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ABSTRACT.

We consider semidiscrete solutions in quasi-uniform finite element spaces of order
O(h") of the initial-boundary value problem with Neumann boundary conditions for
a second order parabolic differential equation with time independent coefficients in a
bounded domain in RN . We show that the semigroup on Leo, defined by the semidis-
crete solution of the homogeneous equation, is bounded and analytic uniformly in
h. We also show that the semidiscrete solution of the inhomogeneous equation is
bounded in the space-time Lo-norm, modulo a logarithmic factor for r = 2, and we
give a corresponding almost best approximation property.

1. Introduction.

Let © be a bounded domain in RY with a sufficiently smooth boundary, where
the space dimension N > 2 is arbitrary. Consider the parabolic initial-boundary
value problem of finding a real-valued function u = u(z,t) such that

du = 9 du
(1.1.a) ut+Au_a—1:— Z B (a”(x)a )—I—ao( yu=f, forzeQ, t>0,
,j_l J

with the homogeneous natural conormal boundary condition
Y du
(LLb)  On,u(z,t) = Z a_ z,1) Y ai(z)n;(z) =0, forz €0, t>0,

and the initial condition
(1.1.c) u(z,0) = ug(z), forz e .

Here, the second order partial differential operator A is uniformly elliptic and, only
for brevity of the analysis below, assumed to be symmetric. It is also assumed that
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ao(z) > ay > 0 so that, in particular, the corresponding bilinear form A(-,-) is
coercive in the Sobolev space W3(Q2) = H*(2). The coefficients a;;(z) and ag(x)
are assumed to be sufficiently smooth and independent of ¢, again only for brevity.

We shall analyze semidiscrete continuous in time finite element approximations
of (1.1). Thus let Sy, 0 < h < %, denote finite element spaces. For the purposes of
this introduction, we may think of them as at least continuous (thus conforming)
piecewise polynomials of degree » —1 > 1 on partitions of {2 which fit the boundary
exactly. No boundary conditions are imposed on the functions in S}, since the
conormal derivative condition (1.1.b) is a natural boundary condition. The S}, are
defined on globally quasi-uniform partitions of €2 with the diameter of each element
uniformly comparable to h. We seek a semidiscrete approximation to the solution
of (1.1) as uy, : C1[0,00) — Sy, such that

(1.2) (uh7t,x) + A(Uh, X) = (f, X), VX € Sh, t>0, with uh(O) = Ugp, € Sh,

where (v,w) denotes the Ly(Q2) inner product [, v(z)w(z)dz.
Let us begin with the case f = 0in (1.1) and (1.2). In semigroup notation, then

u(t) = E(t)ug = e Mug  and up(t) = Ep(t)uon = e *tugy,

where Ay, : Sy, — Sp, is defined by (Apv, x) = A(v, x), Vx € Sp. It follows from the
Hopf maximum-principle, see Protter and Weinberger [20, Theorem 8, p. 176], that
IE(t)v| L., <|v|L., for v € C(R2), say. Such a maximum principle is not valid for
the semidiscrete problem, but we shall show the semidiscrete stability result

(13) ”Eh(t)vh“Loo < C”'Uh”Loo; for Uy € Sh.

Similarly, the smoothing estimate | E’(t)v||r.. < Ct~1||v||z.. holds for the contin-
uous problem, and we shall establish the corresponding semidiscrete result

(1.4) |E;L,()vr|lo, < C(t+ h2)_1||'uh||Loo, for v, € Sh,.
For the inhomogeneous equation, we shall show the space-time stability estimate
(1.5)  lurllw@r) < Clluonllze + Clarllullo(@ry, where Qr =2 x[0,T],

with C independent of T'. Here ¢}, , is a logarithmic factor which enters only if r = 2,
Ly =Ly :=1log(1/h) if r = 2, £, , = 1 otherwise, and it will be seen in Section 7
that this factor is necessary when r = 2. We shall also see in Corollary 2.1 below
that this result implies an almost best approximation property in the space-time
maximum-norm. We remark that if ugp, = Ppu, with P, the Ls-projection onto
Sk, which is bounded in maximum-norm, then the first term on the right in (1.5)
may be absorbed into the second. In this case we may think of u; as a “parabolic
projection” Pru of u, and (1.5) may be expressed by saying that this projection Py,
is bounded in Ly (Q7) with a logarithmic factor in the bound when r = 2.

The three results (1.3), (1.4), and (1.5) constitute our main results in this inves-
tigation.

We shall next comment on relations between these results. By a classical theorem
of Hille, see e.g. Pazy [19, Thm. 2.5.2], (1.3) and (1.4) show that E}(t) is an analytic
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semigroup, uniformly in h, and lead to a resolvent estimate on an appropriate sector
in the complex plane,

(1.6) 1(z = An) " onllze < Mzl Hlvnlli., 37 —c<|arge| <.

Conversely, this by itself leads to (1.3) and almost to (1.4) (C(t + h?)~! would be
replaced by Ct~1). However, although for r > 3 the space-time stability result (1.5)
implies the semigroup stability estimate (1.3), not even the combination of (1.3)
and (1.4) will in general imply (1.5). (As an analogue, consider the case of La(€2).
Then (1.3) and (1.4) hold, but (1.5) is not true in Ly(Qr) or Lo (0,T; La(€2)), cf.
Babuska and Osborn [2, p. 58] and Section 7 below.)

We remark that results such as the above for the time-continuous semigroup are
useful in analyzing fully discrete approximations, cf. [30, Chapter 8] and Palencia
[18].

We shall now briefly discuss previous work on maximum-norm estimates for finite
element methods for parabolic problems; a general reference on such methods is [30].
We shall not consider the well-developed theory in Ly or W, but mention the basic
paper of Wheeler [34], which also contains some maximum norm estimates.

For some general results on maximum-—norm error estimates in parabolic prob-
lems, we refer to Fujii [10], which used a maximum principle that is valid for acute—
angle piecewise linear triangular elements and lumped mass matrices, Wheeler [35]
for optimal order results in one space dimension, Bramble et al. [4, Sections 4 and 5]
for certain rather special space dimensionally independent results, and Dobrowolski
[7], [8], and Nitsche [15] for a variety of almost optimal order results.

More germane to our present investigation, [23] used weighted norm techniques
to show the stability and smoothing estimates (1.3) and (1.4) for N = r = 2 (but
with a factor £5). Also using weighted norm techniques, Nitsche and Wheeler [17]
proved the space-time stabililty result (1.5) for N = 2,3, and r > 4. Rannacher
[21] showed the stability estimates (1.3) and (1.5) on a convex polygon in the plane,

with C replaced by C¢2/?, and Chen [5] improved this to Cfj,. (The techniques of
the present paper do not immediately apply to a convex polygon.)

In [32] the problem was approached in the “reverse” manner of first proving the
resolvent estimate (1.6) and then using that and the extra ingredient of maximum-—
norm stability of the elliptic projection to arrive at, essentially, the space-time
stability result (1.5). (As remarked following (1.6), some extra such ingredient
is necessary to show (1.5).) The investigation in [32] was restricted to one space
dimension, and a further investigation so restricted was given in [31]. It does, in
N =1, what [23] did in N = 2. (The technique used was easier for N = 2 than for
N = 1.) Still in the case of one space dimension, Crouzeix, Larsson, and Thomée
[6] further extended the resolvent estimates of [32].

Using a simple and elegant technique, Palencia [18] has recently derived dimen-
sionally independent resolvent estimates relying on the dimensionally independent
elliptic results in [25]. Regrettably, his results are not quite sharp in the difficult
transition region when |z| goes from o(h~2) to O(h™2), and, as a consequence, his
results for the stability of Fj(t) are as follows: There exist three constants C, ¢y,
and ¢, such that ||Ep(t)||lr., < C for 0 <t < c1h? and for coh?4y, 42 < t. Hence,
as far as stability is concerned, we are “merely” filling a very small gap in the time
domain. The techniques of [18] similarly apply to the smoothing estimate (1.4).
Resolvent estimates for Ay are clearly related to finite element approximation of
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singularly perturbed problems of elliptic—to—elliptic type, —e2Au +u = f, cf. [26],
and [32]. The same transition region as in [18] presented the major difficulties in
[26] and [32]. To conclude this overview of previous results, we again cite the thesis
of Chen [5]. He proves interior maximum-norm error estimates on unit-size do-
mains for N = 1,2, 3,4, and 5. In a general broad outline his techniques are similar
to ours, but crucial differences in detail limit his investigation to N < 5, while we
would admit general space dimension in the corresponding situation.

The space dimension-independent proofs in the present investigation were in-
spired by the dimensionally independent proofs in the elliptic case in [25], and they
are natural parabolic analogues of them. Essential new ingredients in carrying
through our program of translation from the elliptic to the parabolic case are a
“strong superapproximation” result and consequent local Ls—based error estimates
for (1.2), basically given in [29] and used also in [5].

The study of maximum-norm estimates for finite element approximations to par-
abolic problems was preceded by analogous work in the theory for finite difference
methods. A fundamental contribution in this regard is the celebrated paper by
Fritz John [14].

2. Basic assumptions and notation, statements of the main results, and
some preliminaries.

With 0 < h < % a parameter, let Tjh,j = 1,---,Jy, be disjoint open sets,
“elements”, which form a partition of €, i.e., Q = Ujilfjh. For each such partition,
let S, = Sp(2) € WL (Q) be a finite-dimensional space. Here, and in the rest
of this paper, W}(D), with 1 < p < oo0,l = 0,1,2,---, and D a spatial set, will
denote the standard Sobolev spaces and | - [[wi(p) and | - [y1(p) their norms and
semi-norms (containing only the derivatives of order [), respectively. Similarly, we
use Wll,’m (Q) when @ is a space-time set; then [ is the order of derivatives in space
and m that of derivatives in time. When needed we shall also use the piecewise

norms h 1/
lelwioy = ( 32 Iolyrnn) "

TfﬂD;é@

We shall now formulate certain properties of standard finite element spaces in
the conforming h-method setting as basic assumptions. We thus assume that there
exist two positive constants K and k, and also two integers r» and 7,7 > 2, all
independent of h, such that the properties A.0 - A.5 below hold. Our first property
reflects the globally quasi-uniform nature of our partitions and that the boundaries
of elements are “not too irregular”.

A.0. Quasiuniformity and Trace.

(i) Each TJh contains a ball of radius kh and is contained in a ball of radius Kh.

(ii) For 0 < h < 1,

_ h .
./67—h |VU‘ do S K(h’ I‘U‘Wll('r]h) + ‘,U‘Wf('rjh))7 Vv € le(T_j )’ J= 17 e 7Jh-
J

For D C Q, Sp(D) will denote the restriction of Sp, to D. Our next assumption
is a standard inverse property.
A.1. Inverse property.



Let x € Sp(D) where D is any union of closures of elements. Then

11
”XHg/]I;I)l,(D) < Kh (I=s)=N (5 p)”X”g%(D), for0<s<1<2,1<qg<p<oc.

The next two assumptions are concerned with local approximation properties
of the finite element spaces. The integer r,r > 2, will denote the highest order
of approximation possible in L,—norms for smooth functions. (In many but not
all cases r — 1 then corresponds to the maximal total polynomial degree of shape-
functions included on all elements, sometimes nonlinearly mapped from a master
element. )

It is convenient to introduce a special notation signifying functions which have
“compact support in the interior of D C Q modulo 8Q”. Thus let D2 = IntD U
(D N 0K). Then supp v C D? means that v vanishes in a neighborhood of every
point of D that is not common with 9Q. We shall write S2(D?) for the functions
in Sp, with support in D2.

Now let Dy be a subset of © and, for d > 0, set D;jq = {z € Q;dist (z,Dy) <
jd}, j=1,2,3,....

A.2. Local approrimation.

(i) There exists a linear operator Ij, : W(Q) — S,(Q) such that the following
holds. If d > kh, then

h —s
||Ihv—v||£V}(Dd)§Khl ||v||le7(D2d), for0<s<lI<rl1<p<c.

Furthermore, if supp v C D3, then Iv € SP(D3,). Also, if v|p, € Si(Dg), then
I,v = v on Dy, and the bound above may be replaced by Khl_s||v||Wé(D2d\Do).

(ii) 1 € SL(9).

If the function to be approximated is of a certain special form, we have an
assumption known as superapproximation.

A.3. Superapprorimation.

Let d > kh and w € CT(Daq) with supp w C D$,. Then, for any ¢ € Si(D3a),
there exists n € SY(DJ,) such that

lwy = nllwi(peg) < Khllwllwe (pon) 1¥lwi(peg). ¢ =0,1.

Furthermore, if w = 1 on Dy, then n = 4 on Dy, and the last factor may be replaced
by ||¢||W21(D3d\Do)-
We next assume the existence of a certain convenient “delta-function”.

A.4. Regularized delta-function. .
Let xp € 2N 7_';?. There exists a function d,, € C* with support in 7']}-7’ such that

X(fI;O) = /h X&Eo d.’L', VX € Sha

and

N g 1
1baollwe < KR™NETD),

for1<p<oo,1=0,1,23.

We finally make an assumption about scaling. Let Bg(z) denote the N—dimen-
sional open ball of radius R centered at xg.
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A.5. Scaling.

Let zp € Q and R > kh. The linear transformation y = (z — z¢)/R takes
Qr(zo) = Br(zo) NQ into a new domain ; and Sy, (Qg(z0)) into a new function
space S’h/R(Ql). Then S’h/R(Ql) satisfies A.0 - A.4 with h replaced by h/R. The
constants occurring remain unchanged.

Let us remark on our simplifying assumption that the partitions are exact, i.e.,
Q = U;7}, which is not necessarily satisfied in practice. In two dimensions, one
may accomplish this by allowing “pieshaped” elements at the boundary. In three or
more dimensions this does not work in general due to wedge-shaped pieces carrying
different “polynomial” values from elements whose prolongations overlap in these
wedges. However, in principle, one could extend the basic domain Q to Q.2 =
{r € Q;dist (z,Q) < ch?}, partition that domain while making sure that the
meshdomain contains Q (by taking ¢ large enough), and then restrict to Q. There
are other exact methods, see Bernardi [3] for an exact triangulation of the unit ball
in R3. We also refer to Babuska et al. [1] for articles and further references to
practice in finite element partitions. In our opinion the simplifying assumption is,
for natural boundary conditions, akin to disregarding numerical quadrature.

A brief discussion of properties A.0 - A.5 can be found in [27, Appendix]. We
remark that these properties are not necessarily independent; for instance it follows
as in [27] that A.4 is a consequence of other properties.

We are now in a position to state our main results. Recall that we assume that A
is uniformly elliptic, that the boundary 0€2 and the coefficients of A are sufficiently
smooth, and that ag is positive.

Theorem 2.1. Suppose that A.0-A.5 hold. Then there exists a constant C inde-
pendent of h and t such that

1ER(Ollzoe + ¢+ B)IEL ML, < C;  fort>0.

It may be seen from the proofs that both Ej(t) and Ej (t) decay exponentially
for ¢ large.

Theorem 2.2. Suppose that A.0-A.5 hold. Then there exists a constant C inde-
pendent of h and T such that if up, and u satisfy (1.2) and (1.1), then
lunllze@r) < Clluonl|z. + Cln sl

A consequence of Theorem 2.2 is that the solution of (1.2) is an “almost best
approximation” of the solution of (1.1).

ullz(@r), forT >0.

Corollary 2.1. Under the assumptions of Theorem 2.2, we have

— <C - Cly., i — , T > 0.
lun — vl L (@r) < Clluon — uollz., + Cla, ectim v =Xll2w(@r), for T =
Proof. Let x € C1([0,T]; Sp,). Then uy, — x is the solution of (1.2) with f such that
the exact solution of (1.1) (in weak form) is u — x, and we conclude from Theorem
2.2 that

lun = Xl Lo (@r) < Clluon — Xz + Clhyllu — Xl Lo (@r)-
Writing up, — u = (up, — x) — (u — x) and using the triangle inequality completes
the proof since C1[0, T] is dense in C[0, T). O

In the remainder of this section we shall introduce two facts that will be used
repeatedly later. The first concerns the Green’s function in the continuous problem

(1.1).



Lemma 2.1. Assume that the boundary 02 and the coefficients of A are sufficiently
smooth. Then, for any integer ly and multi-integer I, there exist constants C' and
¢ > 0 such that for the Green’s function G(x,t;y,s),t > s,x,y € 2, we have

le—y|2

1D DLG(x, £y, 8)| < C((t — 8)Y2 + |z — y|)~ O +2o+I) gme 525

A proof can be found in Eidel’man and Ivasigen [9].

A second basic ingredient of our proofs is the detailed behavior of the Ls—projec-
tion Py, : L1(Q2) — Sp(2).

Lemma 2.2. (i) With Swo gwen in A.4 and 5;,;07;1 = Phgzo, we have
(P)a0) = [ 00y, Jora € 0.
Q

(i) There exist constants C and ¢ > 0 such that
00,1 (y)] < Ch~Neclzo=vl/h vy 4 € Q.
(iii) There exists a constant C such that
|Prllz, < C, forl<p< oo
Such standard results can be found in [33, c¢f. Lemma 7.2 in particular].

3. Proofs of Theorems 2.1 and 2.2, Part 1.

In this section we shall reduce the proofs to certain technical estimates for ap-
proximate Green’s functions which will then be proven in Section 4. We begin with
the case of bounded T, taking T' < 1 for definiteness; the case T' > 1 will be treated
at the end of this section.

Starting with the stability estimate of Theorem 2.1, let ¢ be any point in €.
This point will be fixed throughout this and the next sections and often suppressed
in the notation. Let g € 7o = 7"}3 , let & = 65, be the regularized delta-function of

Assumption A.4, and let 6, = Sxo,h = P,6. With T, = I'zo.n(x,t) € Sp given by
(3.1) The+ Ay =0, fort >0, with T'y(0) = dp,

we then have
(En(t)uon)(zo) = (Ta(t), won)-

Further, letting I' = 'y (z,t) be given by
(3.2) T, + Al =0, fort>0, withI'(0)=3,
we may write, with F' = F, (z,t) =T} — T,

(En(t)uon)(x0) = (F(t), uon) + (T'(£), uon)-

Here |(T'(t), uon)| < [luonllL. IT(t)llz, and, since T'(z,t) = [ G(z,y;t,0)0(y) dy,

the Green’s function estimates of Lemma 2.1 and A.4 show that ||I'()]|r, is boun-

ded (in fact, by C||d]|z,)- In order to secure the stability estimate, it hence remains
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to bound ||F(¢)||z,. But F(t) = Pyd — 6 + [, Fs(s)ds and, by the stability of P, in
L, (Lemma 2.2), a bound would follow if we can show that

(33) ||Ft||L1(QT) S C, for 0 S T S 1.

This will be accomplished in the next section.
We now turn to the smoothing estimate of Theorem 2.1. Writing

t(Ep (t)uon) (w0) = (tF4(t), uon) + (tT'4(t), uon),

and again using the Green’s function estimates, and that ¢ F(¢ fo (sFy)sds, the
proof is reduced to showing that (since (sFs)s = Fs + sFss and assuming (3.3))

”tFttHLl(QT) S C, for 0 S T S 1.

Again this will be accomplished in the next section.
For the refinement of the smoothing estimate when ¢ < h?, note that F}(t) =
—ApEn(t). Since ||AnllL., < Ch™2 (cf, e.g., [23, Lemma 1.3)), | E}, (¢)]|z., < Ch™2%

We next consider the space-time stability estimate of Theorem 2.2 for 7" < 1.
Assuming now also (3.3), it suffices to consider the case of up(0) = Prug. We have

L (£), (T = 1)) = (une(8), Tn(T — £)) + Aun (£), Tn(T — 1))

dt
= (f(t), Th(T — 1)) = (ue(t), Ta(T — 1)) + A(u(t), Tn(T - 1)).

Integrating, integrating by parts in the first term on the right, and using that
up(T)(z0) = (un(T), 6p) and up(0) = Phug together with (3.2),

un(T)(z0) = (u(T), 84) + / (u(t), Fi(T — 1)) dt + / A(ult), F(T - 1)) dt.

Since |||z, < C and using also (3.3), the first two terms are bounded as stated,
and it remains to consider the third term which we denote I. To bound it we
integrate by parts over each element to obtain

I_/T 3 / u(t)AF(T—t)da:—l—/ u(t)anAF(T—t)da) dt.
h orh

Using Assumption A.0 (ii), we then have

1< Cllullzetomy (120 g, + A 1Pl o)
With I, as in A.2, we write F = (I'y, — IzI") + (IzI' — ') and obtain by A.1

h
IF g2y < OB IF o gy + CIIAT —Tllgy
(QT)

(@)
where we have used the notation

h _
Xlle = X150, + A7 1K Il

(@)

for a space-time set Q).



Lemma 3.1. We have |[I,)] —T]|g, < Clpr, for 0 <T < 1.

Proof. With p(z,t) = max(|z — 2o/,%'/?) the parabolic distance between (z,t) and
(20,0), let Q¢ = {(z,t) € Qr : p(x,t) < ch}. By Cauchy-Schwarz’s inequality, A.2,
a standard parabolic energy estimate, and A.4,

(34)  [[aD = Tlgee < (2eh) 2T 20 (gm) < CR N2 lws e < C-

Qr)

With ¢ sufficiently large we have on Q7 \Q°, for any derivative D of order < r, that
|DT(z,t)| < p(z,t)~N~", see Lemma 2.1. Hence by A.2, and changing variables
as y = |z — zo[t~'/? so that p(z,t) = t'/?max(1,y) > 1t/2(1 +y),

[IaL = Tlomeee < CR (07N " [lL, @r\@e)

c2h? T
< Ch' 2 / /2 / (1+y)~"N-"dydt + Ch"2 / t/2 dt
0 y>cht—1/2 c2h?
c*h?
< C’hT_Q/ h="dt + Cly < Clp, .
0
Together with (3.4) this proves the lemma. O

Assuming (3.3), we have thus obtained
un(T)@0)| < Cllullie@r) B IF oy + fhr)-
Hence Theorem 2.2 would follow, for 0 < 7T < 1, from
h U Fllwiogpy < Clhy, for 0<T <1,

Again, this will be established in the next section.

Summarizing the development above, in order to complete the proof in the case
0 < T <1, it remains to prove the following proposition which will be done in
Section 4 below.

Proposition 3.1. There exists a constant C such that, for F = TI'y, — ' given by
(3.1) and (3.2),

1Pl 2y @r) + 1tFull Ly @r) + B I F o,y < €, for0 < T < 1.

We shall finally consider the case T > 1. In doing so we shall use the Ritz
projection Ry : Loo(2) U HY(Q2) — S, () defined by

A(Rpv —w,x) =0, Vx € Sh.

From [22, Remark following Theorem 2.2] (cf. [25] for the case of Dirichlet boundary
conditions), we have

(3.5) |BAl| Lo < Clr-

We begin with the following lemma which shows Theorem 2.1 for T' > 1.
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Lemma 3.2. Let ¢ > 0. We have, with A1 the smallest eigenvalue of A and
m > N/2,

|AL By (t)on||p., < Ct™ T ™e 2 |lupllL., forvn € Sh, t>0.

Proof. We first show that
(3.6) Ixllee <ClAT XLy, VX € Sh, for m > N/2.

For this we quote the following result from [4, Lemma 4.1] (valid with (3.5)),

1 1

1
At <C Vx € S, if ——
|| h X||ij+1 —_— ||X||ij’ X h7 1 p] pJ+1 N7

from which (3.6) follows by choosing an increasing sequence of p; with 1/p; —
1/pj+1 < 1/N,p1 = 2,pp, = 00, and adding the corresponding results. Applying
(3.6) with x = A} E}(t)vs, we find, with {)\?};ﬁl the increasing eigenvalues of Aj,
(since, as is well known, A\? > \;),

A% En(t)vnll 1. < ClIAL ™ En(t)onl L,

= Cmax (X)) ™ ™e ™) onllz, < CH™e 2oy ... m
J

We next show Theorem 2.2 for 7' > 1, assuming it holds for 7" = 1.

Lemma 3.3. Assume that Theorem 2.2 holds for T = 1. Then it holds for any
T > 1, with C independent of T'.

Proof. By the previous lemma it suffices to consider the case ug, = Prug. We need
to show that
lun(T)l|Lo < Clpyrllullr,(@r), for T >1.

Assume T > 1. Let ¢ € C*(—o00,0] with ¢(t) = 1 in (—3,0], and ¢(¢) = 0 for
t < —1, and let pr(t) = ¢(t —T). We set v = upr and w = u — v and find that

vy + Av = f1 = for +upy, fort>0, with v(0) = 0,
wy + Aw = fo = f(1 — 1) —upy, fort >0, with w(0) = ug.
We denote by v, and wy the corresponding semidiscrete solutions and note that

up, = v, +wp,. Since Theorem 2.2 is assumed to hold for T" = 1 and v and vj, vanish
for t <T — 1, we may apply it to the time interval (T'— 1,T) to obtain

[on(Tll2ee < ClhgllvllLa@r) < ClhrlltllL @r)-

By Duhamel’s principle, we have

(3.7) wh(T) = En(T)Pauio + /O En(T — t)Pufa(t) dt.
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Here fy(t) =0 fort > T — %, and, using that f = u; + Au and P, Au = ApRpu, we
find

d
P fo(t) = (1= or)(Phus+ ApRpu) — opPru = (1 —op) Ay Rpu+ %((1 — 1) Pru),

so that, after integrating by parts in the last term and using (3.7),

1
T_ =
2
wn(T) = / (1= o) AnEn(T — t)(Rn — Py)ul(t) dt.
0
Hence, using Lemma 3.2, (3.5), and Lemma 2.2 (iii),

lwn(T)l|ze < CUIBAl L + 1Prllz)[ulli@r) < ClhrllullLo@r)-

Together these estimates show the lemma. 0

4. Proofs of Theorems 2.1 and 2.2, Part 2.

In this section we shall prove Proposition 3.1.

We shall decompose Q7 into “parabolic annuli”. For this, let d; = 277, j integer,
and let Q; = {(z,t) € Qr;d; < p(z,t) < 2d;}, with p(x,t) = max(|z — x|, t'/?)
again denoting the parabolic distance to (xo,0), and similarly Q; = {z € Q;d; <
|z —zo| < 2d;}. Then, for some fixed Jy (depending on © and the fact that 7' < 1),
and any J, > Jy,

QT - (jijjo QJ) U Q*’ where Q* = {(xat) S QT : p(x,t) S dJ*}.

We shall refer to (), as the “innermost” set, and ultimately we shall choose J, such
that dj, ~ C.h with C, sufficiently large. Note that then J, = log(1/h). Constants
C will, as usual, change freely but will be independent of C,. We shall write Z* j
when the innermost set is included and }_; when it is not.

In this proof, almost all norms occuring will be Ls-based norms. We shall
therefore write ||v||p and [[|v[l|g for La-norms over space and space-time sets, re-
spectively, and |[v||x,p and [[[v[|; o when up to k spatial derivatives are included.
Time-derivatives will always be displayed explicitly.

Denoting the sum of norms in Proposition 3.1 by M, we have by Cauchy-
Schwarz’s inequality

M <Y 2d) (Bl g, + itFuellg, + B 4 IFlllq,)-

*,J

Here, since t < 4d§ on Q;, the part of M over @), is bounded by

T = C(Ch)+N/? [\HrthT + [[[Th
+h7 (T

gz T CeR*(ITetlll gy + Tzt
1,Qr T lIT|

lor)

l,QT):|'

The remaining terms are bounded by Cd;."'N/ ’K j wWhere

(41) K, = IFlllg, + a2 Fallg, + millFllyq,, with sy = 765" +d5
11



here the term d]_1|||F H‘LQ;‘ has simply been added in K for the purpose of a later
“kick-back” argument. It follows that

(4.2) M<T+CK, where K=Y d;"V’K;.
J
We begin by estimating the first term on the right and show that
(4.3) I <ce?,
This follows by standard energy arguments and using A.1 and A.4. For example,
we have by (3.1)

d
ITheell® + —d—A(Fh,t’Fh,t) =0,

so that, by inverse estimates, A.1, and by A.4,

and thus h3+N/2|||Fh,tt|||QT < C.
To treat the terms involved in K; we shall use local energy-based estimates for
functions e = z;, — z satisfying

< AV (Apbn, Apdn) < Ch™3|0n]| < CR73||6n| < CA™3 N2,

(4.4) (et, x) + A(e,x) =0, Vx €S, t>0.

We set Q; = Q;j-1UQ; UQj+1 and correspondingly for Q; The following proposi-
tion will be proven in Section 6. For readability, we shall use mnemonic acronyms;
thus Initial terms, approXimation terms, and Higher order slush terms. We shall
apply this with e = F' and Fj, respectlvely In either case, z(0) = §=0o0r A6 =0
on Q’ Q’ N {t = 0}, while zop, = Pyd or ApPyd does not necessarily vanish on

Proposition 4.1. For any q > 0 there exists C such that the following holds. Let
e = zp — z satisfy (4-4) with 2(0) = 0, 2,(0) = zor, on Q. Then

(4.5) lleellg, + d5 llelll o, < C(Li(z0n) + X;(C) + Hj(e) +d;2|||e\HQ9)v

where, with ( = Ipz — z,

1;(zon) = o, +d; lzonlle,
X;5(Q) = d;llc llg, +d5 il +d5 2 liclg:
Hj(e) = (h/d;) (llecllgr + d;  llelly q1)-

We now apply Proposition 4.1 to estimate the terms in K; involved in K as
defined in (4.2) and (4.1). We first note that, when treating the term d§|||Ftt|||Qj

(i.e., e = Fy), the last term in (4.5) becomes |||Ft|||Q; which already occurs in Kj,

apart from @; being replaced by Q’;. Taking intermediate sets between @; and @,
we may then estimate

(4.6) K; <C(I; + X; + H; + p;d; 1|||F|||Q,)
12



where fj, )/(\j, fI\J now contain p; in front of some terms.

We shall next in turn estimate the first three terms on the right. When doing so,
we shall also be more explicit about what they contain. We begin with the initial
terms I/; and show that there exist C' and ¢ > 0 such that

Ty = @1FO)lgy + dIFO) s + dspsg|1F(0)
S Ch_l_N/ze_Cdj/h.

e + 1 [1F(0) [

Let us consider only ||Ft(0)||1793 which happens to be the hardest term to treat.
Since F3(0) = Apdy — A6 = Apdp, on Q; (if C. is large enough), we obtain, using
an inverse estimate (with a slight abuse of notation),

1£(0)]

Lo < C'h_1||z‘1h<§h||sz; = Ch™ ' sup(Andp, v),

where the supremum is taken over v with supp v C €} and ||v|| @, = 1. For each

such v ~ ~ ~ }
(Ah5h, ’U) = (Ah(Sh, Ph’U) = A(&h, th) = A(Ph(5, th).

Considering separately the contributions of the last term from QY (which we define
as (25)" = Q;_2UQ; 1 UQ;UQ; 41 UQ;42) and CQY, we obtain by inverse estimates
and decay properties of the Ly-projection, see Lemma 2.2, and A .4,
[(Andh, v)| < CR™2 (1Pudllay 1 Pavll + [1Padll L, o) I1Pavll Lo cary)
S Ch,_Q_Nd;-V/2€_Cdj/h.

Thus
d§||Ft(0)||1,Q;, < Ch—3—Nd;."/2+2e—cdj/h < Ch—1-N/2g—cd;/h,

The remaining terms are treated analogously. The contribution to K of the f] is
hence bounded by

(4.7) ST NP < 0N (d/h) N 2emehi/h <
J J

We shall next consider the approximation terms in (4.6) and show
o —137r=241—-N/2—7 r—1 3—N/2—r
X; < O thr=2d; NPT 4 prta N,

)/(\j consists of several terms, of which we shall exhibit but two. We first consider
the “top order” term. By approximation theory and the Green’s function estimates
of Lemma 2.1,

_ —1 —N/2—r
BN =Tl g, < O[Tl g < OB 27"

Next consider

1-N/2—r

pj [ InT — T , < Cuih™'d; :

1q < Cugh"|T|
13
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which is bounded as desired since p; = h_lf,:; + dj_l. The rest of the terms

appearing in )/(\J are treated in a similar fashion. The contribution to K of the 5(\]
is thus bounded by (since C, will eventually be fixed independently of h)

(4.8) Y a7 X <G Y (hd) R4 CY (BT < C.

J J J

Note that for » = 2 the first sum on the right is compensated for by the factor E;l.
We next bound H;. Replacing Q;- by the full set Qr, we have

Hj < C(h/d;)?[d} || Full g, + dillFelly g, + mi(dsl1 Fellgp + I1Fl1,0,)]-

Writing |F| < |T'y| 4 |T|, etc., and estimating the terms individually by standard
energy arguments (cf. the proof of (4.3)), we have

W[ Feelllg, + kI Fl

van * HlIFllg, + IFlly g, < RN,
so that taking ¢ = 4 + N/2, since h/d; < C,

H; < O(h/dj)?[d2h=3 + d;h2 + pj(d;h~" + 1) N2 < Chd; *N/2.
The contribution to K of the I/-I\J is thus bounded by

(4.9) SN H; <0y nd; < C

J J

From (4.6), (4.7), (4.8), and (4.9) we hence obtain

1+N/2 N/2
K=Y a7 K < O+ 03 d)" || Fllgy-
J J

In the next lemma we estimate ||| F|||o, by a duality argument.
J

Lemma 4.2. With m;; = (min(d;/d;,d;/d;))**7/2, we have

—1-N/2
IFllg, < Ch?d; N L 0N mi (R NIF |, + RIIFlg,)-

*,2

Proof. Writing [v, w] for the Ly-space-time inner product over Qr, we have
17l = sup{[F):supp v € @4, [, = 1.
For each fixed such v, let w solve the dual problem
—wy + Aw = v, with w(T)=0.
Integrating by parts and using the corresponding notation A[-, -], we then have

(4.10) [F,v] = (F(0),w(0)) + [F, w] + A[F, w].
14



We consider the terms in order.
We have for any xo € Sy, (and C, large enough)

(F(0),w(0)) = (Pub — b, w(0) — xo)
= (Pud,w(0) — Xo)ay + (Prd — 6,w(0) — Xo)eqy =11 + .

Choosing xo = Ipw(0), using the exponential decay properties of Py, and the
standard a priori energy estimate ||w(0)||1 < C||v[l|g,. = C,

1| < C’d;.v/zh—Ne—cdj/hh“w(O)||1 < Cd;\[/2h—N+le—cdj/h.

Since Py, is stable in Ly, [I5] < Ch?||w(0)|lwz, (p,), where D; is a set containing CQYf
but whose parabolic distance to Q; is greater than C'd;. By the Green’s function

estimates, ||w(0)|lwz (p,) < C'dj_l_N/2, and thus

|(F(0),’LU(0))‘ < Cd;v/2h_N+le_Cdj/h +0h2d._1_N/2 < Ch2dj_1_N/2,

j
which bounds the first term in (4.10) as desired.
We now consider the remaining two terms on the right of (4.10). We have

[Ft7w]+A[F7w]:[Ft7w_Ihw]+A[F7w_Ihw]:

<CY (I1F g, llw = Inwllg, + I1Fly g, lw = Inwlly g,)
*,1
<CY (R Ellg, + PIF g )lwlly,qr

Recalling the definition of w, the Green’s function estimates give
2.0 < Cl(min(di/dj, d;/d;))+N/? = Cmyj,

for |i — j| > 2; this is also true when |i — j| < 1 by a standard a priori energy
estimate, namely, [|lw||, o, < Cl||v[llg, = C. This proves the lemma. O

The contribution to K is then
N/2 - N/2
> &l Flllgy < O hd;t +C Y d g Y mi (|Fllg, + RIIE] 0,)-
J J J *,1
Clearly the first term is bounded and, after changing the order of summation and
using elementary geometric sums, the second is bounded by

S (IFllg, B2 + F 0,0 (O +3 ) dY? pymy

*,t i<i  j>i

1+N/2 _

<CY (1B lg,h? + IFly g, h)d; T2 pidi !
*,1

<cC? 103 d (| Rilg, + wllF|

lw]

1.0,)(h/d;)
<cC?+ 0N ditNPK(h/dy).

We hence find that
K <C(O+CY? +ccr kK.

With C, large enough this shows that I is bounded, and, together with (4.2) and
(4.3), it shows that M is bounded. The proof of Proposition 3.1 is now complete.
O
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5. Strong superapproximation.

We shall now state and show the strong superapproximation result that we will
need in our proof of Proposition 4.1 in Section 6.

Let Dy C Q and Dy = {z € Q;dist(z, Dy) < d}. Let w = wy(x) be a smooth
function depending on the parameter d with suppw C Dg and with |D%wy| <
Cd~1l |a| = 0,...,7. By the scaling assumption A.5 and the superapproximation
assumption A.3 (applied with d ~ 1), if ¢ € S}, the function wgt can be approxi-
mated by a x € S2(D9) so that

(5.1) dllway = xllp, < ChllYllp,;  d*llwat = xll1,p, < Ch(d|$|1,p, + [¥llD,)-

The following theorem shows that a local elliptic projection of wyi may be approx-
imated in S2(D9) to order O(h) in W3 (D4)-norm with an error bound requiring
only the Ly(Dg)-norm of 1, which is sharper than in (5.1). For unit-size interior do-
mains such a result was shown in [29]. For D C Q we define R? : W3 (D) — S (D)
by

(5.2) AP(RPvy —w,m) =0, Vne Su(D),

where in AP(-,-) the integration is extended only over D.

Theorem 5.1. There exist C and c independent of h and d such that, if d > ch,
then for any ¢ € Sy, there exists x € S (DY) such that

(5.3) d?|| Ry (wat) — xll1,pg + dllwar — X|lpy < Ch|%||p,-

We remark that, in terms of the global Ritz projection on €2, we similarly have

&*|| Ry (wa) — x|

1.0 < Ch||¢|p,,

as may be seen from the proof below.

Proof. A major point of the theorem is that the constant C' does not depend on
the particular shape or size of the set Dy. Following directly the proof in [29] for
interior domains, the constants would, in particular, depend on the constant in the
W2 regularity estimate for the elliptic problem on Dy, on a bound in the extension
inequality from W2 (Dy) to W2(Q), and on the constant in Poincaré’s inequality for
D,. Even though we shall only apply the theorem with Dy equal to the intersection
of {2 with a ball or an annulus with center in {2, we see no way of directly controlling
such constants; indeed, we do not even know if W2 regularity holds on every such
set.

In order to be able to control the constants we shall instead proceed in three
steps as follows. In Step 1 we consider unit size sets, d = 1, of the following two
types

(i) Do and Dy are concentric balls with Dg C 2,
(ii) the boundary of 02 is straight and Dy and Dy are the intersections of Q
with two concentric balls centered on Of).
16



In Step 2 we then consider general sets of type (i) and also C?-diffeomorphic images
of sets of type (ii) and apply an argument using a partition of unity to treat general
sets of unit size. Finally, in Step 3, the case 0 < d < 1 will be reduced to the case
d = 1 by a scaling argument.

Step 1. With d = 1 we write w = w;. For the purpose of the later scaling
argument in Step 3, we introduce

AM(an) = AO(an) + /1’(0'0/07 w)7 with 0 < B < 1a

where Ag is the principal part of A = A;. Let sz 5, denote the elliptic projection
defined as in (5.2) by the form AP(-,-). We have supp w C Dg and introduce
another cut-off function & such that @ = 1 on Dy 7 with supp @ C D§g. For given
1 € Sy, and with I the local approximant described in A.2 of Section 2, we set
X = Ih(@Ri}l(w@); we may assume supp x C D§s. We shall show that, with C
independent of p and h,

(5.4) IR (wip) — x|

1,D, + ”"‘”p - X||D1 < Ch”Ilp”Do.s‘

In particular, with g = 1, this shows (5.3) in the case considered. It also implies
(5:5) A2 (r,wp = x)| < Ch([IV¥]ip, + plvllp, ) [#llpes, Vo € Sh.

For later purposes we note that, conversely, if (5.5) holds, then Af (rywyp — x) =
AP (v, sz}l(w@b) — X), so that taking v = Ri}l(ww) — x shows that (5.4) holds for

u=1.
In order to show (5.4) we shall need some preliminaries. We recall that 0 < g, <
ap < @p in 2 and let « be the ellipticity constant of Ag and x = max;; ||aijl|c1(q)-

Lemma 5.1. Let D C Q be any convex domain or the image under a C?-diffeo-
morphism of a convex domain. Then there exists a unique solution V€ W2(D) of
the problem

(5.6) AP(V,Q) = (v,¢), V¥ (eWi(D).

Further, there exists a constant M which depends only on «, k,ay, o, meas(D),
diam(D), the Lipschitz constants in a suitable atlas for 0D, k and K of A.2, and
the C? diffeomorphism, such that

(5.7) IV(RELY = V)llp + 'R,V = Vo < Mhljv|lp.

Proof. We assume first that D is convex. The existence of a unique V € Wy (D)
satisfying (5.6) follows since A, is coercive, and, following Grisvard [12] with minor
modifications, we shall show that V € W2(D) and

(5-8) Vizp + IVVIp + plVip < Mlv]ip.
Setting ¢ =V in (5.6), we find

IVVID + ullVIp < MAZ(V,V) = M(v,V) < 5ullVII5 + 5M*u™ o]l
17



which shows p[|V]|p < M||v||p. Next, taking ¢ =1 in (5.6), (v — paoV;1) = 0, so
that, with V' the mean-value of V' over D,

(5.9) Aog(V,V) = (v — pagV,V = V).
From Gilbarg and Trudinger [11, (7.45), p. 164] we quote the Poincaré inequality

WN

meaSD)1_1/N(diamD)N||VV||D,

(5.10) IV =Vlip < (

valid for any convex domain with wy = 27%/2/(NT(N/2)). Thus from (5.9), with a
new M, |[VV]p < M(||v||p + u]|V]|p), so that also ||[VV||p is bounded as claimed
in (5.8).

We next turn to |V]2 p. Approximating D by C?-domains and using a limiting
argument as in [12, proof of Theorem 3.2.1.3], it suffices to consider convex C2-
domains D. From [12, equation (3,1,3,9)] we have

o’ |V p <2 AV +4N?k*a™?||VV |3,
and, since ||AoV||p < ||[A,V|p + pa@o||V||p, this completes the proof of (5.8) for
D convex. The extension to smooth diffeomorphic mappings of such domains is
obvious.

We now consider (5.7). Since Rf’ V is the best approximation to V' in the energy
norm over D associated with AE, and since p < 1, we have

IVRELY = V)llp + u2IIR2LV = Vi < M|V = xlh,p, Vx € Su(D).

Since the constant functions belong to Sy (D) (A.2 (ii)),

min ||V —xlli,p = min_ |V -V — x|,

XESh(D) X€Sr(D)

where again V denotes the mean-value of V over D. Extending V —V continuously
in W2 from D to € (this is where the Lipschitz nature of 9D enters, cf. Stein [28,
Theorem 5, p. 181]), this is bounded using A.2, Poincaré’s inequality (see (5.10)),
and (5.8), by

MUV = Vo0 < ME([Vsp+ [Vl + [V = Vip) < Mhjo]|p.

This shows the lemma in the convex case.

For the diffeomorphically mapped case, one only has to take care to let the
constant V be the mean-value of the corresponding function V' when mapped to
the convex domain. O

Note that Lemma 5.1 applies to domains of the type considered in Step 1, since
their measures, diameters, and Lipschitz constants are appropriately uniformly
bounded.

Our next lemma contains some auxiliary estimates for Rfi}l.
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Lemma 5.2. Let QZ = Ri}l (w1p). We then have, with C independent of u and h,

(5.11) 19 — wil|p, < Chll¥||p.s
and
(5‘12) \Dog.5 < C||J||D1\DO.3'

Proof. The inequality (5.11) follows using a duality argument and superapproxi-
mation. In fact, for v with support in D; and ||v||p, = 1, let V be as in Lemma
5.1. We have for suitable choice of n € S, (D1)

(wip — 9, v) = AP (wip — R4 (wi)), V = RO} V) = AD* (wyp — 1, V — RDLV)
< Cllwyp — nll1,p, Bllv|lp, < CR*|1%l1,D0., < Chl|%||Dy.s-

Here we have used in turn (5.7), the superapproximation property A.3 (for the
suitable choice of 7)), and an inverse property. B
In order to prove (5.12), consider n € Sp(D1) with n =0 on Dy D supp w. Then

(5.13) AP () = AR (wip,m) = 0,

i.e., 1 is “discrete A, ~harmonic” on D1\Dy. Inequalities of the type (5.12) were first

proved for v satisfying (5.13) on interior subdomains in [16] and up to boundaries
in [24, Lemma 4.4]. For completeness we include a proof.

Let ¢ =1 on Dy \ D5 with supp ¢ C Dy \ Dg.4. A straightforward calculation
using (5.13) yields

~ oY 9
Gy levilh <o [ > tay 20 o -+ o) da

7,7=1

= C(A7 (. ™) + W) = C(AD (4, %% — m) + W),

for all n € Sp(D) with n =0 on Dy 4 (2 Dy). Here by superapproximation with n
suitable

AP (4, 9% — )| <
and, for the commutator W, we have

N ~
wi=|[ Y asgept)id
Do.5\Do.4 i,j=1 Ly 8’7’.1

< ClleVillp, 1¥llpo s\Do.s < elloVIIID, + Cell$liD, 2\po 4

Using the above and a kick-back argument in (5.14), we find

12113 pope.s < l0VEID, + lledlln, < C(
19
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Iterating this argument with an obvious change in sets we obtain

I

iD1\Do.6 < C(h’2||¢”iD1\Do.3 + ||¢||2D1\Do.3)’
and an inverse inequality completes the proof of (5.12). O

We are now in a position to prove (5.4) and complete Step 1. Recalling that
x = In (@), we write

Y —x = [00 - L@P)] + [(1-3)P] = [ + L.
Since @ =1 on Dy 7, by A.2, Ih(&zﬁ) =1 on Dyg. Then from A.2 and (5.12)

||¢ - X |1,D1 < C'||/Qb||1,D1\Do.5 < C“w”Dl\DO.S'

Loy < [Mally,py + 112

Since supp w C Dg, we have, using this and (5.11),

(5.15) 1% = X|l1,p; < CllY — wip|p, < Chl[¥]| Dy s-

Furthermore, using (5.11) and (5.15),

(5.16) lwp = xllp, < llwib = Bllp, + 19 = Xllp, < Chl]| Do

Taken together (5.15) and (5.16) prove (5.4) and hence complete the proof of The-
orem 5.1 in the case d =1 and (i), (ii).

Step 2. Let EO and B be concentric balls in RV with centers at the origin,
and let Dy = B N {yn > 0},131 — BN {yn > 0}. Let T be any point on 9.
Taking smaller balls, if necessary, there is a C2-diffeomorphism @ : By - D CQ
in which the equatorial plane maps to a (piece of) 02 containing Z = ®(0). With
Dy = @(130) and Dy = @(131) it is clear that the whole development in Step 1
holds for Dy and D; but, of course, now with constants depending on ® (and its
inverse).

A general set Dy C D? can be covered by concentric balls, half-balls or maps of
such as above, let us call them here Qg ;, 014,72 =1,...,1, in such a way that Dy C
UL, 00; and UL_;01; C D;. Using a smooth partition of unity \;,i = 1,...,1,
of Dy subordinate to Oy ;, and letting x; € Sp(O?;) denote what we have found
above on Oy ;, Oy ; for the functions \wy, we set x := Zle X;- Then

AD (w0 — x) =) AT (v, hwdp — x4)

< ChY (IV¥lloy, +ullvllo, ¥l . < ChIVZp, + ulvlo)YllD,,

and so (5.5) follows in general. The argument for the second term in (5.3) is
analogous. It is not hard to see that the construction of the Op;, O1, and the
partitions of unity A; can be arranged so that the resulting constants are uniform
for % <d <1, say.
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Step 3. We finally consider the case d < 1 which we shall reduce to the case d ~ 1
by a scaling argument. Using a suitable partition of unity (now on size d) as in
Step 2, it suffices to consider the situation (i) or (ii) (or, (ii) mapped) now involving
two domains Dy and Dy of diameters d and 2d, respectively, and centered at Z. Let
Dy and Dy be the images under the scaling map Z — Z = (z — Z)/d. Then, setting
E; = ||lwa® — x|| and E3 = A(v,wq) — x), we have for their scaled counterparts

E’l = ||ad{/;_ )?H = d_N/2E1 and E'Q = A\dQ(]’)’ ad'lz_ y) — d2_NE2,

Here Ay (v,w) = Ag(v,w) + d2(Gov, w), Go(Z) = ao(z) and G;;(Z) = ay;(x), and the
integrations are taken over D;. Note that the maximum norms of the coefficients
and their derivatives are not increased under this transformation and that any finite
number of derivatives of &, are bounded independent of d. Also, 0D, becomes
smoother, so that the Lipschitz constants of 0D involved in extension operators
are controlled. Using the scaling hypothesis A.5 with h=hd~! and taking p = d?,
we may apply the results in (5.3) for unit sized sets to the transformed problem to
obtain

Byl < Chllgllp, and |Ba| < Ch(|V5l|5, +dIPll5, ) 19115,
Transforming back to the original variables
|E1| = dN/?|Ey| < Chd ™19 p,
and

[Bs| = d¥2|By| < Ch(d2| V¥, +d~*|vl|p, ) I¥llp,
< Chd™?||v

|1,Dd||¢||Dd'

After an argument as that giving (5.4) from (5.5), this completes the proof. O

6. Local energy error estimates in parabolic problems.

In this section we shall prove Proposition 4.1. As in the previous section the
proof follows the ideas of [29], where interior unit-size domains were treated.

Lemma 6.1. Let D C Q,I = [7,T] with 7 > 0, and consider the space-time
cylinder @ = D x I. Let Dy = {x € Q; dist (z,D) < d}, Iz = [max(0,7 — d?),T],
and Qg = Dg x Ig2. Let e(t) = z,(t) — 2(t) with z, € Sp satisfy

(6.1) (e, x) + A(e,x) =0, Vx € SY(D3,), t >0, 2(0) =0, 2,(0) = zop, in Dy.

For any q > 0 there exist C' and ¢ > 0 such that if d > ch then, with 65 = 1 if
d? > 7,04 = 0 otherwise

lleelllq + d=*llel

1.0 < Cloa(llzonll1,0, + d™ 208l D,)
+dlllzellly g, + lzelllg, +d7 M2l g, +d72l2llg,

+ (h/d)*(lleclllg, +d ™ lell,q,) +d™"(lelllg,]-
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Proof of Proposition 4.1. Since the sets (); in Proposition 4.1 are built up of the two
cylinders Q; x [0, d?] and {z € Q; [z —xzo| < 2d;} x[d}, 4d3], and since z(0) = 0 on Q,
(4.5) follows with ( = —z from this lemma, with 7 = 0 for the first cylinder and 7 =
d; for the second and with d = d;/2 for both. Writing z;, —z = (2r, —Ip2) + (In2 —2)
establishes it as stated. U
Proof of Lemma 6.1. Let now w(x,t) = wi(z)ws2(t) be a cut-off function such that
wi(z) =1 on D, supp w; C DY, and ||w1)||L < Cd7!, for I = 0,1, and such that

wa(t) =1 on I, supp wa C I, (m the natural sense), Whlle ||w2)||L < Cd~% for
[ =0, 1. For brevity of notation we define, for a function g = g(z,t),

il Ov Ow
_ 2
Ag('v,w)—/Qg (Z ”8 8 - + apvw) dz,

2,7=1

and

T
/2.
ol = Ag(w 072, ol = ([ Ag(w,0) )
We shall first consider the case when z = 0in (6.1), i.e., zp, is “discrete parabolic”.
We have for any x(t) € SP(D3,)

3 dt”wz |2 + Aw(zh, 20) = [(2h6, w2 — x) + AP2 (21, RY* (w?2) — X)]

+ (wwezp, 2n) + [Aw(zh, zp) — A(zh,w2zh)} =1+ 1+ Is.

To treat I; we shall use the strong superapproximation result of Theorem 5.1, which
allows us to choose x(t) in SP(D3,) such that
1] <O

hd™"{|zn]| Doy L EAE

Further |I;| < Cd™?||z4]3,,, and, for the commutator I3,

il 0z Bw
|I3|—|/2w Zam L zhd:v|<Cd

i,j=1

Using the arithmetic-geometric mean inequality, integrating in time and taking
square roots, and noting that w,(0) = 0 if 7 > d2, we hence find

(62) lznlly,1 < C[dallzonllpag + A +d 7 Izl gu,) + a7 l2nllg,, -

We remark that (6.2) can be proved without use of strong superapproximation.
Similarly, again using strong superapproximation, and in this case the use of it
is essential,

. d
|w?zn.4]|> + d — Au2 (2hs20) = [(2h,ts w2t — X) + AP (2, B> (w2nt) — X)]
N
/ 2w3w; Z a” 8Zh 8Zh + aozh dm—i—/ 4w Z a” 6Zh 8w zhtdas
< C(hd~ +hd™ +d” 2IIZhIIW,l) :
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so that
(6.3) [ 2h,t

@ < dallzonll1,pay + Cd™ |l 2nll,, x
+O(h/) 2 (llznlllg,, +d llznllg,,)-

Multiplying (6.2) by d=! and adding a sufficiently small multiple of (6.3) so that
the term d_1|||zh|||w71 may be kicked back and then, iterating with respect to the

quantity |||z ¢
obtain

(6.4) l2n,¢

02y T d_1|||zh\H17Q2d (and changing notation for the Q4 sets), we
Q

@ +d7 llzallly,q < Cloalllzonll1,pos + A7 |20k ]| 5,)
+ (/) (2 ¢lllg,, +d ™ Iznll1,q,,) +d *llzllg,,]-

This is Lemma 6.1 with z = 0 (except for Q4 being Q24).
We now take another cut-off function w = 1 on Q4q with support in Qgq, set
Z = wz, and let Z, be given by (with € = 2z, — 2),

(6.5) (0, x) + A6, X) =0, Yx €8, t>0, with 2,(0) = 5(0) = 0.

Standard parabolic global energy arguments give, with ||| - [|| = |[ - [l

~1112 ~ ~ ~1112 ~ 1112 ~ 1112 ~ ~
llellly < ClllealHlIzll + Cllzllly,  and [lleql|” < iz + Cllleflly [z,

from which we conclude, using the arithmetic-geometric mean inequality,

(6.6) ezl +d=*lell, < C@llZll, + Izl +d= 121, + a2l 2]])
< C(dllzelll1,goy + M2l gu, + a7 2l 00, + A2l 2llg,,) = Kal2)-
On Qgq we write e = zp, — 2 = Zp, + € where Zp, = z, — Zp, € S}, satisfies
(ZhtsX) + A(Zn, x) =0, Vx € Sp(DZy).
Using (6.4) with z, = Z), = e — €, the triangle inequality, and (6.6), we have
1 Zh,elllg + d= I Zulll1,q < Cloa(llzonll1,Deu + d™ |20 ]| D)
+ (h/ )11 Zn,elll o, + A7 1211 gq,) + 472120 gu,)

< C[8a(llzonll1,pes + d™*|20nll Do) + (R/d)A([[lEcN + a7 []IEl,)

+
<C

(h/d)*(lleclllg,, +d ™ llellly,gq,) + 4™ (lellgq, + lElD)]
[0a(llzonll1, D64 + d~ "l 208]| D) + Ka(2)
+ (h/d)*(llletlllg,, + d™ el qq,) +d*llelllg,, +d~lIEl]-
Since e = Zj, + €, and again in view of the triangle inequality and (6.6), it now
remains only to estimate the last term d—2||€||| above. Introducing the symmetric

positive semidefinite operator T}, = A,_LlPh, we may write (6.5) as (cf., e.g., [30,
p-30))

Thés+é= (R, —1)z, t>0, withe(0)=0.
Taking inner products with é and integrating in time, we obtain
el < [[(Rr — D)2[| < ChllIZ|ll; < Cdl|2]l; gq,»
which completes the proof of Lemma 6.1. O
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7. Sharpness of the space-time stability estimate for r = 2.

In this final section we shall show that the logarithmic factor ¢ is needed in
Theorem 2.2 for r = 2. We consider the plane case, N = 2, and shall base our
analysis on an example given by Haverkamp [13] in the elliptic case.

We consider functions u which do not depend on ¢ and their piecewise linear
semidiscrete approximations uy(-,t) € Sy given by

(7.1) (unt, x) + A(up, —u,x) =0, Vx €S, fort>0.

For initial conditions we take (as an example) uy(0) = Ppu; note that there is then
no logarithmic factor present at initial time.

We shall show that there are positive ¢ and T such that, for u = u(x; h) suitably
chosen,

(7.2) lun(T)lLo = clhllullz,, with £, =log(1/h),

and hence ||up||z_(Qr) > cullullL..(@r), Which would show our claim.
We shall first show that, as time increases, uy(t) approaches the Ritz projection
Rpu. Indeed, from (7.1), where we may replace u inside A(-,-) by Rpu, we have

Upt + Apup = ApRpu, fort >0, with uh(O) = Pju.

By Duhamel’s principle
t
un () = En(t) Pau + / En(t — 5) ApRyuds = En(t)Pyu+ (1— En(t)) Rau.
0

Thus up(t) — Ryu = Ex(t)(Pyu— Ryu). By Lemma 3.2, ||Ep(t)[|., < Ct—me™Mt/2
so that

lun(t) = Rpullz, < Ct™™e 42| Pyu - Ryullr,, < §[|Pau — Raullr..,
if ¢ is large enough. Hence, using the stability of P, in the maximum-norm,
lun(®)llze = 3l1RrullLe, — Cllullz.., fort>to> 0.

To show (7.2) it therefore now suffices to exhibit a family of functions u(x) = u(z; h)
such that

(7.3) [Bau(s k)| Lo 2 clalluls )] Lo

this is where the elliptic example of [13] enters. Let S = (0,1) x (0,1), with
the Laplace operator with homogeneous Dirichlet boundary conditions. Subdivide
S into triangles via a four-directional mesh (z-direction, y-direction, and +45°
directions), and take piecewise linear functions which obey the essential Dirichlet
boundary conditions. In [13] twice continuously differentiable functions u = u(z; h)
were constructed such that, with z = (%, %),

(7.4) (RSw)(3)| > Beul|ul..
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Here Rg is the Ritz projection for the Laplacian with homogeneous Dirichlet con-
ditions on 0S5, B > 0 is independent of A, and the fucntions u further satisfy
D%ul|ss = 0, for |a| < 2, and

(7.5) lullwz sy < Ch™Hlullp (s)-

(In fact, the Ritz projection R)u of the highly oscillatory function u(z; k) is essen-
tially the discrete Green’s function associated with z.)

It now remains to adapt this example to our coercive case with natural boundary
conditions, with 02 smooth. Let then 2 be a plane domain with smooth boundary
and S C €. The triangulations of © are such that they reduce to those described
above on S. We now extend the functions u(x;h) by zero to Q, they remain C?
functions, and take A = —A + 1, with natural Neumann boundary conditions
Ou/On = 0 on 0. Let Ry be the Ritz projection with respect to A. Then, with
the “discrete error” € = Rpu — Rju,

(7.6) / Ve-Vyxdx = / (u — Rpu)xdz, Vx € Sp(S).
Q Q
From (7.4) we have

(7.7) [Bru(Z)| 2 Blnllullzcs) — le(@)]-

Setting Sy = [%, %] X [i, %], and using in turn the discrete Sobolev inequality in two
space dimensions (cf. [23, Lemma 1.1]), the interior estimates of Nitsche-Schatz
[16] applied to (7.6), a standard duality estimate, and (7.5), we find that

e(@)| < C?|lell,s < CH(|lells + |lu — Ryulls)
< Oty (|Rhu — ull,0 + || Ryu — ull1,s) < Chey*ullw sy < C&2llullns)-

Thus from (7.7)

(Bhu)(@)| > (Bt — C4/*)lullpoio) > 38Ul Lo
for h small enough. Hence (7.3) follows and our claim is shown.
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