1Sne(z Q)|” <

2. NOTATION AND PRELIMINARIES

As seen in Section 1, the results in this paper will concern domains in
C". Since the estimate (1.4) involves the distance function with respect to
the metric given by i00¢y, it turns out to be natural to look at C* with a
Kahler metric, and obtain results in that context. For the proof, we shall
use Hérmander’s L? techniques, and the generalisation of these techniques
to Kéhler manifolds. I do not know how to obtain the desired estimate
using the Hormander technique with respect only to the Euclidean metric,
but there would certainly be some additional problems to overcome.

By (-,-)w,p, we denote the scalar product on forms with values in the
trivial line bundle with metric w on the base manifold, and metric e~% on
the fibres, i.e. (-,-)y,» = (-, )€™ ¥. The subscript -, will mean the Euclidean
metric in C*.
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Let Li(Q, d)\) denote the L? space with scalar product

/Q<'>')e,cpd>‘ = /Q(.’.)ee—wd)\’

and let L2(Q,w,dV) denote the L? space with scalar product

[ eostv = [ (rueeav,

mn
av =<
n!

where

is the volume measure induced by the metric. (We include w in the notation
Li(Q,w,dV) to indicate the dependence on w for forms of degree greater
that 0). We denote balls with radius R and centre z in the metric w by
B,(z,R).

Interior multiplication of differential forms will be denoted by ., and is
defined by

{(yac, B) = (a,7 A B)

for forms «, B and v of matching degrees. This is a pointwise operation on
forms and of course independent of the fibre metric e . Let A®9 be the
space of alternating (p, ¢)-exterior products. Then we define the operator

A =w,: APD _y Alp—1g-1)

which takes (p, ¢)-products to (p — 1, ¢ — 1)-products.

For holomorphic line bundles, one cannot define the operators 9 and d,
since they are not preserved under holomorphic change of frames. Instead,
the differential operator one should use is the connection on the cotangent
bundle.

The connection on differential forms may then be written as a sum of a
(0,1) part and a (1,0) part. Not going into detail here, we note that for
the trivial line bundle with e~ as the fibre metric, these parts of different
bidegree turn out to be as follows. The (0,1) part is just 0, which is well
defined on holomorphic bundles. Its formal adjoint in L2(Q,w,dV) will here

be denoted by ('_);, i.e., for smooth, compactly supported forms « and g,

/ (9er, B)udV = / (o, 3 8),dV.

The (1,0) part turns out to depend on the fibre metric, or ¢, and will be
denoted by 0,. Locally, or in our trivial case, we may write it as

0, =€e¥0e ¥ = 0 — OpA,

where 0 is the (1,0) part we get when ¢ = 0. We denote the corresponding
adjoint in Li(Q,w, dV') by 0%, since it turns out not to depend on the fibre
metric given by ¢.

Let 0* denote the adjoint of 0 for ¢ = 0. One can show with a short
integration by parts argument that

a’; =e?0*e™¥ = 0" + Oyp_.
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We define the complex “Box Laplacian” as
I .__ Qo % O
0" == 09, + 0,0,
and
O := 0,0" + 0 0,.
The following commutator identity will also be useful. We may write
(2.1) 0* = —i[0, A].

A proof of this formula can be found e.g. in Wells [20], in chapter V, section 3.

We will also have use for the Hodge * operator. The complex linear
* operator that takes (p,q)-forms to (n — ¢,n — p)-forms is defined by the
relation

(,6)dV = a A*E

for every a and ¢ with the same degree.

Generally, in the sequel, ¢ will be an (n, 1)-form, and y will be an (n—1, 0)-
form. Usually their relation will be that

v ==x%¢.

For the bidegrees we are interested in, we will make use of the following
simple facts about the % operator and A. For an (n,0)-form «, the % operator
is just multiplication by a scalar, since x : A0 — A(0) and A(0) g 5
one dimensional space. For an orthonormal basis {6;} of (1,0)-forms in the
metric w, let § := 01 A...0,. Then

"(—1)" T 9NG = dV = (8,8),dV = O A %0

Conjugating, we see that

n(n+1)
2

(2.2) £0="(~1)"" 0.

This must then hold for any (n,0)-form. Furthermore, if v is an (n — 1,0)-
form, then

n(n—1)

(2.3) sy =i""H=1)" 7 wA~.

This is seen in a similar way as for (n,0)-forms by looking at the elements
of an orthonormal basis, this time for (n — 1,0)-forms. If {6;} is as before,
then .

Hj = (—1)7_191 VAR 9]'_1 A 0j+1 A0y,
is an orthonormal basis for (n — 1,0)-forms. Now,

n(n—1)

(—1)"5ONG = dV = (6;,0,),dV = 0; A% 0;.

~

Since 0 =0; ANO; = (—1)”_1@- A 0, one can conclude that

n(n—1)

£ = —i"(-1)"T G A0 =N -1)TT Y i A Ay =
k

in_l(_l) n(nz—l)

The last inequality follows from the fact that we may write w = Y 6y, A 0.
This proves (2.3) for basis elements, and the rest follows from linearity.

w/\OAj.
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The adjoint formulation of (2.3) is that if £ is an (n, 1)-form, then

n(n—1)

(24) +€ =" (=1)T 7 AL
or
(2.5) Af = —m1(—1)" 5 we
This follows from (2.3) by

2D

(% €),dV =aAxxE=aNim 1 (=1)" 2 wAx*E

n(n—1) n(n—1)

= (WA, i" (1) 7 EudV = (a,i"(=1)7 2 AE)udV.

3. SOME WEIGHTED L2 IDENTITIES

In order to prove Theorem 1, we start by obtaining a weighted L? iden-
tity for (n,1)-forms satisfying the boundary conditions of the 6-Neumann
problem. When the problem is formulated on a Kihler manifold, the right
choice is using (n,1)-forms instead of (0,1)-forms. The identity obtained
differs from what could be considered standard L? identities through the
presence of the additional weight w. We will give two versions of the proof
for the identity.

e The first version will give us Proposition 1. By using some ideas
from Siu [19], we first prove an identity for (n — 1,0)-forms, given
in Lemma 1. (Siu calls the method he uses the d9-Bochner-Kodaira
technique). Then, using the x operator, which is an isometry between
(n,1)-forms and (n — 1, 0)-forms, we obtain the desired identity.

e The second one, proving lemma 2, will be given as an alternative ver-
sion. It is based on the Bochner-Kodaira-Nakano identity. For simplic-
ity, it will be stated and proved only for forms with compact support.
This version is actually not used, and may be skipped. With some
work the proof works also for forms satisfying the boundary conditions
of Proposition 1.

To prove the first version in Proposition 1, we start by obtaining the iden-
tity for (n —1,0)-forms in Lemma 1. Then, using the * operator, we obtain
the desired identity for (n,1)-forms in Proposition 1. One major difference
between the identity for (n — 1,0)-forms and the one for (n,1)-forms is that
in terms of the (n — 1,0)-form 7, this formulation is not dependent on any
metric for the underlying manifold. In particular, it uses no Kahler assump-
tion. Here, we have chosen to formulate the boundary term in a way that
involves the metric, though it actually does not depend on it. That fact
can be seen from the proof. The reason for the formulation given, is that it
makes it easier to determine the sign of that term.

Lemma 1. Let ¢ and w be sufficiently smooth real valued functions. Let
v be an (n —1,0)-form defined in a neighbourhood of a smooth bounded set
G = {z : v(2) < 0}. Here, v is a defining function of G, with dv # 0 on
0G. Assume further that v satisfies the boundary condition Ov Ay =0 on
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O0G. Then

(3.1) 2Re/ i”éapfy/\’_ye_“’w:/i”@&p/\’y/\’?e_“’w
e G

+ (=) / "0y A Bye fw + (—1)" / "0y N Opye Pw
G G
. = _ . = \ _, dS
+/ i"Ow A O(y A\ e ‘P)-l—/ " x(Q0V Ay Ny)e  Puw—
G oG |dv|

Proof. This follows from the following direct computations of the differential
forms and using Stokes theorem. We have, using the notation 9, = e¥9e ¥
from Section 2, that

(3.2) 90(y Aye %) =00y AFe % + (=1)" "Ly A Dyye™¥)
©
= (8,07 AY + (=1)"3Y A By + (—1)" 8,y A By +y A BByy)e .

Since

0,07 = =00,y + 80p A,
we obtain that the first term on the right hand side of (3.2) equals
(3.3) 00y Ny = =00,y Ny + 00p Ay A 7.
Writing v A 89,7 = (—1)""190,y A4, we can see that after multiplication

by ", the last term of (3.2) becomes the conjugate of the first term of (3.3).
Thus (3.2) yields

i"00(y Aye ?) = (—2Rei" 0,y ANY +1"00p Ay N7
+ ()8 Ay + (—1)" "By A By)e Y.

Now, we may multiply (3.4) with a weight function w and integrate. Using
Stokes formula, the left hand side yields

(3.5)
/ wi"00(y A ye ¢) = / i"wo(y Aye~?) — / i"Ow A O(y A ye~?).
G oG G
From the boundary condition

(3.6) Ov A~y = 0 for points on 0G,

(3.4)

it follows that for any (0,n)-form «, v A a vanishes as a differential form on
the submanifold 0G. If not, we would have dv Ay A a = Ov Ay A @ nonzero
at the boundary of G, and this is not the case by (3.6). Hence, we may write
the boundary integral in (3.5) as

(3.7) / i"B(y A 7e P = / i@y AY + (1) Ly A Ty we
oG oG

:/ "0y A ywe .
oG

Now, to rewrite this boundary integral in a way which is more usable to
us when determining the sign, we do the following. First, we note that (3.6)
gives that Ov Ay = v A for some (n,0)-form A which is bounded on G. Then
we see that

0(0v Ay ANFe ?) =0(VANTFe ) =0v ANANFe P +vI(ANFe ¥).
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This vanishes for points on G, the second term since v vanishes at the
boundary, and the first term since dv Ay = 0 on G by (3.6). Hence, on
oG,
0 = O(OvAyAYe %) = BOVAYAYe P —OuAOYAYe ¢+ (—1)"OvAyADyve ¥
= —00v ANyA7Fe~® —Ov Ay A7e ?,
ie.
(3.8) 00v Ay Aye ¥ = —0v A Oy Ave ¥ on OG.

Using the following formula; if 3 is a form of degree 2n — 1, then

ds
I —/aG*“””’W

we obtain that the boundary integral of (3.5) may be written as

/ "0y Aye Pw = / i" %(Ov A Oy A ﬁ)e_wwﬁ
le |dv|

e
- ds
= — "% (Q0V ANy Ny)e Puw—.
/aG |dv|
This proves the lemma. O

Next, we translate 3.1 to an identity for (n, 1)-forms using the * operator
defined by a Kéahler metric.

Proposition 1. Let £ be an (n,1)-form on a smooth, bounded, open set
G = {z : v(z) < 0} in a Kdhler manifold. Here, v is a defining function of
G, with dv # 0 on 0G. Assume £ satisfy Ovo€ = 0 at the boundary, and

that ¢ and w are sufficiently smooth real valued functions. Then
(3.9) 2Re / (08¢, &) we” PwdV = / i(00p N AE, ) e PwdV
+/|5f;§‘ie_‘pde+/\8*§|i e_‘pde—/‘gﬂie_‘pde

+ / (i(@w A AE, 5;§>w + i{0w A OAE, {)w) e dV
ds

Proof. This is basically just a reformulation of Lemma 1 in terms of £, where
v = &, and keeping track of the signs. The major difference is the introduc-

+ /a G(iaéu AANE E) e ?

tion of a Kihler metric, which will help us get control of the term 8y A 0.

Multiplying the entire identity (3.1) with the factor (—1)"}(—1)*"F =
—(—l)n(n2+1), the sign of each term will be the same as the corresponding
one in (3.9).

To start with the boundary condition, assume that dv.¢ = 0 on O0G.
Then we see that for any (n,0)-form a,

0= (a,0vil)y =(0vNa,&)y =0V ANaANxE=0vANaiy,

so the boundary condition of Lemma 1 is satisfied.
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Now, the integrand in the left hand side in (3.9) yields, by (2.2),

(00,€,€)wdV = (9(—* 0y +€),E)wdV = —0(x Dy % €) N *E

n(n+1)

=—(—1)" 2 "0,y 7.

For the right hand side, we have the following for each term. The first
integrand is by (2.5),

(00 A AE, E)odV = i09p A —i" 1 (—1)" 5 xENFE
n(n+1)

=—(=1) 2 "00p Ay A7.

For the second term we can write, again using (2.2), and the fact that
*x = (_1)77,’

n(n+1)
2

(5{;5, 5:,5)de =0, xENxx0p*& =1"(—1) (=1)"8yy A Opy.

The third and fourth term of (3.9) cannot be dealt with in quite the same
way, since they depend on the metric being Kahler. By writing the terms
in normal coordinates, we will obtain that together they correspond to the
0y A 0y term of (3.1). Since the terms involved consist of only first order
derivatives of the forms, the following approach is valid when the metric is
Kahler. Let z be normal coordinates at a point 2z in G (which implies that
|dzx|, = 1 and constitutes an orthonormal basis at the point. (This is in
contrast to the ordinary coordinates z in C", where, with our conventions,
|dzx|, = V/2). Then, we write

£= &dz Adz.
One immediately obtains that, at zg,

. n(n+1) —
xE=qy=i"(-1)" 2 Y &dz.

and differentiating, which is possible in normal coordinates we have, still at
20,

Oy NIy = Z Bitxdz; A day, A Z Oi&xdz; A dzy,
= (_1)27%1 Z gifk%dz Ndz
1 9 a a _ —
- (52 [B:6x — Ontal” = > \&-&cI?) dz N dz = (|8¢|° — |0y|”)dz A dz.

Since ‘5’)/‘ = ‘* 57‘ = |0*¢|, we can conclude that

n(n—1)

—(~1)TF "y Ay = (|0v]? — |0¢[2)dv = (|8%¢2 — |F¢|? )av-

This gives the identity for the third and fourth term, at the arbitrary point
Z0-
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Further, the two terms arising from differentiation of the weight function
w are, again by (2.5),

n(n+1)
2

i(Ow A AE, TE),dV =i (—1) (Ow A % &, %0 * €),dV

n(n+1) | R — n(n+1) | [
=(=1) 2 "OwAyYAxx0,y = (—1)"(=1) 2 "OwAyAOyy

and

i{Ow A OAE, €),dV =

n(n+1) n(n+1)

— (1) 2 (BwAO*&,E),dV —i"(—=1) 2 Ow A dyA7.

These two are exactly what one gets from the last term in (3.1).
And finally we turn to the the boundary integral. It is similar to the first
term, giving

n(n41) |
2 4

7’<85V N Afa&)w = *(Z<85V A Af,f)de) = _(_1)
This finishes the proof. O

"%(00v Ay N 7).

Now we will give the alternative proof of Proposition 1. For simplicity we
assume that the forms are compactly supported, though using a version
of the Bochner-Kodaira-Nakano identity with a boundary term, the proof
could be modified to give the full version. We also choose to formulate
the weight term differently in this version, and state the result below as
Lemma 2. The weight will here give rise to a term including 00w, which
can then be rewritten as in Proposition 1 by integrating 0 by parts.

Lemma 2. If £ is a compactly supported (n,1)-form on a Kdahler mani-
fold with metric form w, and @ and w are sufficiently smooth real valued
functions, then

(3.10) 2Re / (B85, €) e PwdV
= / i(00p N A&, €) e PwdV + / |5j:,§|ie_‘pde
—/i(@éw/\A&,f)we‘pdV—i—/\B*ﬂi e‘pde—/‘gﬂie‘pde.

Proof. To achieve this we will use general L? results on vector bundles ap-
plied in the usual way on the trivial line bundle on (n,0) and (n,1)-forms
and with fibre metric e™%.

We start from the following well known Bochner-Kodaira-Nakano L? iden-
tity,

0"¢ = 0°¢ + ([0, AJ¢, &),

where © is the curvature form of the bundle. In the case of a line bundle
with fibre metric e™%, we have © = 00y. Proofs of this identity can be
found in several places, e.g. [3], part II, section 13. An integration by parts
yields that if € is a smooth, compactly supported form on a Hermitian vector
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bundle over a Kahler manifold, then
(3.11) /|ag|2 dv+/\a*5|2 v
) w,p P> lw,p
_ / 10,£[2, dV + / €2 dV +i / ([0, AJE, E)opdV.

A version of this identity with a boundary term can be used to prove the
lemma with the boundary conditions given in Proposition 1.

To introduce the weight function w, we replace ¢ by ¢+ in (3.11), where
the weight will be w = e~%. Substituting ¢ + 1 will result in the following
for each term of the identity (3.11). The first term on the left hand side of
(3.11) will simply be

(3.12) / Ge” oy dV = / |3¢|” e Pwav.
Turning to the second term of (3.11), we note that
(3.13) Tppp€ = 0"+ O(p + 1) a€ = € + L.

Combine this with the observation that

/ (0036, €)= PO aV = / (B3, 8% yEhoe™ PP ay

= / (056,858 + (356, 0piE), ) e PV,

Then we see that the second term of (3.11) may be written as
(3.14) / |95.y€ [ e PwdV
= / (\éjggﬁ +|09E|2 + 2Re(05¢, Opaf)w)e PwdV
= /(\égg\i +|0ag| — 2 |5§;§|i + 2Re(085¢,€)w) e YwdV

= /(— |95¢” + (0912, + 2Re(D3E, €)o) e PwdV.

Now we turn our attention to the right hand side of (3.11). The first term
vanishes for (n, 1)-forms for bidegree reasons. The second term on the right
is just

(3.15) / 072 e~ qy — / 6% e PwdV.

Turning to the last term on the right hand side of (3.11), we observe that
for bidegree reasons, [OA, Al = © A A€ when £ is an (n, 1)-form. This gives
us

(i[ON, AJE, €)= i(00p A AE, €)y, + {00 A AE,E),,.
Since
d0w = 80e™Y = w(OY A Op — ddY),
i.e.

wOOp = w(0 A Oy) — 00w,
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the last term of (3.11) equals
(3.16) /i(a&p AAE E)pe PwdV + /2'(81/) A0 A AEE) e PwdV

— /z’(@éw NAE &) e PdV.

Using the identity that for any (1,0)-form 6, 1 = i[A,0] = —if A A on
(n,1)-forms (the last equality holds for bidegree reasons), the integrand of
the second term of (3.16) becomes

(3.17) —i(Op A O A AE,E)y = —i(O A AE, €)= ||

Hence, (3.16) can be written as
(3.18) / ([0, A)¢, &) e PwdV =i / (00p A AE, &) e PwdV

+ / \31[)4{& e YwdV —i /(E)éw ANAE € e PdV.

Adding (3.12), (3.14), (3.15) and (3.18), and observing that the second term
on the right of (3.18) cancel the corresponding term in (3.14), we now have
proved Lemma 2. U

4. PROOF OF THE WEIGHTED L2 ESTIMATE

Now we are in a position to prove a weighted L? estimate for the minimal
solution to the 0-problem with a suitable weight.

Lemma 3. Assume that f is a closed (n,1)-form on a pseudoconvex domain
QCC". Let w be a weight function on Q satisfying |0w|, < ew, for some
0 < € < V2. Let further ¢ be a strictly pseudoconvex C? function on Q and
u be the Li(Q,w,dV)—mz’m’mal solution to Ou = f. Then

, 2 ~
(4.1) /|u|ie PwdV < m/mie YwdV,

where the metric is given by w = 100.
Theorem 1 is now an easy consequence of Lemma 3.

Proof of Theorem 1. Apply Lemma 3 to f = fdz, where f is a closed (0, 1)-
form, and get the Li(Q, w, dV)-minimal solution % = udz to 0@ = f. Then
Ou = f, and we observe that by (2.2),

n(n—1) n(n—1)

G2 dV =i"(=1)" 7 aATd=1i"(-1)" 7 |ul’dz AdZ = [u]” 2"d)

and similarly that
FI2dV = |£1? (dz, dz),dV = |£]% 2"d).

Hence, the function u is the Li(Q, d\)-minimal solution to du = f for (0, 1)-
forms, and the desired inequality for u and f follows from Lemma 3. This
concludes the proof of Theorem 1 as soon as we have proved Lemma 3. [J
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Proof of Lemma 8. First, assume that €2 is a smooth, bounded, and strictly
pseudoconvex domain. Then we may apply Lemma 2 in the following way.
For a given (n,1)-form f, let £ be the 9-Neumann solution to

(4.2) 0"¢ = (00}, + 050)€ = f on Q.
When 0f = 0, it follows that B
06 =0
and hence the second term in (4.2) vanishes. This yields
O"¢ = 55;5 =f.
Now, we define u to be -
u = 0p¢.
Then u will be the Li(Q,w,dV)—minimal solution to Ou = f, since u is

orthogonal to all holomorphic (n,0)-forms. Further, since 0¢ =0, OAE =
[0, A)¢ = 40%E, by (2.1). Apply Proposition 1 to this £. By the pseudocon-
vexity of €2, the boundary integral will be positive, and we obtain

(4.3) 2Re/(f,§)we_‘pde > /i(@&p/\AE,E)we_‘pde
+/|u|§ewwdv+/|a*§|f,ewwdv+/z’<aw/\A§,u>we¥’dV

_ / (Ow A O€, €)pedV.

To estimate the last two terms, we use the bound on Jw. Taking absolute
value, and observing that [Ow A AE[? < |w|? |A[> < €w? |¢]2, the fourth
term on the right hand side of (4.3) can be estimated by

(4.4) ‘/i(aw /\Af,u)we_‘pdV‘

(5 2 67(’0 1 2 _
< — S — 14
< 2/|8w/\A§|w ” dv —|—25/|u\we wdV

<62_‘5/\g|2 ¥ dv+i/| |2 e CwdV.
<5 L€ Tw % u|, e TwaV.

When § satisfies 1/2 < § < 2/€2 —1/2 the proof works, as will be seen later.
(One can also show that we obtain the best constant in the estimate for this
proof if § is chosen so that 62 + 1/4 = 1/¢2.)

For the last term of (4.3), the second with dw, we note that by Cauchy’s
inequality, valid for (0,1)- and (n — 1, 1)-forms like Ow and 0*¢,

0w A €2 < |ow|? [07¢) < w? |9%¢2,

and hence

1 —p
@s) |[townoe s>we-%zv‘ <2 [1ownoez av

2 2
+%/\§|§, e PwdV < /|a*f\f,e¢wdv+%/|g|f,ewwdv

What needs to be estimated from (4.4) and (4.5) is f\éﬁ e PwdV, and
it can be majorized by the 00y term in (4.3) by choosing an appropriate
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metric. If we choose as a metric for Q the one with metric form w = i90¢p,
then

{000 N AE )y = (wAAEE)y = [AEL2 = €2

Hence, using (4.4) and (4.5), we get from (4.3) the following inequality. (The
constants are chosen so that the terms with [9*¢[° cancel.) If w = i@y,
then

(4.6) 2Re/(f e PwdV > (1 — — — — /\§| e YwdV
1—— /|u| e PwdV.

On the other hand, the left hand side of (4.6) can be estimated from above
by

(4.7) ‘2 Re / ( f,g)we—wwdv‘ < % / 2 e PwdV + & / €2 e~ PwdV

Put (4.6) and (4.7) together, and choose § > 1/2 and ¢’ such that

This is possible if €2 < 4/(20 + 1) < 2. For a given € with 0 < € < V2, it
can be shown that 62 + 1/4 = 1/€? yields the best constant C' in the lemma
for this proof. We omit the elementary calculations here. With this choice
of §, we obtain the estimate

_ 1 2 _
u|? e PwdV < 5 /|f| e YwdV
/ ? (1-FL =) — ) ?

2
2 _ 2 _

This proves the desired result for smooth, bounded, strictly pseudoconvex
domains.

For an arbitrary pseudoconvex set (2, take an increasing sequence of
smooth, strictly pseudoconvex domains € with UQ; = Q. Let ug be the
L?-minimal solution to duj = f on Q. Then uy, satisfies the desired bound
on (2. Hence, for k > ky,

2
2 _—p 2 _—p 2 _—p
uk|;, e PwdV S/ lug|;, e PwdV Si/ |f|5, e PwdV
/Q,m' | o (V2 —¢€)? Jo,

2 .
< — e YwdV.
< G L
That is, (ux) is a bounded sequence in L?({2,,w, e~ ¥wdV'). The special case
with w = 1 as a weight, or standard L? estimates, yields (u;) is a bounded

sequence in L?(Q,,w,e ?dV) as well. Further, the following sequence,
denoted (Ay), satisfies

Ay, ;:/ |uk|§,e—%0dvg2/ |fI? e=*dV,
Qp Q
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i.e. (Ag) is bounded. Hence, for a given kg, there is a subsequence of wuy
(also denoted by wuy) with a weak limit u in L?(Q,,w,e ¥dV), and such
that Ay converges. Since w is locally bounded, u is also a weak limit of
ug in L?(Qg,y,w, e PwdV). As a weak limit, u also solves du = f on €,.
By taking further subsequences of (uy) for increasing kg, and then a diag-
onal sequence (still denoted by uy) we may assume that uy — u weakly in
L?(Qy,w,e”%dV) and in L?(Qy,,w, e PwdV) for every k.
Since weak convergence decreases norms, we have that

(4.8) / |u\i e PwdV < lim/ |uk|z) e YwdV
Qg k—o0 Qg

2
S m/ﬁ‘f‘i eitp’UJdV,

and by monotone convergence, this also holds with €, replaced by €. This
is then the desired estimate for u, and all that remains is to prove that
u actually is the Li(Q,w,dV)—minimal solution. This can be seen in the
following way. As in (4.8),

/ lul?, e=%dV < lim lug|’ e=%dV < lim Ay,
QkO k—o00 QkO k—o00

and the same inequality holds with Q, replaced by €. If ug is the minimal
solution, then, since uj is minimal on €,

Ak:/ |uk|ie_‘pdV§/ |u0|ie_‘pdV§/|u0|i e YdV
Q Q Q
S/ |u\ief‘pdV§ lim Ayg.
[} k—o0

Letting £ — oo in the left hand side yields

/|u0\26_‘pdV:/|u|26_‘pdV,
Q Q

and hence » has minimal norm. By uniqueness, u = ug. This concludes the
proof of Lemma 3. U

5. ESTIMATING THE KERNEL

To prove the pointwise estimate of the Bergman kernel S, (z, () in Theo-
rem 2, we will first make an L? estimate of the kernel by using the weighted
L? estimate of Theorem 1. The weight will be used to obtain the factor
with exponential decay relative to the distance between z and ¢ in the i09¢
metric. First we need a result on the existence of a bounded potential when
the metric is bounded. It can be found for example in Lelong and Gruman
[13]. Since the proof isn’t that long, we sketch it for completeness.

Lemma 4. Assume w is a positive, bounded, continuous, d-closed (1,1)-
form on a neighbourhood of a smooth, strictly pseudoconvez, star shaped
domain. Then there exists a plurisubharmonic function 1 on the domain
such that i00v = w, and |||z~ < C||w||L=, where the constant C depends
only on the dimension and the domain.
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Proof. Since w is closed, the Poincaré lemma says there exists w such that
dw = w. Decomposing w we may write d(wg,1 + w1,0) = w, where

1
wo,1 = Z/ twkj(tz)zjdik
gk 70

and

1
wi,0 = Wo,1 = Z/ twkj(tz)ékdzj.
gk 70

Hence wp,; and w; are bounded by ||w|re. Bidegree reasons give that
éfwo,l = 0 = OJwip. Since wp; = wig it will be enough to solve iov =
wp,1 and let ¢ = 2Rew. Then 00y = i00(v + v) = (Owo1 + Owig) =
d(wo,1 + w1,9) = w. The proof will be finished if we can find a v which is
bounded by wg ;. The desired result can be found in the book by Henkin
and Leiterer [10], Theorem 2.6.1, p. 82. Their theorem says even more. For
a smooth, pseudoconvex set D, there exists a constant C', such that if w is
a continuous (0, g)-form on D, with Gw = 0 in D, then there is a solution v
to Ov = w which a bounded Hoélder norm,

lvllr2(py < Cllwllzee(p)-
Especially, [|v||zeo(py < C|lwl| e (py- O

Now, remember that in (1.2), we let y¢ be an hermitian form that dom-
inates the Kahler form w. Then, to use Lemma 4 above, we will map p¢
with a complex linear mapping onto the Euclidean metric form 8 defined
in (1.3), thus mapping w to something with a known bound. For this, we
will need the following observations on the behaviour of the kernel and of
the metric under such mappings.

There is an elementary formula for how the Bergman kernel behaves under
holomorphic mappings, which is valid also for the weighted kernel:

(51) S(p(za C) = JCn(z)Stpon—l (77(2)’ H(C))JCU(C),

where Jen = d(n1,--.,1n)/0(21,--.,2,) is the complex Jacobian determi-
nant. The proofis principally the same as in the unweighted case, by variable
substitution and using the uniqueness of the reproducing kernel. Calcula-
tions for the weighted case can be found in the paper by Dragomir [9], in
Lemma 1. This paper also includes some further references on Bergman
kernels with a more general weight than we consider in this paper.

Now, assume for simplicity that ( = 0, and let 5 be a complex linear map
that takes p = p¢ to the Euclidean metric, and the unit ball B,(0,1) onto
the Euclidean unit ball. Let L be the linear operator representing u in the
Euclidean metric, i.e. such that

(v,v)y = (v, Lv),.

We see that we can take 7 as the square root of the positive operator L,
then 7 is the linear operator for which (p~!)*u = 3. Then Jc7 is constant,
and

(5'2) Scp(za C) = |JC77|25<pon*1(77(z)777(O) = det(/ﬁ)sgaonfl(n(z)an(C))'
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For the metric and the distance function under the same mapping 7, we
observe that since i00¢ < p on B,(0,1), i09(pont) = (n 1)*i0dp < B
on n(B,(0,1)) = B.(0,1). Also, if p,(,-) is the distance in the metric with
potential ¢, then

(53) pQO(za C) = Pyopy~1! (77(3),7](0),

i.e. distances are preserved.

As mentioned in Section 1, the eigenvalues of a form with respect to
another form is independent of the choice of coordinates. For example, we
have

(54 Auin@lie) = Amin (1) |7 i) = Auin (1050 0 1718,

and likewise that

(5.5) det(w|uc) = det(i09¢p o n~t|B).

5.1. An L? estimate. From Theorem 1 we obtain the following estimate

on the Bergman kernel.

Proposition 2. Let S,(z,() be the Bergman projection kernel in La((C").
Let further p(z,C) be the distance function of the metric with metric form
w =00y and let p¢, satisfy (1.2). Assume 0 < € < /2. Then, for any (o,
we have

6.0 [ 1800 G XD ar()

B C det(uco)ew@o)
o (\/§ —€)? infCeBﬂgo (o)1) Amin(w(o‘:ué"o)

The constant C depends only on the dimension n.

Proof. First, assume that w < f in B.({o,1). Then we may take u¢, as
the Euclidean metric. Let x : C* — R be a nonnegative radial function
compactly supported in B¢((p,1) with [ xd\ = 1. Then, for any harmonic
function g,

(5.7) 9(Co) = /C iy XD

We can use this to estimate S, (2, (). Namely, let H(() be a holomorphic
function in B ((p, 1) with H((p) = 0, and define

v(¢) = x()es 1.
Since S,(z, () is antiholomorphic in ¢, we have by (5.7) that for any z,

Sev(z) = /B o Sp(z,O)x(C)eTOdA(¢) = Sp(z, Co)e ) = 5,(2, o).

Now, let f = Jv, and let u be the Li(C”,d)\)—minimal solution to Ju = f.
Then v can be orthogonally decomposed as

v =u+ Syv,
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or

(5.8) Sy(2,¢0) = v(z) —u(2).

The main part to estimate here is w. v is an explicitly known function
with compact support, and unless z and (y are close together, v vanishes.
Generally, since x is bounded,

(5.9) lv(z)|? =92 < CeP()+2Re H(2)

?

which will be dominated by the part coming from u.

To estimate the Li(@”,dz\)—minimal solution u to du = f, we have the
weighted estimate of Theorem 1. For the right hand side of (1.1), we see
that i

f=0v=(Ix+x0(p+ H))e* .
The norm | - |, on 1-forms is given by the inverse of w, and can be estimated
from above by the Euclidean norm and A_! (w|e). This yields

min

1 2 ‘p<7
6:10) e < s

In the Euclidean metric, Oy is bounded by a constant. Furthermore, since
H is holomorphic and ¢ plurisubharmonic, one can see that

‘B(QO—I—H)‘ P t2ReH _ |8 (,0—|—2R€H)| ePt2Re H <A, P t2ReH

‘5X‘§e<p—|—2ReH + X2 ‘5(90 + ﬁ)‘iecp—ﬂReH)_

Since x? has compact support, Green’s formula allows us to apply the A,
on x? instead of on the exponential factor. This yields

2
e ¥d\ <
/|f| lnfgeBe(Co,l) Amin(w(C)le)

Now, A.x? is bounded, and can be absorbed in C. Furthermore, on B, ((, 1),
pw(z,Co) is bounded by 1, since w < f there, and hence w = e®(%:<0) is
bounded from above and below by positive constants. Thus it may be in-
serted into the integral, and we obtain, by Theorem 1,

/ (C + Aex?)e?T2ReH gy
Be(COa )

(5.11) /|u 2 g=#(2)ger(C02) g (2)

/ 17 (¢ ep(Co,C))d,\(C)

e§0+2 Re HdA

< J,
(\/5 —€)? lnfgeBe(gO,U Amin(w(€)) Be(Go,1)

By (5.9) the same estimate holds with u(-) replaced by S, (+, (o). The only
thing that remains to complete the proof for the case w < [ is to estimate

/ e(P+2 Re HdA
BE(COJ)

By Lemma 4 there exists a plurisubharmonic function % with 100y = w =
100y, which is bounded by a constant on Be({o,1). Then, since ¢ — ¢ is
pluriharmonic, there exists a holomorphic function H such that 2Re H =



20 HENRIK DELIN

¥ — . Now, let H=H — H({y), i.e. 2Re H =9 — ¢ — (o) + ¢((o)- Then

we may write

/ (P t2ReH gy _ V() +e(%) < CePlCo)
Be(Coy1) Be(Gos1)

since 9 is bounded. This finishes the proof for the case when w <  around

Co-

For the general case, let 77 be as in the discussion on page 17, with (o as the
origin. We may then use, in the following order, (5.1), variable substitution
and (5.3), the bounded case just proved, and then finally (5.4). This yields

/ |Sp(2,Co)[” e =) ) (2)
- / |S pon-1 (n(2); U(CO))|2 ePe(90) =22 | Jon|t dA(2)

- / ‘Saponfl(wafo)V epwon‘l(w’go)e“"on_l(w)dk(w) |J<c77‘2

- Ce—von"(éo) det(pic,)
T (V2 —€)? infee . (6,1 Amin (80 0 n7L(€)]e)
Ce—¢(C0) det(p¢,)
T (V2-e? infCeBuco (¢o,1) Amin(w]picy)

This completes the proof of Proposition 2. O

5.2. Pointwise estimates. To obtain pointwise estimates from Proposi-
tion 2, we will use a simple lemma that can be found e.g. in Berndtsson [2].
The proof from that paper will be sketched here for completeness.

Lemma 5. Let ¢ be plurisubharmonic on B = B.(0,1). Define further
M, ={v<0:88v=00p on B}
and put a, = supy, v(0). Assume that u € L2 (B) satisfies

loc

/ luffe? <1
B

sup |5u|2 e ¥ <1.
B

and

Then
u(0)* e#OFe < ¢,

where C is a universal constant.

Note. Inour case, we will have that 09y is uniformly bounded, and Lemma 4
then says that a, is bounded by a constant. The conclusion is that

lu(0)|* < Ce?©).

proof of lemma 5. When ¢ = 0, take a cut-off function y on B which equals

1 when z < 1/2. Let
1

2n—2

K=c¢,0
2]
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be the Bochner-Martinelli kernel. Then

B B

The first term can be estimated by ||Oul| L, since K € L'(B). The second
term can be estimated by ||u||z2 since dx = 0 for |z| < 1/2. This gives us
the lemma for ¢ = 0.

For an arbitrary plurisubharmonic ¢, we let v € M,. Then v — ¢ is
pluriharmonic, and hence there is a holomorphic H so that v = ¢ +2Re H.
Put ug = ue, then Ouy = e Ou. Hence,

/ ‘uH‘Qefv :/ lu?e ¥ < 1.
B B

‘5uH|267” = |5U|267<‘0 <1.
Since e”¥ > 1, the same holds with that factor removed. The case ¢ = 0
now applies to ug, and we find that

[u(0)[* e=#P+O) = jug (0)]* < C.

Taking supremum over all v now gives the lemma. O

and

We are now in a position to prove Theorem 2.

Proof of Theorem 2. To obtain a pointwise estimate from the left hand side
of (5.6), we will use Lemma 5, working along the same lines as in the proof
of Proposition 2. For a given point zp, let 4 = p,, be an hermitian form
on the tangent space, satisfying (1.2). Let n be the complex linear mapping
for this 4 as defined on page 17. Furthermore, p,(:, (o) < 1 on B, (z,1) 2
By., (20,1), so by the triangle inequality,

e€P(Z,C0)e—€P(ZO,CO) Z e—EP(Z,CO) Z 6_\/5 for z e BUJ(ZO, 1),

we may insert this into the right hand side along with a change of constant.
This yields

/ |5 (n~(2), o) | e~ P~
Be(n(zo)al)

— det(j1-o) /B o Setm @ e )

1

@) d\(z)

< Cdet(us) / 1, (2, Co)| ePE0)e #1E) g (z)e P00
C det(u,,) det (,uco)e‘P(Co)e—ep(zo,CO)
> (\/i — 6)2 infCeB”Co (¢o,1) )\min(w(()\,uco)

Further, 05(-,{y) = 0, so Lemma 5 applies for S(n7'(-),(s) with the
plurisubharmonic function ¢ o !, yielding

C det(pz,) det(uco)ew(Co) e—€p(20,60)
infeen, (¢o) Amin(w(C)]1go)

|S(p(2,’0, CO)|2 e“Ponfl(n(zo))—aWn_l (ZO) S
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But a,,,-1 was bounded, independently of ¢, by Lemma 4, so Theorem 2
follows. O

6. A SLIGHTLY IMPROVED VERSION IN C!.

In the case of one complex variable, we will see that, under an extra
condition on ¢, it is possible to strengthen the main result of this paper
slightly. The condition we impose is that the (1,1)-form w = 09y, which
in the case of C' is a measure, is a doubling measure.

Definition 2. A measure w is a doubling measure on C if there is a constant
Cy such that

w(Be(z,2r)) < Cyw(Be(z,7))
for every z € C and r > 0.

Let p := ¢, be a constant (1,1)-form satisfying (1.2). In C', p is just
a constant factor times the Euclidean volume form, and we identify p with
this constant factor. Then, we let

(6.1) k= k((p) := l/ i00¢,
Bﬂ(govl)

™

denote the (normalised) i@0¢-volume of the p-unit ball around (y. Note
that the normalised py-volume of this ball is 1 since p is a multiple of 3, the
Euclidean form as defined in (1.3), and has no curvature. Since i0dp < pu,
it follows that s < 1.

In some cases it may be possible to show that the y-unit ball is equivalent
to the i00p-unit ball, and then we see that x would be approximately the
(normalised) volume of the unit ball. Generally, the volume of the unit ball
is known to depend on the curvature of the metric. Results of this type
can be found e.g. in Schoen and Yau [18], and Chavel [4], which are good
references in this area.

Remember now, that we use Theorem 1 only for forms f supported in a
ball with radius 1. Using this, together with the fact that in C, it is possible
to solve the 80-equation in general (which then is just the Laplace equation),
we will prove the following proposition, which is to serve as a replacement
for Theorem 1.

Proposition 3. Let ¢ be a strictly subharmonic C? function on C, and
assume that w = i00¢ is a doubling measure and that w(¢) < B for ¢ €
B¢(Co,1), i.e. the Euclidean metric form p = 3 satisfies (1.2). Let k be
defined as in (6.1). Let further u be the L%(C,e ¥d\)-minimal solution to
Ou = f, and assume that supp(f) C Be((o,1). Then,

/‘|u|26—¢’eépw(€0,-)dA < ﬁ/‘f‘ge_‘pd)\,

where the constant C' depends only on the doubling constant of w.

This will give us the following version of Theorem 2.
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Proposition 4. Let ¢ be a strictly subharmonic C? function on C, and
assume that w = 100y is a doubling measure. Let 0 < € < /2, and p,
satisfy (1.2). Then the weighted Bergman kernel in C satisfies the estimate

1S,(2,¢)|? )+e(O)—epe(2:0),

C
< — e#(z
= (\/i— G)KI:U’Z/J‘C
where the constant C only depends on the doubling constant Cy of w.

The proof of Proposition 4 is the same as for Theorem 2, with the following
comments. Using Proposition 3, we will prove a variant of Proposition 2,
which is given in Proposition 5. Proposition 5 can then be used to prove
Proposition 4. U

Proof of Proposition 3. Similarly to Theorem 1, we will obtain this result
from the identity in Proposition 1. In C, it can be seen that the identity is
actually the same in every metric, a different metric corresponds to a substi-
tution of the differential form ¢. From now on, we will use the convention to
denote A = a a_ for the Laplace operator. If we write down Proposition 1
directly in the Euclidean metric, identifying ¢ = adz A dz with «, we obtain
the following identity.

(6.2) 2Re/fde_‘pwd/\:/A<p|a|26_‘pwd)\+/\u|2 e Pwd\

-I-/ 8_04 dw do
0z

dw
“PdA —aue dA — —ae PdA.
e +/ 1z aue + ds dz
Now, assume, as in the proof of Lemma 3, that |0w|,, < ew, that is,

dw |2 9 9
—| < ewAep.

In analogy with the proof of Lemma 3, (essentially Theorem 1), we estimate
the terms involving dw /dz as

dw | _6ldw*lal®> 1 €28

Eau‘sg L b P w < Swelal + o fulw
and

dw da dwl|? o> |dal|? € 2 da|?

&Y Sa|@| w T @ v el “’*‘a w

Thus, we obtain from (6.2), that

1
(63 1———— /A<p|a| e Pwdi + (1 — %) / lul? e~ Pwd\

1
< A/ |f12 e Pwd\ + = la)? e Pwd\
Be(¢o,1) A JB (o)

for any positive A, since f is supported on B((p,1). To obtain the desired
estimate, we have to take care of the last integral on the right hand side.
Previously, we did this with A |a|? on the left hand side, but this time
we will use a different approach; we will use formula (6.2) again, with a
different w, and add the result to (6.3). More precisely, we will use the
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formulation given in Lemma 2 obtained from a partial integration in (6.2).
Discarding some terms, we obtain that, for v > 0,

(6.4) /A<p|a|2 e_‘p'ud)\—/A'u|a|2 e Yd\ < 2Re/fae‘pvd)\

1
< A/ |72 e~ Pvd) + — la|? e~ %ud,
Be(Co,1) A JB.(Go,1)
for any positive A. If we choose § so that 1 — €2§/2 — €2/4 =0, i.e.
2 1
ey

then the factor in front of the integral with u in (6.3) is

1 2 1
1-—=1--5_> " (V2—e.

24— 7\
By adding (6.3) and (6.4), we obtain that
1
(6.5) /((w +v)Ap — Av) | e"Pd\ + E(\/5 —¢) / |u|? e~ Pwd\
1
<A (w+ ) |fI2 e ?dA + —/ (w4 v) |a|® e PdA.
BE(COﬂl) A Be(coﬂl)

Since f is supposed to be supported in Be((y,1) C B, ({p,1), and w = eP(Cor)
it follows that 1 < w < e on B((p,1). From now on, assume that we can
find a weight v such that 1 < v < K for some constant K, which is to be
determined. Then, from (6.5) the following holds.

+ K _
(6.6) /((U+w)A<,0—Av— <e 1 )XBe((o,l)) |a|26 Cd
1
V2

+ (\/i—e)/|u|26WdAgA(e+K)/|f|QewdA.

So, if v satisfies
e+ K
(v +w)Ap — Av — ( 2 ) XBe(¢o,1) 2= 05

we would have a weighted estimate for u. This is achieved for by solving

e+ K
(6.7) Av = <2A(p - ) X Be (Co,1)-

A necessary and sufficient condition for this to have a bounded solution is
that the total mass of Av is zero, and this is true if

e+ K

?

A=
K

since 2A@d\ = i00¢. Now, with this A, a bounded solution to (6.7) is the
logarithmic potential

= 2 / log |z — ¢| (2Ap(¢) — k)dA(C)
Be(Co,1)

T
2
= — / log
™ Be(COal)

s3]

¢
z

(w(¢) = KdA(Q))-
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When z — oo, clearly o — 0, and since @ is harmonic outside B,({p, 1), the
maximum of ¥ must be attained in Be((p,1).

To estimate ¥ in Be((p, 1), we use the doubling property of w. A doubling
measure is known to have a polynomial behaviour; for r < R,

w(Bel¢yr)) < C1 (3) @lBel¢ B)

for some constants C; and a > 0 depending on the doubling constant Cl.
See Lemma 2.1 in Christ [5] for a proof of this result.

We may also note that the same is true when we replace ( by a nearby
point z in the left hand side. If |z — (| < 1, then B(z,1) C B((,2), and it
follows that for r <1,

(6.8) w(Be(z,1)) < Cir%(Be(2,1)) < C11%(Be((,2)) < C1Cir%k(C).-

When integrating log |z — (| w in the definition of 7, any negative contri-
bution comes from integrating over the ball B.(z,1). Hence, to estimate

/log|z—<|w(<),

from above and below, the following inequalities suffice. When |z — (y| < 1,

2mog223/ 1og|z—<|w<oz%/ log | — (| w(()
Be((()yl) Be(z,l)

™ ™

2 °°/ 2 X . .
> = log |z — Clw(¢) > = log 27/ lw(Be(z,277))
ngo 2—j—1§|z_<‘<2—j 7'(']';0 e

o
>—C1Cq Y (j + 1)27%w(Be(2,1)) > —kCy,
j=0
where the last inequality follows from the inequality (6.8), and the assump-
tion that |z —{y| < 1. The constant Co depends only on the doubling
constant Cy.
Also, easy calculations show that for |z — (p| < 1,

0> 2 / log|z — ¢| sdA(C) > —,
3(4071)

T
so we have shown that
k(14 2log2) > 0 > —Csk.
Now, we let the weight function v be
v="0+4+ Cork+ 1.
Then we may bound v by

1<v<K,
where K = 2 + 2log2 + C,. This yields
K)? C
Ale+K) = M ==,
K K

where C depends only on the doubling constant.
Thus we have proved everything that is needed to obtain proposition 3
from (6.6). O
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We may now apply Proposition 3 to prove the following version of Propo-
sition 2.

Proposition 5. Let S,(z,() be the Bergman projection kernel in Li(C).
Let further p(z,() be the distance function of the metric with metric form
w = 100y, and assume that it is a doubling measure. Let further peo Sat-
isfy (1.2), and assume that 0 < € < v/2. Then, for any (y, we have

_ Cuwy, e (o)
S (z,C)|2e€”(z’€°)e W(Z)d)\(z) <"
/ Y (V2 — €)K(¢o)

where the constant C' only depends on the doubling constant Cj.

Proof. The proof is just like the proof of Proposition 2, with the following
changes. Replace (5.10) with the estimate

f2e™ < 2]0x|? et2Re T 1 932 |3(p + H) | e t2Re M
This will give us

[isteransa [ (Crandemman
BB(CO71)

Then, using Proposition 3 instead of Theorem 1, we obtain, instead of (5.11),
that

—9(2) ger(Co,2) e~ ()
/|u ‘ ) < s 7 o @z On

.- ecp+2ReH
= Vas ) @) /B o -

The proof is then completed as in the proof of Proposition 2, by estimating

/ 6(‘0—1—2 Re Hd)\
Be (CO;I)

and then rescaling to the case when p is not equal to 8, and observing that
K is preserved under scalings. O
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