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Abstract

A general framework for exact simulation of Markov random fields us-
ing the Propp—Wilson coupling from the past approach is proposed. Our
emphasis is on situations lacking the monotonicity properties that have
been exploited in previous studies. A critical aspect is the convergence
time of the algorithm; this we study both theoretically and experimen-
tically. Our main theoretical result in this direction says, roughly, that
if interactions are sufficiently weak, then the expected running time of a
carefully designed implementation is O(N log N), where N is the number
of interacting components of the system. Computer experiments are car-
ried out for random g-colourings and for the Widom—Rowlinson lattice gas
model.

1. Introduction

A major trend in probability and statistics in the 1990’s is the extensive use of
Markov chain Monte Carlo (MCMC) methods to sample from complicated
multivariate probability distributions. This is particularly the case in image anal-
ysis, spatial statistics, and a wide variety of Bayesian contexts; see e.g. Gilks et
al. [5] for a broad introduction to the theory and applications of MCMC.

The idea, which dates back at least to the 1953 paper by Metropolis et al.
[15], is to define some ergodic reversible Markov chain whose unique stationary
distribution equals the desired probability measure 7. Starting from an arbitrary
initial state, one runs the chain until it is close to equilibrium, and outputs the
final state whose distribution then is close to 7. The construction and computer
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implementation of such a Markov chain is often straightforward, but the approach
has the following drawbacks:

(i) Typically, the Markov chain never actually reaches equilibrium (it only
comes arbitrarily close). Therefore, the output will have a nonzero bias no
matter how long the chain is run.

(71) More often than not, it is very difficult to establish rigorous upper bounds
on the time taken to come close to equilibrium which are good enough to
be of any practical use.

In itself, (7) is not a disastrous problem. Much more serious is (7), which as a
matter of fact challenges the rigour of much of today’s MCMC practice. [Actu-
ally, there is a third problem (possibly the most serious of all) in that MCMC
algorithms require the use of random number generators, whereas in practice
of course only pseudo-random number generators are available. Like most re-
searchers in this field, we shall simply ignore this problem, pretending it doesn’t
exist. |

In one of the truly important MCMC papers in recent years, Propp and Wilson
[18] devised an algorithm which simultaneously solves problems (4) and (7) above
by

(i’) producing a completely unbiased sample from the target distribution 7, and
(#3’) determining automatically how long it needs to run.

They furthermore demonstrated experimentally that their algorithm is compu-
tationally feasible on important examples including the Ising model and certain
random tilings. The algorithm is based on so-called coupling from the past
(CFTP). Loosely speaking, the idea of CFTP is to couple copies of the Markov
chain starting in all possible states at some time in the distant past, and to run
them until time 0. If all copies have coalesced by time 0, then the value at time
0 does not depend on the starting value, and the output can be shown to be
unbiased. The algorithm involves trying earlier and earlier starting times until
eventually coalescence has occured. (A more careful description will be given in
Sections 3 and 4.)

The work of Propp and Wilson has been followed up and extended in various
directions e.g. by Kendall [12], Higgstrom et al. 7|, Higgstrom and Nelander [8],
Mgller [16] and Murdoch and Green [17]. A completely different algorithm for
exact sampling, based on so-called strong uniform times rather than on coupling,
has been developed by Fill [1]. In most of these papers (including [18] but with the
notable exception of [17]) some monotonicity property of the target distribution
7 is required in order to get efficient exact sampling.

In the present paper, we will discuss the possibility of exact sampling using
CFTP in the context of Markov random fields, particularly in the case where
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no obvious monotonicity structure is present. Markov random fields are widely
used as stochastic models e.g. in image analysis [2, 23], spatial statistics [9], and
statistical mechanics [3, 6]. The algorithm we present is a generalization of the
monotone CFTP algorithm of Propp and Wilson. In our general setup, the exact
way in which the chains are coupled will not be specified, thus leaving plenty of
room for adapting the algorithm to best suit particular contexts. It is probably
not realistic to expect that a general rule can be devised for how the coupling
should be constructed in order to be as efficient as possible, but we shall try to
give some reasonable advise in particular cases.

Here is a quick outline of the rest of this paper. In Section 2, we provide the
context by recalling the definition of a Markov random field, and giving some
examples. The CFTP algorithm is presented in Section 3, where we also give
conditions which guarantee its convergence. In Section 4 we point out how this
algorithm generalizes those of [18] and [§], and in Section 5 we give a simple
example which demonstrates the necessity of running the chains “from the past”
rather than “to the future”. Section 6 gives a brief discussion of the possibility of
replacing the Gibbs sampler by Metropolis-Hastings chains in the CF'TP setup,
and the last two sections treat the issue of computational complexity, first via
a rigorous result (Section 7), and then experimentally (Section 8). Some final
remarks are made in Section 9.

2. Markov random fields

We here give a very brief introduction to Markov random fields; the reader may
turn e.g. to [13, 23, 6] for more extensive discussions. We consider stochastic
systems living on a finite graph G with vertex set V and edge set E. For two
vertices u,v € V we write u ~ v to indicate the existence of an edge connecting
u and v. Let S be some finite set. Each vertex v € V' can be in any state s € S,
chosen in some random fashion, so the random objects we are interested in take
their values in SYV. We write £, w, ... for fixed elements of S, where W can
be any subset of V, and we furthermore write X, X1,... for S"-valued random
objects. For W C V', we define the boundary oW of W as the set

oW ={ve V\W: Jw e W such that v ~ w}.

Definition 2.1. An SY-valued random element X with distribution 7 is said to
be a Markov random field on G if for each W C V the conditional distribution
of X(W) given X(V \ W) depends on X(V \ W) only through its values on
OW. In other words, X is a Markov random field if for all W C V, w € SV,
W' e SYWoand all " € S such that W" is the restriction of W' to OW and
T(X(V\W)=uw") >0, we have

T(XW)=w|XV\W)=ud') = 7(XW)=w|X(OW)=u").



Loosely speaking, X is a Markov random field if the values of X at different
vertices can only depend on each other via nearest neighbour interactions.

Mathematically, there is of course no loss of generality in assuming that X is
a Markov random field, since if S and V are finite sets and X is an arbitrary S"-
valued random element, we can trivially turn X into a Markov random field by
defining G to be the graph with vertex set V' and edge set consisting of all pairs of
vertices in V. The point of discussing CF'TP in a Markov random field context is
more of a practical than of a mathematical nature: In typical applications, each
vertex will have relatively few neighbours in GG even if the whole system is quite
large (for instance, in image analysis, G may be a portion of the square lattice
of size (say) 512 x 512, in which each vertex has at most four neighbours). The
algorithms will involve updating the value at a single vertex v € V according
to its conditional distribution (under the target distribution 7) given X (V \ v),
and this is obviously computationally more feasible if the conditional distribution
only depends on neighbours of v. The advantage of this is even greater in the
CFTP context (i.e. when coupling many copies of the chain) than when only a
single chain is involved.

We now go on to describe some examples of Markov random fields.

Example 2.1: Random g-colourings. Let ¢ > 2 be an integer, and let § =
{1,...,q}. A configuration w € SV is said to be a g-colouring of G if no two
adjacent vertices have the same “colour”, i.e. if w(v) # w(w) whenever v ~ w. A
random g¢-colouring X is simply a ¢-colouring of G chosen uniformly at random.
For each W C V and each ' € SY\W, the conditional distribution of X (1) given
X(V\W) =« is uniform over the set of all w € SV that do not produce any
pairs of neighbouring vertices having the same value (either within W or between
W and V \ W). This conditional distribution depends on w' only via w'(0W),
so X is a Markov random field. The main interest in random g-colourings is
combinatorial, but they have also been studied in statistical mechanics where they
are thought of as “zero temperature limits” of antiferromagnetic Potts models
(see Example 2.3). An MCMC algorithm for generating random g-colourings is
discussed by Jerrum [10].

Example 2.2: The Ising model. Possibly the most studied of all Markov ran-
dom fields is the Ising model, which was first introduced in statistical mechanics
as a model for spontaneous magnetization in ferromagnetic materials. The ver-
tices are thought of as atoms, and the state space S = {—1,1} is thought of as
representing two different spin orientations. The Ising measure v, for G with
coupling constant J € R is the probability measure on {—1,1}" which to each
configuration £ € {—1,1}" assigns probability

1
vg(6) = 77 P ( —2J ) 1s(z)#(y)) (2.1)

z,yeVv
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where ZZ, is a normalizing constant. That this defines a Markov random field
follows easily from the fact that the right hand side of (2.1) can be factorized
into factors involving only the states of neighbouring vertices. The case J > 0, in
which neighbouring vertices tend to agree (take the same value), is referred to as
the ferromagnetic Ising model, and the case J < 0, where they tend to disagree,
is called antiferromagnetic. See e.g. [3| or [6] for further general discussion. The
Ising model was among the first models to be successfully simulated using CF'TP;
see [18|.

Example 2.3: The Potts model. A natural generalization of the previous two
examples is the ¢-state Potts model. Here S = {1,...,¢} for some ¢ > 2. The
Potts measure Vg;’J with coupling constant J € R assigns, to each configuration
£ € SV, probability

1
Vgij(f) = 747 exp ( —2J Z 1£(w)¢§(y))-

G z,y€V
zry
For the same reason as in Example 2.2, this gives rise to a Markov random field.
Taking ¢ = 2 and identifying {1,2} with {—1,1}, we retrieve the Ising model.
Fixing ¢ and letting J — —oco, we get the random g¢-colouring in the limit. We
refer to [3] or [6] for general discussions and to [19] for a discussion of the J — —o0
limit.

Example 2.4: The hard-core model. Let S = {0,1}, and consider for a > 0
the {0,1}"-valued random object which arises by letting the vertices indepen-
dently be in state 1 (resp. 0) with probability _% (resp. #1), and then condi-
tioning on the event that no two adjacent vertices both have value 1. This is the
so called hard-core model, which is of interest both in statistical mechanics [3|
and in operations research [11]. Again, we get a Markov random field. The statis-
tical mechanics interpretation of the model is that the 1’s are non-penetrable gas
particles which would overlap if they were located at adjacent vertices. CF'TP

simulations of the hard-core model appear in [8].

Example 2.5: The Widom—Rowlinson lattice gas model. In 1970, Wid-
om and Rowlinson [21] introduced a model for a gas with two different types
of particles living in R?. Lebowitz and Gallavotti [14] soon thereafter introduced
a discrete variant, a multi-type version of which is defined as follows. Fix a > 0
and an integer ¢ > 2, and let S = {0,1,...,q}. Consider the S"-valued random
configuration X which arises by letting each vertex independently pick a value
from {0,1,...,q} according to the probability distribution (1+1qa, g+ 1qua),
and conditioning on the event that for each pair of neighbouring vertices x,y € V
we have either X (z) = X (y) or X(2)X(y) = 0. The value 0 at a vertex should

be thought of as “empty”, and 1, ..., q should be thought of as ¢ different types
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of particles. With this interpretation, the conditioning amounts to saying that
no two particles of different type are allowed to sit next to each other. As in
the previous examples, only nearest neighbours interact directly, so we have a
Markov random field. Most studies of this and related models concentrate on the
binary gas which arises by taking ¢ = 2; see [4] for a treatment of the (continuum)
Widom-Rowlinson model with arbitrary gq.

3. The algorithm

3.1. The Gibbs sampler

We start this section with a description of the Gibbs sampler, as it is a key
ingredient in CF'TP. Suppose we want to simulate a random element X taking
its values in SV according to the probability measure 7. Suppose further that
the conditional probabilities 7(X (v) =i | X(V \ {v}) = &) are easily available
for all possible combinations of v € V, i € S and & € SYM*}. The Gibbs sampler
is a discrete time Markov chain {X;} with state space S¥ and the following
evolution. At each integer time ¢, a location v € V is chosen to be updated.
For definiteness, we take the mechanism for picking locations to be to pick v at
random (uniformly) from V', independently for each ¢. (Other mechanisms, such
as cycling deterministically through V', are sometimes preferred elsewhere in the
MCMC literature.) The values at vertices w € V'\ {v} are left unchanged and the
new value at vertex v is chosen according to the correct conditional probability:

Xiy1(w) Xi(w), w e V\{v}
Xit1(v) (-] X:(V \ {v})).

If it is the case that the set of elements of SY with positive m-measure is
connected (where two elements of SV are thought of as adjacent if they differ only
at one vertex), then the resulting Markov chain {X,} is irreducible and aperiodic,
hence ergodic. Clearly the Markov chain has 7 as its stationary distribution, and
therefore the distribution of X; converges to 7 as t — 0o, regardless of the starting
value X.

In practice (i.e. in computer implementations) the updating is realized using
a random number which is uniformly distributed on [0, 1], and a deterministic
function

(3.1)

[ISH]

¢:SV x[0,1]xV =85V

such that X;,1 = ¢(Xy, uy, wy) leaves X, intact on V' \ {w,;} and updates the value
on wy depending on u; in such a way that (3.1) holds. There is an enormous
choice of such functions; all that is needed is that

/0 Hipumm=sydu = m(X(v) =s[ X(V\{v}) =&V \{v})) (3:2)



for allv € V, s € S and all possible configurations £ € SV. In standard Gibbs
sampling, the choice of ¢-function is of no importance (and is therefore usually
implicit) as long as (3.2) holds, whereas in contrast this choice plays an important
role in CFTP. A common choice is the so called monotone ¢-function for which

[6(€,u,v)](v) = max{s € §: 7(X(v) = s[X;(V \ {v}) = £(V \{v})) = u} (3.3)

(see Section 4) but sometimes there will be reason to pick ¢ differently.

When X is a Markov random field, ¢ can always be chosen in such a way
that [¢(&, u,v)](v) only depends on the values of £ at the neighbours of v; we will
henceforth assume that ¢ is chosen in such a way.

3.2. CFTP

The idea behind the Propp-Wilson coupling from the past algorithm was touched
upon in the introduction. Now we will give a precise description. To that end we
introduce some notation. Let {W;},=_1 o . and {U;};=_1 o . be independent
i.i.d. sequences such that Uy is uniformly distributed on [0, 1] and W, is uniformly
distributed on the vertex set V. For t; < t5 <0, let us define

(I)Ittf (57 (’U,, ’lD)) = ¢(¢((¢(§7 Uty , wtl)? Uty 41, wt1+1)7 ey Uty —2, wtz—Z)a Uty—1, wt2—1)7

where (u,w) is short for ((...,u—_9,u_1), (..., w_9,w_1)). The CFTP algorithm can
be expressed in terms of this function: Successively try larger and larger values
of ¢ until ®°,(&, (u, w)) equals one common value for all £ € SV. In words this
means that one copy of the above described Gibbs sampler is started in each of
the possible configurations of SV at time —¢ and run until time 0. During this
evolution they are coupled in the sense that they are all subject to the same set
of random variables {U;} and {W;}. The time ¢ needed for coalescence at time
0 is determined by the algorithm itself via successive doublings of the starting
times. At first the Gibbs samplers are started at time —1 and run for one step.
Their states are compared. If they are not all equal, they are restarted at time —2
and updated twice, and so on. It is of vital importance that for each ¢, the same
realisation of (us, wy) is used every time that time ¢ is reached. The algorithm
returns states according to the desired distribution =; this is Theorem 1 of [18],
where it is also shown that the technique of successively doubling the starting
times to determine the time needed to coalescence, is close to optimal. When
7 satisfies the monotonicity assumptions of [18], the algorithm can be simplified
in such a way that only two Gibbs samplers are needed, one is started in the
minimal element of SV and the other in the maximal element (see Section 4).
In general, it is too demanding (in terms of time and computer memory) to
keep exact track of the states of all the Gibbs samplers. We propose instead
to keep track of the possible values at each vertex separately, in the following
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manner. Let S be the set of all subsets of S. We will now introduce a S'-
valued Markov chain {X;}. An element = in SV is interpreted as the set of all
configurations n € SV such that n(v) € Z(v) for every vertex v. This means
that for every vertex v, Z(v) gives the set of possible values at that location.
In the beginning all values in S are possible, so at each starting point —7" we
have X_p = SY. The further evolution is as follows. At time ¢ a location w; is
chosen to be updated and we draw a value u; from the uniform distribution on

the interval [0, 1]. We let
X1 (w) = X (w), w # wy
and
X1 (wy) = {s €S :3ne€ A, such that [¢(n, ug, wy)](wy) = s} (3.4)

The new value at w; is the set of all values the Gibbs sampler would have given
us for all the possible values of the environment to w; consistent with X;. This
updating is usually computationally not all that heavy, due to the assumption
made in the final paragraph of Section 3.1. More generally, we allow any updating
rule for which (3.4) is replaced by

Xi1(wy) D {s€S:3ne A, such that [¢p(n, ug, wy)](wy) = s} (3.5)

This may be more demanding in terms of the starting time —7, but the point is
that in certain cases it may save time on each iteration, compared to (3.4).

The idea is now to run the {X};}-chain from earlier and earlier starting times
(using the successive doublings as above) until there is, by time 0, only one value
in every vertex, that is we only have one possible configuration n € SY, which
is then taken to be the output of the algorithm. It must then be the case that,
regardless of its starting configuration, the Gibbs sampler started sufficiently
early and subject to the same W; and U, variables would have ended in this same
configuration.

In analogy with the ®-function for the simple Gibbs sampler, we now introduce
the function . Up(Z, (u,w)) will give the state at time ¢, of the {X;}-chain,
if it at time ¢; was in state = € SY and during the evolution from t; to t, was
subject to (u,w). Note that

UfESV(DE (ga (u’ w)) - ‘IIZ (SV, (ua w)) (36)

and that there may be strict inclusion even if (3.4) is used. For 2 € 8V, we write
Card|[Z] for the number of elements £ € SV that are consistent with =.

Theorem 3.1. Suppose that there exits an n < oo such that
P(Card[X,]=1|X=S5") > 0. (3.7)

Then the above described algorithm terminates a.s. and produces an unbiased
sample from .



The proof of this theorem follows very closely the pattern of the proofs of Theo-
rems 2.1 and 2.2 of [8], however the setup of the present theorem is considerably
more general. We first recall the concept of distance in total variation ||p — /||
between two probability measures p and ' on SV, defined as

—J|| = E) — [/ (E)|.
lp=wll = max |u(E) - @ (E)

Proof of Theorem 3.1. The events {Card[\I!:g;—l)"(SV, (U,W))|] = 1} with
k =1,2,... are independent and by assumption all have the same positive prob-
ability of occurring. Hence with probability 1, at least one of them will occur.
This in turn implies that the algorithm terminates almost surely.

Let T, be the smallest ¢ for which Card[¥°,(SY, (U, W))] = 1 and let ' be
the distribution of the output of the algorithm. Fix ¢ > 0 and take ¢ so large
that P(T, > t) < e. Suppose that X is picked according to 7, independently of
(U, W). It must be the case that ®°,(X, (U, W)) is distributed according to
7, since 7 is invariant for the Gibbs sampler. Furthermore, (3.6) implies that
(X, (U,W)) =1, (SY,(U,W)) for t greater than or equal to T}. Hence,

lm—7'|| < P(@%,(X,(U,W))#92, (S, (UW))
< P(T, >1t)
< €.
Since € > 0 was arbitrary, we are done. ]

In some situations, we might have that the set of attainable values varies from
location to location, i.e. that 7(X (v) = s) = 0 for some choices of v and s. The

algorithm can then be improved by the following minor modification. For v € V|
define

S, = {se€S:n(X(v)=s)>0}.

Each time the AXj-chain is restarted, we may use HUEV S, rather than SV as
starting value. The analogue of Theorem 3.1 for this variant of the algorithm
goes through in the same way as the above proof.

Let us end this section by giving an example of a situation where the condition
(3.7) in Theorem 3.1 is easy to check. Suppose that there exists an s € S and a
0 > 0 such that

T(X(w)=s [ X(V\{v}) =v) = ¢ (3-8)

for all v € V and ' € SV\{} (this holds for all examples in Section 2 except for
Example 2.1). We can then define the ¢-function in such a way that

[6(&, u, w)][(w) = s
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for every £ € SV whenever u < §. Then (3.7) holds with n = Card [V], because
there is a positive (although usually remote) probability that wy, ..., w, will cycle
through V and that w4, ..., u, will all be smaller than ¢, in which case X}, will equal
sV, Theorem 3.1 then ensures convergence and unbiasedness of the algorithm.
On the other hand, the convergence may of course in some cases be too slow for
practical usefulness. This issue will be dealt with in Sections 7 and 8.

4. Monotone cases

As mentioned previously, exact simulation becomes particularly simple when cer-
tain monotonicity properties of the Markov random field hold. In this section,
we shall point out how the CFTP algorithm described in Section 3 generalize
the monotone CFTP algorithm of Propp and Wilson [18] and the anti-monotone
variant of Hiaggstrom and Nelander [8]. In order to define monotonicity and anti-
monotonicity, we introduce, for any W C V| the pointwise partial order < on
SW. ¢ < nif £(v) < n(v) for each v € W.

Definition 4.1. An SV-valued random element X with distribution 7 is said to
be monotone if for each v € V and each s € S we have

(X () <s|X(V\{v})=¢) = 7(X(v) <s|X(V\{v})=n)

whenever £ <X n, 1(X(V\{v}) =€) >0 and n(X(V \ {v}) =n) > 0. If on the
other hand

(X () <s[X(V\{v}) =€) < 7(X(v) <s[X(V\{v})=n)
for all such v, s, n and &, then X 1s said to be anti-monotone.

An example of a monotone Markov random field is the Ising ferromagnet. The
Widom-Rowlinson model with ¢ = 2 is also monotone if we equip the set {0, 1, 2}
with the (somewhat unusual!) ordering 1 < 0 < 2. Examples of anti-monotone
systems are the Ising antiferromagnet, the hard-core model, and the somewhat
trivial random 2-colouring. Examples of systems which are neither monotone,
nor anti-monotone, are the ¢ > 3 random ¢-colourings, the ¢ > 3 Potts models,
and the ¢ > 3 Widom—Rowlinson models.

Let us now assume that X is monotone. Then the monotone ¢-function
defined in (3.3) is particularly suitable for CFTP. Suppose that we are about to
update the location v € V using the variable u € [0,1] and the “environment”
= € SYM¥H Write &0 (Z) for the minimal (with respect to <) element of SV\}
which is compatible with =, and define &,,(Z) similarly. Since X is monotone,
we have

[¢(Emin (Z), u, 0)](v) < [$(&,u,0)](v) < [$(Emaz(Z), v, v)](v)
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for all ¢ € SVMY} that are compatible with =. We can therefore update v by
assigning it the element

{s € 5: [6(&min(E),u,0)](v) < 5 < [B(Emaz(Z), u, v)](v) }

of S. Write 0 resp. 1 for the minimal resp. maximal elements of SV. Starting
this version of CFTP at time ¢; with the starting value S, we get for each v € V
that

[T(SY, (w,w)|(v) = {s€8: [0, (u,w))](v) < s <[P(1, (u, w))](v)}.

In effect, what this algorithm does is to run just two copies of the Gibbs sampler,
one starting with the minimal state 0 and one starting with the maximal state 1
(the value of the X}-chain at each time is the set of states “sandwiched” between
these two chains). This is exactly what the monotone CFTP algorithm of Propp
and Wilson [18| does, and we conclude that the Propp~Wilson monotone CFTP
algorithm can be seen as a special case of the general algorithm in Section 3.
Similar arguments show that the anti-monotone CFTP algorithm (which also
uses the monotone ¢-function (3.3)) described in [8] fits into the setup of Section
3 as well.

The monotone CFTP algorithm has turned out so successful in terms of rapid
convergence (see e.g. [18]) that there seems to be little reason to look for other
¢-functions than (3.3) in monotone cases. An illustration of this can be found in
Section 8, where the monotone algorithm turns out to be faster than a certain
other attempt for the two-type Widom—Rowlinson lattice gas model. In contrast,
running times for anti-monotone CFTP have proved to be somewhat less satis-
factory, and it is quite conceivable that it may pay off to look beyond (3.3) in
some anti-monotone situations.

5. A counterexample to the forward algorithm

In our experience, one of the most frequently asked questions in audiences that
have not previously been confronted with CFTP is the following: Instead of
rerunning the chain from earlier and earlier starting times, why not run the
chain from time 0 forwards in time until we reach coalescence, and output the
state at the time of coalescence? The answer is that this naive “coupling to
the future” algorithm produces (in general) biased samples. This, however, is
not immediately obvious, so we feel that it is an important pedagogical issue to
come up with simple counterexamples that demonstrate biasedness of samples
generated by this approach. The counterexamples that have appeared in the
literature so far (see [18| and [1]) either require tedious calculation, or do not fit
into the Gibbs sampling context in which CFTP is usually formulated. Here we
shall present an example which is both extremely simple to analyse and which
fits into the general context of Section 3.
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Let G be the complete graph on just two nodes v; and vs, and let S = {0, 1, 2}.
Let X be the SV-valued random object whose distribution 7 is given by

o (1,9) =(0,0)
o (,9)=(0,1)
(X (), X(v9)) = (1, 7)) = 3 (6:5) =(2,1)
o (6,9)=1(2,2)
0, otherwise.

In words, X is uniformly distributed over those elements of {0,2} x {0,1,2} in
which the two coordinates differ by at most 1. A natural way to implement the
Gibbs sampler for this system is as follows. If X (v;) is to be updated using the
random variable U, uniformly distributed on [0, 1], and X5(v) = j, we let

~ { min{i € {0,2} : w(i,5) >0} U<
X(v) = { max{i € {0,2} : w(i,jj) >0} ifU >

N[N0 [ =

If instead X (v9) is to be updated, and X (v1) = i, we let

i iU <
X(“Z):{ 1 ifU >

If we run CFTP based on this Gibbs sampler, it is easy to see that Theorem
3.1 applies to show that the algorithm terminates a.s. and produces an unbiased
sample from 7. If, on the other hand, the naive forward variant of the algorithm
is used (i.e. if we start at time 0 and run until coalescence), then {X;}°, becomes
a stopped SY-valued Markov chain with the transition probabilities indicated in
Figure 1. A quick glance at Figure 1 reveals that the output of this algorithm
equals (0,1) or (2, 1) with probability % each. Thus, the distribution of the output
differs (drastically) from the target distribution =.

N[N [+

yzC {02} x{0,1,2}
-
3/4C {02} x{0,2} ﬁ {02} x {1} O va
1/4

o

{0} x{1} {2} x{1}

Figure 1: Transition probabilities until coalescence in the X;-
chain.
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6. Metropolis—Hastings alternatives

The Gibbs sampler is by no means the only Markov chain which is useful for stan-
dard (non-exact) MCMC simulation. A popular alternative is the Metropolis—
Hastings algorithm, one version of which has the following evolution. Suppose
the chain is in state X; = £ € SV at time ¢. Pick v € V and s € S independently
and uniformly at random, and update the location v by letting

s wp. min{l, n(X (v)=s | X(V\{vh =£(V\{})) }

T(X(0)=€(v) | X(V\{vD=E(V\{v})) (6.1)
m(X(v)=s | X(V\{v})=€(V\{v})) } :
(X()=€@) [ X(V\{vh=E(WV\{v})) J °

X (v) =

&(v) w.p. 1—min{1,7r

Many variants of this chain have been proposed, and the MCMC literature con-
tains plenty of discussion on what particular chain (the Gibbs sampler, some
Metropolis-Hastings variant, or some hybrid algorithm) is most suitable in vari-
ous settings; see e.g. the discussion paper by Tierney [20].

It is straightforward to modify the CF'TP algorithm in Section 3 in such a way
that it becomes a coupling of Metropolis—Hastings chains rather than of Gibbs
samplers (there will still, however, be an enormous freedom in defining the joint
behaviour of the chain, corresponding to the freedom in defining the ¢-function
for the coupled Gibbs samplers). It is very well possible that such Metropolis—
Hastings alternatives may turn out to be important in the future development
and application of CFTP algorithms. Here, however, we shall merely point out
some reasons (specific to the CETP context) why it makes sense to stick to the
Gibbs sampler as opposed to using one of the alternative chains:

(i) An essential property (in order for the Propp—Wilson monotone CFTP al-
gorithm to work) of monotone Markov random fields is that if two Gibbs
samplers {X;}2, and {X]}?°, are started at time 0 with Xy < X{, then we
have for each ¢ > 0 that X, is dominated (in the usual sense of stochastic
ordering) by X|. This fails for most alternative Markov chains including
the one defined by (6.1), and therefore monotone CFTP cannot be based
on such alternative Markov chains.

(7i) If we update the location v in the Gibbs sampler-based CFTP algorithm,
then the new value X}, (v) depends only on the random variable U; and on
X:(w) for nearest neighbours w of v. For alternative CETP algorithms based
on Metropolis—Hastings chains, this new value may in addition depend on
X;(v). This may increase the amount of computation needed in each update.

(74i) The CFTP algorithm converges when Card[X;] = 1, and this requires that
the set of locations v € V for which X;(v) has not yet coalesced (i.e. consists
of more than one element s € S) to become extinct. In the Gibbs sampler-
based CFTP algorithm, the speed of convergence is facilitated by the fact
that if we update a location v all of whose nearest neighbours have already
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coalesced, then v is bound to coalesce as well. For the reason indicated
in (4i), this need not be the case for Metropolis—Hastings-based CFTP
algorithms.

7. Convergence rates

In practice, the CFTP algorithm is useless unless the time taken for convergence is
sufficiently small. An obviously necessary (but by no means sufficient) condition
for CFTP to converge rapidly is that the individual Gibbs sampler mixes rapidly
(i.e. comes close to the equilibrium distribution relatively fast). One situation
where one can expect relatively rapid convergence is when the interactions of the
Markov random field are weak, i.e. if for each v € V the conditional distribution
of X (v) does not depend too strongly on X (V' \ {v}). Here we shall give a more
precise meaning to this concept of weak dependence, and show how it can be
exploited to implement a fast CFTP algorithm, using a so-called multigamma
coupler; the multigamma coupler was first discussed by Murdoch and Green [17].

To begin with, we need yet another piece of notation. For two measures (not
necessarily probability measures) P and @ on S, we write P 1 Q if P(s) > Q(s)
for every s € S.

Assume that X is an SY-valued Markov random field whose distribution 7 has
the property that for some v > 0 and every v € V', there exists a subprobability
measure ), on S of total mass 7, such that

T(X(v) e[ X(V\{v}) =& T Q

for every ¢ € SYM¥} that has positive 7-probability. (A typical situation where
this holds is when (3.8) is in force, in which case we can take v = ¢ and for each
v let @, put all of its mass on the element s.) It is then possible to define a
¢-function for the Gibbs sampler for X, with the property that

[6(& u,0)](v) = [8(¢',u,0)](v) (7.1)

for any v € V and any &, ¢ € SV as long as u < . In other words, if the uniform
random variable U € [0, 1] used for updating v turns out to be less than 7, then
the new value of X (v) does not depend on the previous value of X (V' \ {v}).
We call a CFTP implementation whose ¢-function satisfies (7.1) a multigamma
coupler with parameter 7. It is possible to find multigamma couplers for all the
examples in Section 2 except for the random g¢-colourings. For instance, it is easy
to see that the hard-core model admits a multigamma coupler with v = #1, and
that the Widom-Rowlinson model admits a multigamma coupler with v = 7 Jrlqa.

Let d = d(G) denote the maximum degree in G, i.e. d is the maximum number
of edges incident to the same vertex. Also let N = N(G) be the number of
vertices in G. We recall from the proof of Theorem 3.1 the definition of the
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random variable T, = inf{t : Card[¥°,(SY,(U,W))] = 1}. A sensible quantity
for describing the speed of convergence of CF'TP algorithms is the expectation
E[T,]. The following theorem tells us that if d and v > % are fixed, then E[T,]
grows no faster than O(Nlog N) in the size N of G. This makes it practically
feasible to simulate Markov random fields living on fairly large graphs.

Theorem 7.1. Let X be a Markov random field on a graph G with mazimum
degree d and size N, and suppose that X admits a multigamma coupler with

parameter y > ﬁ. Then such a CFTP implementation has
N(1+InN
E[T)] < w (7.2)
7= (1 =)d

Proof. Define
T* = inf{t: Card[W{(SY, (U, W))] = 1}.

It is easy to see that 7™ and T, have the same distribution, so it suffices to show
that (7.2) holds with T, replaced by the conceptually slightly simpler quantity
T*. We thus run the chain {X;}$°, from time 0 onwards, starting with X, =
SV. Define the auxiliary random process {Y;}°, by letting Y; be the number of
vertices v € V for which X;(v) consists of more than one element s € S. Also
define a third process {Z;}:°, by letting

NS L
Z, = t+£
v —(1—7v)d

for t <T* (note that Yy« = 0 so that Z;« = T*) and letting Z; = T™* for ¢t > T*.
The main part of the proof consists of showing that {Z;}2°, is a supermartingale
with respect to the filtration F; = o(X, ..., X;) (note that T* is a stopping time
for this filtration). Once this is done, we get

E[T*] = E[Zp] < Zy
N
N> i3 < N(1+1logN)
T—(1=7d = y=(1—-7d
where the first inequality is an application of Doob’s Optional-Stopping Theorem

(see e.g. Williams [22]).
It remains to prove the supermartingale property of {Z;}:°,, i.e. that

E[Zy1 — Z,| F] < 0. (7.3)

Suppose that Y; = n. For n = 0, we have T* < ¢, so that Z;,, = Z; = T*, and
(7.3) becomes trivial. Hence, we can assume that n € {1,..., N}. Obviously, the
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increments (Y;11 — Y;) of the {¥;}$°2, process can only take the values —1, 0 and
1, so the definition of Z; gives

ElZyy— Zy | Fy, Yi=n] =1+ 77(577)01 (PmHn:f;Ll'ft] - Pmﬂ:nnilm]) . (74)

We go on to estimate the probabilitiesin (7.4). In order for Y;;; = n+1 to happen,
we need to choose a vertex with “coalescence” to update, and “uncoalesce” it.
For this, it is necessary (i) that X;(w) consists of more than one s € S for some
nearest neighbour w of the chosen location V; (this has probability at most %),
and (ii) that Uy > ~ (this has probability 1 — +). By independence of V; and Uy,
we thus have
dn(1 — )
N

On the other hand, for Y;,; = n—1 to happen, it is sufficient that (i) the location
V; chosen to update does not have coalescence (this has probability &) and (ii)
U; < ~ (this has probability 7). We get

PYii=n—1|F] > (7.6)
By inserting (7.5) and (7.6) in (7.4), we get

N dn(1l — n
ElZy —Zy | F] < 1+ ( (1-7) —ry)

PV =n+1|F] < (7.5)

y—(1=7)d\(n+1)N nN
< 14 N di-7) o
S T A G R
= 0.
Hence, (7.3) holds for any n € {0,..., N}, so the proof is complete. [ ]

8. Simulation experiments

In this section, we complement the theoretical results in the previous section
with some computer experiments. We have studied the performance of the algo-
rithm both on the Widom-Rowlinson lattice gas model, for which Theorem 7.1
is applicable, and on random g-colourings, for which the theorem does not apply.
As our graph G we have used square portions of Z2, with free boundary. Most
of our interest is concentrated on the running time of the algorithm, which we
measure in number of iterations needed to reach coalescence. When we study
running time, the algorithm is run forward using the naive coupling to the future
(as in Section 5). This is justified by the observation made in the proof of Theo-
rem 7.1, that T, and T™ are both governed by the same probability distribution.
Our estimates of the running time are based on 20 replicates in the case of the
random g¢-colourings and on 50 replicates in the case of the Widom—-Rowlinson
lattice gas model. All programming was done in the programming language C.
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8.1. Widom—Rowlinson lattice gas model

One of the models for which Theorem 7.1 is applicable is the Widom—Rowlinson
lattice gas model. We have studied the effect on the running time when varying
the value of the activity parameter, a, keeping constant the number of different
particles, ¢, and the size of the system. This we have done for systems of size
50 x 50 and for two values of ¢, namely 2 and 3. The results for the case ¢ = 3
is shown in Figure 2, while Figure 3 contains the results for the case ¢ = 2.

4*10"5 6*10"5 8*10"5 106

mean number of iterations

2*10"5

0

0.0 0.1 0.2 0.3 0.4 0.5 0.6
activity

Figure 2: Mean number of iterations versus activity for ¢ = 3
on a 50x50 system, drawn in a solid line. The upper
bound of Theorem 7.1 is drawn with a dashed line.

In the graphs we have added a curve representing the upper bound for the ex-
pected value of the number of iterations to coalescence presented in Theorem 7.1.

As can be seen from the pictures, this is not a very sharp upper bound. It is also

the case that this upper bound gives information only when v = ﬁ is greater

than d_%l, where d is is the maximum degree in G. We see that it is possible to

perform simulations in reasonable time even for v quite a bit less than d%, that
is to say for a significantly greater than diq. The value of d is of course 4 in our

case, so that Theorem 7.1 guarantees rapid convergence for a < % when ¢ = 2 and
for a < % when ¢ = 3. That running times increase drastically as a increases is
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mean number of iterations
3*10"6 4*10"6 5*10"6

2*10"6

10"6

0.0 0.5 1.0 15 2.0
activity

Figure 3: Mean number of iterations versus activity for ¢ = 2
on a 50 x 50 system using the multigamma cou-
pler (solid line), and using the monotone algorithm
(long-dashed line). The upper bound of Theo-
rem 7.1 is drawn with a short-dashed line.

an inevitable consequence of the phase transition phenomenon exhibited by the
Widom-Rowlinson model (see e.g. [14]). We see in Figure 4 that, despite the
symmetry of the model with respect to the two particle types, one of the types
dominates the picture. This is a clear indication that a is in or near the phase
transition regime of the parameter space.

Let us now introduce a ¢-function which implements a multigamma coupler
for this model. In the following Neighbours will be a function that, given the
current configuration £ and the chosen vertex v, returns the number of different
values from 1,2, ..., ¢ that can be found among the neighbours of v. Erist(&,v, j)
will be a Boolean function that returns TRUE if at least one of v’s neighbours
in the current configuration & has the value j, while the rest then has value 0. It
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Figure 4: The Widom—-Rowlinson lattice gas model on a 50 x
50 lattice with ¢ = 2 and a = 1.9. White balls
correspond to particles of type 1, and black balls to
particles of type 2.

returns FALSE otherwise.

(0 iffu< ] OR

[Neighbours(€,v) > 2]  OR

[(Neighbours(&,v) = 1) AND (u < 11%a)]
[$(&; u, )] (v) = S g if [(Neighbours(¢,v) = 1) AND Ezist(¢,v,j) AND (8.1)
(u> ) OR

[(Neighbours(€,v) = 0) AND (y g [t Lijay)

1+ga ’ 14+qa
J=12,..,q

\

It is easy to check that (3.2) is satisfied for this choice of ¢. Furthermore, since
[0(&,u,v)](v) = 0 whenever u < ﬁ, this defines a multigamma coupler with y =
T +1qa. The CFTP implementation, using (3.4), is straightforward but somewhat
tedious; we omit the details.

The Widom—-Rowlinson lattice gas model with ¢ = 2 can be viewed as mono-
tone if we equip the state space with the ordering: 1 < 0 < 2. For this case we
have compared the performance of the multigamma coupler to the performance

of the monotone algorithm. As could be expected, and can be seen in Figure 3,
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making use of the monotonicity property pays off in terms of lower running times,
especially for large a.

We remark that a similar comparison of monotone and multigamma couplers
would be less interesting for the Ising model, because in that case it turns out in
that monotone ¢-function in (3.3) actually is a multigmma coupler with optimal

.

8.2. Random g-colourings

In the case of random ¢-colourings, it is easy to see that no multigamma coupler
can be found. This means that we can not rely on Theorem 7.1 to give us an
upper bound for the expected time needed for coalescence. We have nevertheless
been able to make simulations for various values of ¢, and various sizes of the
square graph, results of which can be seen in Figure 5. Intuitively, the value

q=8
~
<
(=]
¥
©
~
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=
-
o)
[%]
e
g E |
= <
kS
g5/
E g
2 ®
o
S ™~
O <
£ 9
&
~
&4
— q:9
q=10
q=15
o 4
50 100 150 200 250 300

side-length

Figure 5: Mean number of iterations versus size for different
values of q.

of the random g-colouring at a vertex v given everything else depends less on
its neighbours the larger ¢ is, and therefore it should be easier to get rapid
CF'TP convergence the larger ¢ is. Our experience supports this intuition and is
illustrated in Figure 5.
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Jerrum [10] describes an algorithm for estimating the number of g-colourings
of a low degree graph using the Gibbs sampler. He finds an upper bound of the
order Nlog N (where N as usual is the number of vertices) for the time for the
chain to come close to equilibrium provided that ¢ is at least 2d + 1, with d as
above. In our case this corresponds to ¢ > 9. Rapid convergence to equilibrium of
the Gibbs sampler is, however, not sufficient to guarantee fast CF'TP convergence.
Nevertheless, as we can see in Figure 5, our CFTP algorithm exhibits a marked
growth in running time between the cases ¢ = 9 and ¢ = 8. We were not able to
get results for the case ¢ = 7 in reasonable time.

The ¢-function used in our CF'TP implementations is defined as follows. First
note that the conditional distribution in the right hand side of (3.2) is simply
uniform over all colours that are permissible (i.e. not attained by any neighbour).
As before w; will be the vertex chosen to be updated at time ¢. The meaning of
u; will however be slightly different. It could be taken as a permutation of the
colours 1,2, ..., q chosen uniformly at random. This still fits into the framework
of Section 3, because the unit interval can be partitioned into ¢! pieces of equal
length, each piece representing one of the possible permutations. The new value
at location w;y is the first value from the vector u; that is permissible. Since in
our case w; has at most 4 neighbours, at most 5 proposal values will be needed.
This means that we can simplify somewhat by not letting u; be a permutation of
all colours but rather 5 draws without replacement of colours from 1,2, ..., q.

The CFTP implementation using (3.4) of this ¢-function is, in principle,
straightforward. However, a simple-minded implementation may lead to a com-
putational complexity which grows rapidly with ¢, so we shall describe our im-
plementation in some detail. The 5 draws in u; are examined in order. The first
thing to do is to see if any of the neighbours of w; have the examined value in
their respective lists of possible values. If that is not the case the examined value
is added to w;’s list of values and the update is complete. This is so because for
any 1 € A; the single Gibbs sampler described above would have accepted the
examined value. Here {X;} is the S"-valued Markov chain, defined in Section 3,
that for all vertices has a list of the, at present, possible values at the respective
locations. If on the other hand the examined value was found somewhere among
the possible values of the neighbours of w;, we look to see if it is the only value
for one or more neighbours. Being an only value implies that all n € &} contain
this value at the same neighbour, or neighbours, of w;. This in turn means that
a single Gibbs sampler acting on any of n € X; would have rejected the value.
The CFTP algorithm will also reject the value and will then go on to examine
the next value in u;. If the examined value is found among the neighbouring
values of wy, but not as an only value, the value is added to w;’s list of new
values. We now have to decide whether or not to look at more values from wu;.
To see that the decision should not always be yes, let us look at an example.
Suppose that the neighbourhood of w; in a ¢ = 9 system looks as in Figure 6
and that u; = (5,4,8,3,1). We see that we can not have any neighbourhood of
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Figure 6: Example of a neighbourhood of the chosen vertex
wy at time ¢ in a 9-colouring system.

w; containing both the value 5 and the value 4. This means that we do not have
to look any further into u; after having decided to keep the values 5 and 4. Had
we now followed the lazy approach of not considering whether it is necessary or
not to look at new values, the new list of values at w; would have consisted of 5,
4 and 8, and we would have made it unnecessary hard for us to finally coalesce.
One way to make this decision is to examine if any permutation of any subset of
the values already kept occur at different neighbour lists of w;. If so, we have to
go on to examine the next value of u;, otherwise the update is complete.

9. Concluding remarks

As we already said in the introduction, a serious problem with most MCMC
algorithms is the lack of useful bounds for the rate of convergence to equilibrium.
CF'TP provides one approach to solving this problem. We think that there is a
fair chance that CF'TP methods will dominate the entire MCMC field within a
few years from now. However, for this to happen the domain of applicability of
CFTP must be greatly expanded. The present paper is an attempt to make a
few small steps in this direction.

Rapid convergence of the algorithm is obviously of crucial importance. Theo-
rem 7.1 provides a sufficient condition for this to be feasible. Section 8 shows that
this condition is far from necessary. This is not surprising, since a very general
result seldom is sharp in special cases. We nevertheless feel that Theorem 7.1
may be quite useful, because it indicates what kind of properties one can look for
in designing efficient CFTP algorithms. We also think it may be a worthwhile
project to try to improve Theorem 7.1 or to look for other general criteria in the
same spirit.

Acknowledgement. The idea behind Theorem 7.1 grew out of a discussion
with Robin Pemantle.
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