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Abstract. Let 6 = (0y,6;) be a fixed vector in R? with strictly positive com-
ponents and suppose gy, 01 > 0. Set o0y = Oyoy + 6107 and, if xg, 27, € R, set
xg = Oyzo + 0121. Moreover, for any j € {0,1,6}, let ¢; : R"— R be a contin-
uous, bounded function and denote by py; .;(Z, z,y) the fundamental solution of
the diffusion equation

v oF

1 n
5= 7Au—a—?cj(x)v,t>0,x€R :

If

1 0 0
—cp(zg) < Zco(ao) + —c1(x1), To, 1 € R”
Og o} 01

then by applying the Girsanov transformation theorem of Wiener measure it is
proved that

9090 0191

ngag,co(tv .Tg,ya) > {ngm,co(t’ $07y0)} 7 {O-'fpﬂ'l,cl (t, $1,y1)} 7

for all xg, x1, Yo, y1 € R™ and £ > 0. Finally, in the last section, another proof of
this inequality is given more in line with earlier investigations in this field.
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1. Introduction

Suppose c is a real-valued function defined on a bounded convex domain K
in R" and let H, be the operator —2 A +¢(z) in K equipped with the Dirich-
let boundary condition zero. Here, as usual, /A denotes Laplace operator.
The function c is called potential function. During the past twenty years
we have encountered several inequalities in diffusion theory which motivate
either convex potential functions (Brascamp and Lieb [6], [7]) or so-called
—s—concave potential functions (Borell [3], [4], [5]). Here recall that a func-
tion f is said to be —%—concave if f is either zero everywhere or strictly

positive everywhere and such that the function f =3 is concave. The purpose
of this paper is twofold. First, we want to point out a new method in this
context and second, we want to give a more unified approach than has been
done earlier. To begin with, however, we will tell more about the background.

Let pyc(t,,y) denote the fundamental solution of the diffusion equation

2
% = %Av - %c(x)v,t >0,z € K

with the Dirichlet boundary condition zero on t > 0, x € JK. Here o is a
positive parameter. For short, we write p1 .(¢,z,y) = p.(t,z,y). By apply-
ing log-concavity of Gaussian measures in R", Brascamp and Lieb ([6], [7])
proved that the fundamental solution p.(t, z,y) is a log-concave function of
(z,y) for fixed t > 0, if the potential function ¢ is convex. Here recall that a
function f is said to be log-concave if f is non-negative and the function In f
is concave with values in {—oco} UR . From the above, Brascamp and Lieb
among other things concluded that the ground state wave function of the
Hamiltonian H, is log-concave for a convex potential function ¢ (the result
is put into historical perspective by Kawohl [12]).

Let g.(z,y) be the Green function of the operator H. so that

9e(r,y) = /0 pe(t, ,y)dt.
A classical theorem by Gabriel says that the harmonic ball
{z € B; go(z,y) >}

is convex for fixed y € K and r > 0 (see e.g. Hérmander [11]). Stated other-
wise, the Green function gy(z, y) is a quasi-concave function of z if y is fixed.



In [3] we applied the Gabriel line of reasoning to a Green function g.(z, y) cor-

responding to a —1—concave potential function ¢ and obtained that g.(z,y)
is a quasi-concave function of (z,y) if n = 2 and that the function g.(z, y)ﬁ

is a convex function of (z,y) if n > 3. For short, given n > 2, we here say that
the Green function g, is ﬁ—convex. Later, by combining Brunn-Minkowski
theory and the Feynman-Kac formula, we proved in [5] that the function
sIn{s"p.(s* z,y)} is a concave function of (s,z,y) € ]0,00] x K x K, if
the potential function is —%—concave. Interestingly enough, from this result,
given n > 2, the —5 —convexity of the Green function g, for a —%—concave
potential function ¢ follows by very simple means [5].

Now consider a situation where the potential function eventually depends
on the parameter o as well as on the position z in R". Let 0 < o < (. If
¢s(x) = ¢(z,0) and the function

c(z,0)

,rTEK,a<lo<p

is convex, then Theorem 3.2 below implies that the function
oln{o"p., -(t,z,y)},(0,2,y) € [o, B] x K x K

is concave for fixed ¢ > 0. From this the above quoted results by Brascamp
and Lieb and the author follow at once. Theorem 3.2 is the main contribution
of this paper. Its proof is based on the Girsanov transformation theorem of
Wiener measure and ideas from the theory of stochastic optimal control.
In particular, we obtain a Brownian motion proof of the classical Brunn-
Minkowski inequality. As far as we know, this approach to inequalities of the
Brunn-Minkowski type is new, although very similar arguments appear in
connection with the Merton portfolio problem in the theory of finance (see
e.g. Fleming and Soner [10], p. 204).

Finally, in the last section we give another proof of Theorem 3.2 more in
line with the papers [6], [7] and [5].

2. The Hamilton — Jacobi — Bellman equation

Suppose o is a positive parameter and consider the diffusion equation

0 2 1
8_:; = %Av — ;c(m)v,t >0,z € R"



with the initial condition
v(0,z2) = f(z),z € R"

where f(z) > 0 for any x € R". The substitutions

V =—0?lnv
and
F=—0*Inf
reduce the above Cauchy problem to the Hamilton-Jacobi-Bellman equation
ov 1 2
o + 7 | VV 2 —c(z) = %AV,t >0,z € R"x(2.1) (1)

with the initial condition
V(0,z2) = F(z),z € R™.

To begin with in this section, we assume that ¢ and F' are infinitely many
times differentiable with bounded derivatives of all orders > 0. Our subse-
quent reasoning follows the Fleming and Soner book on stochastic optimal
control [10] (especially pp. 257-258).

Suppose t > 0 is fixed and let P be Wiener measure on the Banach
space 2 of all continuous functions w of [0,¢] into R" with w(0) = 0. If
B(w) = w = (wi(s), ... wn(5))o<s<t, w € Q, then B is a normalized Brownian
motion in R" relative to the probability measure P, that is, B is a centred
Gaussian process in R"” relative to the probability measure P with

B [B(s0)B,(s)] = { 0, # ]

min(sg, $1), @ = j.

By setting
Bl(s)=xz+0B(s),s >0

the Feynman-Kac formula yields
P

and the assumptions on ¢ and F' imply that

055§2£6Rn“(3’”‘) > 0% (2.2) @)



and
sup | Vu(s,z) |< oo. % (2.3) (3)

0<s<t,zeR"

Let u(s), 0 < s < t, be a bounded, progressively measurable process and
set s
h(s) = hy(s) = / u(\)dA,0 < s < ¢
0

and )

dQ (w) = e~ 57 JolmePs=3 [yu(date) g p )
Then, by the Girsanov theorem (see e.g. Nualart [15]),
1
—W)dQ(w) = [ ¢(w)dP
| e+ -mdQw) = [ ¢(w)dPw)

for any positive measurable function ¢ on €2 and it follows that

)= [l o))

5@ le_"% {F(Bg(t)-l—h(t))-l-f(: c(Bg(S)Jrh(S))dS}]

EP le—a%{F(Bg(t)+h(t))+fJ C(Bg(5)+h(s))ds}672;2 fg|u(s)|2ds%fgu(s)dw(s)] .

For short, we write

so that

gP leﬁ{w(tw& c(X(s»ds}e_%% S (s 2ds— 2 f;u@dw(s)]
and the Jensen inequality yields

Ino(t, ) > —%EP V()] * (2.4) (@)
where

t

Ya(t) = F(X (1)) + /O (X (s)) + % L u(s) P)ds + o / u(s)dw(s).

0



Note that

E* [/Otu(s)dw(s) = 0.

If we choose u in an appropriate way, it turns out that the random variable
Y, (t) is constant with probability one, which implies that equality occurs in
(2.4) for this choice of u. To find such a process u, first define

U(s,z) =-VV(t—s,2),0<s<t.

;From the assumptions on ¢ and F we conclude that the function Uf(s, ),
0 <s<t, xeR" is bounded and continuous and, moreover, the equations
(2.2) and (2.3) imply that there exists a constant C' > 0 such that

|U(s,z) —U(s,y) |<KC|z—y|[,0<s<txz,yeR".
Therefore the stochastic differential equation
dX(s) =U(s,X(s))ds + odw(s),0 < s <t

with the initial condition X (0) = x possesses a unique solution. We set
uo(s) = U(s, X (), 0 < s < t, and have X(s) = x + ow(s) + hy(s) =
BI(8) + hyy(s), 0 < s < t. Moreover, we claim that the random variable
Y., (%) is constant with probability one. To prove this claim we introduce the
process

€5 = V(e =5, X(5)) + [[ (X)) + 5 [uo() P)ds + o [ uo(N)do()
defined for all 0 < s < ¢ and have, recalling the 1t6 lemma,

dé(s) = =Vi(t — s, X (s)ds + VV(t — 5, X(s)) - (uo(s)ds + odw(s))+

G;AV(t —5,X(s))ds + (c(X(s)) + % | ug(s) [°)ds + cug(s)dw(s).

Moreover, since the function V' (¢,x) satisfies the Hamilton-Jacobi-Bellman
equation (2.1), d¢(s) = 0, and we conclude that £ is constant with probability
one. In particular, £(t) = Y,,,(¢) is constant with probability one, which was
to be proved.

From the above,

v(t,z) = exp(— inf (J(t 2, u))



where .
_ P
J(ta z, u) - ;E [Y(ta U’)]
and where U(t) denotes the class of all bounded, progressively measurable

processes u(s), 0 < s < t.
In the following, let

1 o t -
Vge(t z) = E” [eﬁ{m O+ o (B2 <s>>>ds}]
and

J(f?c(t,x,u) =

B [F(BY) + h(0) + [ (BIS) + hu(s) + 5 | u(s) P)ds|

for all continuous and bounded functions F' and ¢ in R™. Then, from the
above, it is simple to conclude that

F _ s F
vhe(t ) = exp(— inf (J7(t,u). % (2.5) (5)

Below we will also make use of the short-hand notation
AF P - { P(BZ @)+ [, (B2 (9)ds )
oA (o) = BP | 1a(BY(0)e 7 :

for any Borel set A in R™.

3. Application to diffusion equations

In what follows, = (6, 61) denotes a fixed vector in R? with strictly positive
components. If zq, 21 € R", let

xg = Opxo + 0121
and, if Ay and A; denote subsets of R", let

Ap = {xg; 29 € Agandz; € A1} .



Suppose first that 0,01 > 0 and let D;, i = 0,1, be subdomains of R".
Below we will often consider functions ¢; : D; = R, j = 0, 1, 0, which satisfy
the inequality

1 By 01

—g(wg) < —o(wo) + —1(21), 20 € Do, w1 € D1.
o o) o1

Note that this inequality is true in the following situations:

Case 1: 0y = 07 and

wg(zg) < bopo(xo) + b1p1(21), 29 € Dy, 21 € Ds.

Case 2: p;(x) = 3 (), j = 0,1,0, where the ¢; are non-negative and

Yy(xg) < Optpo(xo) + 0191 (1), 29 € Dy, 21 € Dy

Case 3: @j(z) = j =0,1,0, where the 9; are positive and

ol
@)

Yo(zg) > botpo(xo) + b11p1(21), 29 € Dy, x1 € Ds.

In connection with the last two cases it is useful to know that the function

)\a+1

VoA 0) =

,A>0, 0> 03.1 (6)
0—@

is convex and positively homogeneous of degree one for « = 1 and a = 2,
respectively.

THEOREM 3.1. Let 0,01 > 0 and suppose c;(z), Fj(z) j = 0,1,0, are
bounded, continuous functions defined for all x € R™ such that
1 By 61

_ < 2 i
0909($9) < O_OC()(.’L'()) + o1 01(331)



and . 4 0
— Fy(wg) < —OFO(JJO) + —1F1(331)
oy o)) 01
for all zy, 21 € R™.
Then
9990 P 6101
Vs, ce(t .’L‘@) > {Udo co(t .’L‘())} 7 {UU:,m(t"rl)} 3.2 (7)
for all ¢, 21 € R™ and t > 0.
Moreover,
9990 6191
vpol (t, ) > {000 (t,30) } 0 {vani(t,20)} 7 3.3 (8)

for all ¢, 21 € R™, t > 0 and Borel sets Ay and A; in R™.

Proof. Let ug,u; € U(t) and define
ug(s) = Ooup(s) + Orui(s),0 < s < t.
Then
B75 (s) + hu, (s) = 00(Bgg (5)) + huo (5)) 4 01(Bg] (5)) + huy ()

for all 0 < s < t and every fixed w = B(w). Moreover, since the function
Y defined by equation (3.1) is convex and positively homogeneous of degree
one,

1 1
. [Fe(B” + (1)) + / ¢o(Bg (5) + huy (5)) + 5 | uo(s) |2>d8] =
)
00 (o o 1 2
2 R(BRW + b (0) + [ (BR() + haa(s) + 5 | uals) )] +
0o 2
91 0’1 0’1 1 2
= [Fl(B ) + hy, (1) —1—/ c1(BZY(8) + hu, (8)) + 5 | up(s) | )ds]
and, hence,
1
J—EP [FQ(B"" + (1) / (BE5 () + g (5)) + 5 | wa(s) |2)ds] <
9
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0 1
b pr [FO(B;o( + by (8) / (B2(5) + hug (5)) + = | uo(s) |2)ds] +
(o)) 2
0 1
B[R B 0) + b (0) + [ (B2 () + hus(5)) + 5 | a(s) )]
g1 2
that is,

O'QJU‘9 co (t CUg,U,g) < 000'0J

ag0,Co

(t, o, ug) +6,0,JF (t, 1, u1).

01,C1

. From this the inequality (3.2) is an immediate consequence of the represen-
tation formula (2.5) written in the form

—olnvl (t,2) = inf oJ(t .
olnv, (¢, ) uérbll(t)a (t,x,u)

To prove the inequality (3.3) there is no loss of generality to assume that
Ag and A; are non-empty and compact. If A C R" is non-empty and compact
and € > 0, let

d(z,A)=min{|z—y ;y € R"},z € R",
A* ={z e R";d(z,A) < ¢}
and
% (z) = min(e, d(z, A)),z € R"™.
Then, if we define

~ 00 01 1

= Oy min(—, — 0046
Pe (00 Ul)@(Ag)e( 0+61)

it follows that .

. to 0
0—0905(370) < 0—090,540(3?0) + 0—19021(331)
for all zg, z; € R", and the inequality (3.2) gives

U£?069+F6 (t’ l‘g) Z

9090 0101

+F o, +F o4
{ome™ w0} b )

for all zg,z1 € R", t > 0 and m € N,. The inequality (3.3) now follows
for all non-empty and compact Ay and A; by first letting m — oo and then
letting € — 0. This completes the proof of Theorem 3.1.




11

EXAMPLE 3.1. Suppose 6 = (6y,6;) is a vector in R? with strictly positive
components such that 6 + 6, = 1 and let f;, j = 0,1,0, be non-negative
continuous functions in R™ which satisfy the inequality

fo(wg) = f3°(wo) f1" (1)

for all zy,z; € R". The Prékopa inequality says that

/Ao fo(z)dz > {/Ao fo(ac)dx}eo {/Al fl(a:)d:c}al

(Prékopa [16], [17]). In the special case f; = 1, j = 0,1, 6, this inequality
reads
M (Ag) > myt (Ag)my! (A1)
where m,, denotes Lebesgue measure in R™. Since m,(ad) = o"m,(A),
a > 0, the Prékopa inequality thus implies the classical Brunn-Minkowski
inequality
1 1 1
ma (Ao + A1) > mi (Ao) + mi (Ay)

valid for all non-empty Borel sets Ay and A; in R™. Conversely, the classical
Brunn-Minkowski inequality implies the Prékopa inequality ([16], [17]).

The Prékopa inequality is an immediate consequence of Theorem 3.1. To
see this there is no loss of generality to assume that

0 <inf f; <sup f; < o00,7=0,1,0.
Furthermore, let 0 > 0 and set
Fj=-c’Inf;,j=0,1,0.

Then, if og =01 =0,¢co=¢1 =cpg =0, g =21 =0 and ¢t = 1 in Theorem
3.1, the inequality (3.3) says that

/Aa fg(x)e_%dx > {/Ao fo(x)e_%dx}eo {/Al fl(x)e_%dx}al

and in the limit as ¢ — oo we obtain the Prékopa inequality.
There is a complement to the Prékopa inequality for Gaussian measures
which we would like to point out here. Put

_l=?  dx

(,A:/eza_zin
o (A) . s
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for any Borel set A in R" and o > 0. If we choose ¢; = F; =0, j =0,1,0
and g = z; = 0 and ¢ = 1 in Theorem 3.1, the inequality (3.3) implies that

0101

oo (A5) > {tton(Ao)} 70" {j1on (A1)}

for all Borel sets Ag and A; in R"™. Here # may be any vector in R" with
strictly positive components.

It is well known that the Prékopa inequality implies log-concavity of
Wiener measure (Borell [1]) as well as various log-concavity properties of
solutions to the classical diffusion equation in R™ with a convex potential
function (Brascamp and Lieb [6,7]) (cf Case 1 above). The approach in this
section based on transformation of Wiener measure is sometimes more direct.

EXAMPLE 3.2. Consider the Cauchy problem

ot

{ G =102 Av—Zc(z)v
v(0,z) = exp(—%)

with ¢ and F' both convex. Then, in view of Theorem 3.1, we rediscover a
result by Brascamp and Lieb stating that the function v(t,z) = v} (¢, z) is
a log-concave function of z for fixed £ > 0. Incidentally, let us note that the
Hopf-Cole substitution

v(t,r) = —0*Vinv(t,z) = VV,(t,2)
reduces the above Cauchy problem to the Burgers equation

{ o + (v, V)v =302 Av+Vc(z)
v(0,7) = VF(z).

Therefore, if ¢ and F are convex, the velocity field v(t,z) is the gradient of
a convex function of z for every fixed ¢ > 0.

Under the stronger assumptions that the functions ¢ and F' are non-
negative with /c and v/F both convex (cf Case 2 above), the function

1
—V,(t,z),z e R", 0 >0

o
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1S convex.

Now let D be a region in R™ and suppose the functions ¢, F' : D — R are
continuous and bounded from below. We define the function ¢ on R" equal
to ¢ in D and equal to oo off D. Similarly, we define the function F' on R"
equal to F'in D and equal to oo off D and set

Uf’c(t, x) — P le_f?{ﬁ(Bg(t))Jrfot E(Bg(s)))ds}] |

Moreover, set
i P . —L {F‘(Bg(t))-Fft E(Bg(S)))dS}
Voo (t,) = E7 |1a(B](t))e ° 0

for any Borel set A contained in D. If p,.(¢,z,y) denotes the fundamental
solution of the diffusion equation
0 2 1
8—1; = %Av - ﬁc(x)v,t >0,z €D
with the Dirichlet boundary condition zero on ¢t > 0, x € 9D,
VA (1 1) = / 1a(z)e™ " @p, (¢, 2, y)dy,t > 0,z € D.
D

o,c

Theorem 3.1 now implies the following result, the proof of which is ex-
cluded here.

THEOREM 3.2. Let gg,01 > 0 and let D;, ©+ = 0,1, be subdomains of R".
Furthermore, suppose c;, F; : D; = R, 7 = 0,1,0, are continuous functions
which are bounded from below and such that

1 0 0
~co(zg) < —co(wo) + —c1 (1)
oy ) 01

and
1 0, 0,

—F, < —F, —F
op b(7g) < 0 0(x0)+01 1(z1)

for all xy € Dy and x, € D;.
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Then
e 5 %079 P 9191
vpt ey (t,00) > {03 (t,w0) | 70 {vit,, (t,21)} 7 3.4 (9)
for all xg € Dy, x1 € Dy and t > 0.
Moreover,
9929 9101
vl (t,39) > {vpolo(t,20) } 0 {vinli(t,21)} 7 3.5 (10)

for all xy € Dy, x1 € Dy, t > 0 and Borel sets A; C D;, 1 =0, 1.

The following example draws the attention to a certain construction
method of —%—concave functions, which is immediate from the Brascamp
and Lieb papers ([6], [7]). Furthermore, we will point out that Theorem 3.2
here yields an alternative to the Brascamp and Lieb approach. Below, we let
v, = vf and v} , = ..

EXAMPLE 3.3. Suppose = (6, 6,) is a vector in R? with strictly positive
components such that 6, + 8; = 1 and suppose D;, ¢ = 0,1 are bounded
domains in R™. Furthermore, let ¢;(z) : D; = R, j = 0,1,6, be continuous
functions which are bounded from below and such that

co(zg) < Ooco(zo) + O1c1(x1)
for all zg € Dy and z1 € D;. Then, by Brascamp and Lieb ([6], [7])
Veq (,70) > {ve (£, 70)}™ {ve, (¢, 21)}"

for all zp € Dy and z; € D;. Alternatively, this inequality follows from
Theorem 3.2. The Prékopa inequality now gives that

/Da Ve, (8, x)dz > {/Do Veo (2, x)dx}ao {/Dl Ve, (t, a;)dx}el .

Moreover, since the limit

1
Ae;(D;) = = lim —ln/D. v, (t, 7)dz

t—oo J
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is equal to the smallest eigenvalue of the operator —1A+c;(z) in D; with the
Dirichlet boundary condition zero, Brascamp and Lieb ([6], [7]) concluded
that

Aeo (Do) < OpAey (Do) + 01X, (D1).

For a zero potential in D, A\o(aD) = a=2)\¢(D), a > 0, and it follows that

Ao (D9)>90)\o (D0)+91)\o ( 1)

ifc;=0,5=0,1,0.

,From the above it is possible to construct —%—concave functions as
follows. Suppose K is a bounded convex domain in R™ and let F' = {0} X
R""!. We define R = {z € R";(z + F) N K # (} . Furthermore, let HY be
the negative (n — 1)—dimensional Laplace operator in (z + F) N K equipped
with the Dirichlet boundary condition zero on the relative boundary of (z +
F)N K viewed as a subset of z + F. If A(z) denotes the smallest eigenvalue
of HY for z € R, then the function \(z), z € R is ——concave.

COROLLARY 3.1. Let g¢,01 > 0 and let D;, i = 0,1, be subdomains of
R". Furthermore, suppose c; : D; =+ R, 7 =0,1,0, are continuous functions
which are bounded from below and such that

1 ) 0
—cy(wg) < —col@o) + —ci(a1)
o 0o 01
for all xy € Dy and x, € D;.
Then

n
Do co (s To, Yo) H

GQUQ 0101

n n
k| 7
{pao,co t anyO H } {pal,cl (t7$1ay1) H ag )}

k=1
for all xy,yo € Dy, x1,y1 € D1 and t > 0 and all vectors ay = (a(()l), ey a(()n)) and

a1 = (agl), ....,a§")) with non-negative components or, stated otherwise,

fgo1

%929
ngag,CG (ta xeaya) 2 {Ggpao,co(ta .’L'(),y())} i {J'{Lpo'l,cl (ta xlayl)} 7
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for all xqy,yo € Dy, x1,y1 € Dy and t > 0.

Corollary 3.1 is an immediate consequence of Theorem 3.2 and the fol-
lowing standard lemma in Brunn-Minkowski theory.

STANDARD LEMMA. Suppose ¥ : [0,00[ x [0,00[ — [0,00[ is a con-
tinuous, positively homogeneous function of degree one, increasing in each
variable separately, and such that ¥(¢,1n) =0, if £ =0 or n =0. Moreover,
let Q9,1 C R™ be open and suppose ¢; : Q; — [0,00[, j = 0,1,60, are
continuous functions.

The following assertions are equivalent:

(4)
/A wo(x)dx > \Il(/AO goo(x)dx,/Al ¢1(x)dx)

4
for all Borel sets A; C €;,1=0,1;
(i)
eo(wo) TT 0§ > W(o(ao) [ a6, 1 (a1) I] o)

k=1 k=1 k=1
for all xy € Qy, 1 € Qq, and all vectors ay = (a(()l), ey a(()")) and a; =
(agl), vy agn)) with non-negative components.

In particular, if og,0, > 0, the following assertions are equivalent:

(@)

9090 0101

/A wo(x)dx > {/Ao goo(x)dac} 7 {/Al gpl(a:)dx} 7

0

for all open A; C ;,1=0,1;
(i2)'

n n booq 9101
9 0(t9) = {o5p0(T0)} 0 {oTpr(21)} 70
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for all xy € Qy, 21 € .

The equivalence of (i) and (4¢) in the Standard Lemma is proved in [2]
and [5]. In view of this result, the equivalence of (7)" and (i¢)" above is a
consequence of the following lemma.

LEMMA 3.1. Let 09,01 > 0 and let &, n and ¢ be non-negative real numbers
such that

%990 9101
og& = {ogn} o {ofc} o .+ (3.6) (11)
Then
%990 9101
n n og n oe
e[l o > {nHaék)} {CHaY“)}
k=1 k=1 k=1
for all vectors ag = (a((]l), vy a(()")) and a, = (agl), ey a&")) with non-negative
components.

Proof. The function

A
oln—,0,A > 0x(3.7) (12)
o
is concave and positively homogeneous of degree one. Therefore, if ay =
(a(()l), ceny a(()")) and a; = (agl), ceeny a%")) are vectors with non-negative compo-
nents,

9090 6101
k k o k o
ﬁz{ﬂ} 9 {ﬂ} = lom
o’ 0o 01

By multiplying all these n inequalities and the inequality in (3.6), Lemma
3.1 follows at once.

Again let D be a subdomain of R™ and suppose c is a continuous potential
function defined in D which is bounded from below. The solution of the
diffusion equation

ow 1

M Aw— D
5 = 32V c(z)w,t >0,z €
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with the initial condition
w(0,2) =1a(x),x € D

and with the Dirichlet boundary condition zero on ¢t > 0, x € 0D, is denoted
by w2 (t,z). Clearly,
wl (t,x) = vy (1, ).

Moreover, if
g=o-c
we have )
1 = RO
vt @) = EF [La(By(0)e hamsons|

E” [1A(B"(t))e<72 J E(Bg(s)))ds]
xr
and since the stochastic processes (0 B(s))s>o and (B(UQS))SZO are equivalent,

vi(t @) = EY [La(Bl(o*)e e hreohiet |

0'2 -
EP [1A(Bi(02t))e_ fo tc(Bé(s)))dS] )
Accordingly,
wi(o’t,z) = v (t )
and writing p1 (¢, 2, y) = pc(t, z,y) we have

pc(02ta x, y) = pa,q(t: x, y)'

COROLLARY 3.2. Let D;, i = 0,1, be subdomains of R"™. Furthermore,
suppose ¢; : D;j — [0,00[, 7 =0,1,0, are continuous functions such that

cp () > bocy (o) + O101 (1)
for all xy € Dy, x1 € D;.
Then

9030 6131

on(Se,.’L‘g) > {wé}o(sg,xo)} % {wél(sf,ml)} 0 x(3.8) (13)
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for all xy € Dy, x1 € D1, so,81 > 0 and all Borel sets A; C D;, 1 =0, 1.
Moreover,

9030 9151

55Pey (53,20, Y0) = {55peo (5020, 90) | {sTpo, (s, 00,50) ) % (3.9) (14)

for all xy, 21,90,y € R" and sg,s; > 0.

Here 0~ 3 shall be interpreted as oo.
A slightly weaker result than Corollary 3.2 is obtained in [5].

Proof. Without loss of generality we may assume that the potential func-
tions in Corollary 3.2 are strictly positive. Let oy, 01 > 0 and define

q; = 0-;'10]', j=0,1,0.

Then . 0 9
0 1
Joqa(ma) < quo(xo) + q1 (1)
for all 2y € Dy, x1 € D; since the function 1, defined by equation (3.1) is
convex and positively homogeneous of degree one (cf Case 3 above). The
inequality (3.8) now follows at once from Theorem 3.2 and the inequality
(3.9) follows from (3.8) and the Standard Lemma. This concludes our proof

of Corollary 3.2.

EXAMPLE 3.4. Suppose K is a bounded, convex domain in R™ and let
¢ : K — [0,400] be a continuous function. Furthermore, let Y be a killed
Brownian motion in K such that, for any starting point yo € K and m € N,

PlY(t1) € Ay, ... Y (tm) € A | Y(0) = yo] =

m
/A 11 pe(tr — teer, Yr—1, yk)dy1...dym

11X XAm k—1

for all 0 =ty < t; < 19 < ... < t,, and all Borel sets A; C K (for details, see

e.g. Dynkin [8]). In our point of view the process Y is killed at the boundary
of K.
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Let A be a Borel set in K. If the process Y starts at the point z € K,
the expected time the process visits A until it is killed is given by

Us(@) = [ [ pelt o, p)didy.

The potential U4 need not be quasi-concave if A is convex (in the Newtonian
case n = 3 and ¢ = 0, the potential U, cannot be quasi-concave for all r > 2
and 0 < e < 1, if A = {z;0< 2z, <1,0 < z; <emin(z;,1 — 1), = 2,3}
and K = {z;| z |< r}). The situation is different if we change time to log-
time. Here 7 is called log-time, if ¢ = €7 and ¢ is usual time. If the process
starts at the point x € K, the expected log-time the process visits A until it
is killed is given by

Us(z) = /O:O/Apc(eT,x,y)dey:

00 1
2/ / pc(527xay)_d8dy-
0 A S

In what follows, suppose the function ¢ : K — [0,00][ is —%—concave
and let A C K be open and convex. Moreover, let 8 = (6y,6;) be a vector
in R? with strictly positive components such that 8 + 6; = 1 and suppose

Zo,%1,Y0,y1 € K and sg,s; > 0. Finally, let qp = (a(()),.. a(()"+1)) and
a; = (agl), sy a§”+1)) be vectors in R"*'with non-negative components. As

the function in (3.7) is concave, Corollary 3.2 and the Standard Lemma now

imply that
n+1

Pc 807$9 y9 Haa =

0030 61‘91
n+1 n+1 sg
{pc St L0, Yo) — H a§ } {pc S, 21, Y1) — H al }
S0 g1 51 =1
and, accordingly,
n+1
Pc Se,iﬁe,ye H aa
1 ntl n+1
. 2
min {pC(SOaanyO s H aO ’pc Slaxlayl H a]_ } .
0 k=1

By applying the Standard Lemma with ¥(§,n) = mln(f : 77) it follows that
U8 (z9) > min (Ug%(xo), UyS (1))
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for all 2y, z; € K and we conclude that the function U}fg is quasi-concave.

Again, as in Example 3.4, suppose the potential function c is —%—concave
and defined in a bounded convex domain K in R". If

9e(@,y) = /0 pe(t, z,y)dt

we remarked above that the potential

/Agc(l‘,y)dy,x e K

need not be quasi-concave even if A C K is convex. However, this potential
is quasi-concave if A = K. In fact, by applying the maximum principle of
subharmonic functions we concluded in [4] that the function

/ ge(z,y)dy,x € K
K

is concave. The special case ¢ = 0 was settled independently and at the same
time by Kawohl [13] using a similar method. Actually, we proved in [4] that
the function

{/B 90(35,y)f“’(y)dy}ﬁ .z € R"

is concave if 0 < p < 1, f > 0 is concave and the potential function c is
—%—concave. We think a Brownian motion approach to this property of the
Green function g.(z,y) would be of great interest.

4. An alternative proof of Theorem 3.1

In view of the Standard Lemma, Theorem 3.1 and the following theorem are
equivalent.

THEOREM 4.1. Let 09,01 > 0 and suppose ¢c; : R* =+ R, j = 0,1,0, are
bounded, continuous functions such that
1 6o 0,

- < 2 e
o 09(339) < . Co(l‘o) + o1 Cl(l‘l)
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for all xy, 21 € R™. Then

(205 6101

O Pog s (170, Y8) > {08Pgg 0 (t:70,U0) } 7 { 01Dy 0 (b 71, 51) }

or atl To,T1,Yo, Y1 € an > 0.
f 1 R"and t >0

In this section we want to show that the Standard Lemma implies Theo-
rem 4.1 without any use of the Girsanov theorem. To this end we first discuss
a suitable representation of the fundamental solution p, (¢, z,y). In this dis-
cussion it is assumed that the potential function ¢ : R® — R is bounded and
continuous.

To begin with consider the Feynman-Kac formula

o (t,7) = B7 [e—ﬁ{wmmf; cwg(s»ds}]

so that o
vic(t, x) :/nefanU,c(t,x,y)dy
with
Poe(t,z,y) = p(o°t,z,y)E [e—[,%fg LEEE | B(1) = y]
and

1 |lz— 2
p(t,w,y)=\/2_mne— #- 4> 0,2,y € R™.

Recall that
P [Bg(sl) € d.’L‘l, ...,Bg(SN) € d;IjN] =

N
H p(oz(sk — Sk_l),$k,$k_1)d$1...d$N,O <5 <...< S8y
k=1

where sg = 0 and xy = z. The Brownian bridge with standard deviation
o > 0 which starts at the point x € R" at time Oand ends at the point
y € R™ at time ¢ > 0 is denoted by

B = (BZ,(5))o<s<t-
By definition, By} (0) =  and BJ;(t) =y, and if

0:80<81<...<8N<$N+1:t4.1 (15)



then

P [ngé(sl) € d:vl,...,Bg:Z(sN) € d:UN] =

]ﬁl (51— 501000, y) LN
)
where zy = x and xy1 = y. Therefore, if s,

...sy are as in (4.1) and ¢ :
R”Y — R is a bounded, continuous function,

E [o(BZL(51) -, BIL(sw)) | =

Elp(Bz(s1),-, Bz (sn)) | Bi(t) = y]
and it follows that

Poc(t,z,y) = p(o’t,z,y)E [e L [ By (s )ds]'

Now let N € N, and set

14
FTENTNTT
s, =8Skv =¢k,k=0,..., N +1,
and N
Ay = le zk_lcw::zwk»]
N = .
Clearly,
lim Ay = [ L [ e(BEh(s) )ds] .
N—oo
Furthermore,

— 5 S elay) NEL dx,...dry
A :/ e 0%, Tpy Tpp_1) —— o
N= o kl;[lp( ks Tk 1)p(02t,x,y)

where o =z and zy1 = y. A rewriting gives

AN:

;/ 6_:_2{ Z;cv zp— wk 1\2+Ek lc(zk)}M
p(O-Qt, .7), y) RnN Wn(N+l)
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and we have

Do, C(ta x, y) =
lim / e_"%{ ZkN Shgkelp +Zk 1 ¢ mk)}M
w Vameo? D

N—oo

(cf Feynman [9]).

Proof of Theorem 4.1. If xg, ...,zny+1 € R", we will write

X = (CU() | ‘ $N+1).

Here x is considered a vector in R™™*2)_ Moreover, for any fixed j = 0, 1, 6,
we define

fi(x) =
_E_ N+1 T~ PR—1 ’;k 112 1
e o2 E | +Zk 1 wk)

T —n(N+1)
A /27r£a]2- ()

and conclude that

0101

%079
03(N+1)f0(X6) > {Ug(N+1)f0(X0)} = {0?(N+1)f1(x1)} o

for all xo,x; €ER™¥*2) since the function

|

t

,c € R"t>0

is convex and positively homogeneous of degree one. Thus, in view of the
Standard Lemma,

9090

{03 /RnN foléo | z1...xn | no)d$1...de} 0

9101
{‘7?/ fili | z1..ay | 771)d:v1...d:13N} ¢
RnN
for all &, &1, m0,m1 €R™. By letting N — oo we have

0101

%070
ngag,CG (t’ 59’ 770) 2 {JngOaCO (ta §0a 770)} 76 {U?ptn,m (ta gla 771)} 76
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for all &, &1, m0, m1 €R™, which proves Theorem 4.1.

Summing up, we claim that the idea to transform Wiener measure to
obtain inequalities of the Brunn-Minkowski type has increased our under-
standing of this class of inequalities in measure theory as well as in diffusion
theory although alternative methods are available. But still there are a va-
riety of problems in connection with these inequalities, where, apparently,
all known methods fail (see e.g. Ledoux and Talagrand [14, p.456, Problem/]]
and [5]).
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