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Abstract

We have found earlier in [1] sufficient conditions for a linear block code to
be good or proper for error detection. These conditions are expressed in
terms of the weight distribution of the code. However, for codes with small
co-dimension or with small number of nonzero weights in their dual codes
the conditions would be technically easier to check if they were presented
in terms of the dual weight distribution. This alternative representation is
the purpose of the present paper.

Indez terms: error detecting code, dual code, probability of undetected
€rror.
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1 INTRODUCTION

A linear block code C' = [n, k, d; q] with symbols from a finite field of ¢ elements
GF(q) is a k-dimensional subspace of the n-dimensional vector space over GF(q),
with minimum Hamming distance d. When C is used for error detection only,
the decoder proceeds as follows. Let x € C be the codeword transmitted and let
y € GF(q)™ be the vector received. The error vector is then e =y —z. If y € C,
the decoder accepts it as the codeword sent. When y¢&C', the decoder makes
the correct decision for a transmission error. Clearly, all cases of an undetected
transmission error will be the cases y € C, but y # x, that is, e € C but e # 0.

Assume now that the transmission channel is a discrete channel without memory
with ¢ inputs and ¢ outputs and with symbol error probability . In such a
channel, every symbol will be correctly received with probability 1 — ¢ and will
be transformed to each of the (¢ — 1) other symbols with probability ¢/(¢ — 1).
As usual, we assume that 0 < ¢ < (¢ — 1)/g, which ensures that every symbol
will be more probably transmitted as itself than as some other fixed symbol.

Let {A;,a < i < n} be the weight distribution of the code C, that is, A; is the
number of codewords of weight 7 in C, and let C' be used for error detection on
the ¢g-nary symmetric channel. The probability that a certain vector e € C' of
weight 7 > 0 will occur as an error vector is obviously (¢/(¢g—1))*(1—¢)"*. Then
the probability P,4(C,¢) of an undetected transmission error must be

P,y(C,¢) = ZA( )1—5)“’ (1.1)

(see [2], p. 66).

In the worst case of symbol error probability e = (¢ — 1)/q, we get
Pua(C, "= Z Al =g (- 1) =g — g

Assume that P,4(C,¢) in (1.1) is computable. (This means that the weight
distribution of C' is known). How shall one decide whether C' is suitable for
error detection or not? Reasonable criteria based on comparing Py(C,¢) to
Pu(C, %) have been worked out in a series of papers (see for this the monograph
[3]). Namely, C'is good for error detection if for any ¢ € [0, (¢ — 1)/q],

Puy(Cye) < g (k) g

and C is proper for error detection if P,4(C,¢) increases in € € [0,(q — 1)/q].
Obviously, proper codes are also good codes of some regularity: the smaller
symbol error-probability is the better they perform in detecting errors.
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Introduce the notations

b
Ap=0, A4;=Y YA 0=1.n (1.2)
where m(; = m(m —1)...(m — i+ 1) for a positive integer m. Obviously,
A=Ay =... =A%, =0

The two theorems below give sufficient conditions for good and proper codes and
have been proved in [1].

Theorem 1. Iffor/=d,... ,n
g g > g4, (1.3)
then C' is good.

Theorem 2. Iffor/{=d+1,...n
Az Z QAZ—D (14)
then C' is proper.

In Section 2 we give equivalent forms of (1.3) and (1.4) in terms of the weight
distribution {B;,0 < ¢ < n} of the dual code C+. Then, in Section 4, we
show some examples where checking the equivalent forms turns to be easier than
checking (1.3) and (1.4) themselves.

2 CRITERIA FOR GOOD AND PROPER ER-
ROR DETECTING CODES VIA THEIR DU-
ALS

For a code C with dual weight distribution {B;,0 < ¢ < n} we introduce corre-
spondingly

%
B;=0, B;=Y 2B (=1,..n (2.1)
— n(i)
=1
LEMMA 1. For ¢ =0,1,...,n the following equalities hold true:
A +1 =g O FOBL 4 1], (2.2)
By +1=¢ ®9[4* ,+1]. (2.3)



Proof. Let £ =0. Then A; =0,
B;=) Bi=q"*-1
i=1

and obviously (2.2) is true. Now, let £ > 1. Consider

(=) -2 (05

-() IO/

., From the obvious equality

we get

and similarly

n—~{ .
n n—i
1+B_ )| = B,;. 2.
(" Juema= (", ") (2:5)
By Lemma 2.2 of [4],
‘L fn—i L n—i
- Az — ,—(n—k—£) - Bz

; (z = z) 1 Z:; ¢

which together with (2.4) and (2.5) imply (2.2) and correspondingly (2.3).

We are now in the position to formulate (1.3) and (1.4) in terms of B} s.
Theorem 1. If for{ =d,... ,n

q—k . q—(n—l—k—é) > q—(n—é) * (26)

n—4£>

then C' 1is good for error detection.



Proof. Using the Lemma we get

g — g > A
0
g — g g > A + 1]
0

¢ =g g > I [B 4 1]

0

qfﬁ _ qfn Z qf(nfk) *

1} n—~{

g* — k=0 > == px
The statement now follows from Theorem 1'.
Theorem 2. If for/=d+1,....,n

By > By g — ¢ (2.7)

then C' is proper for error detection.

Proof. Using again the Lemma we have

Ay > qA

0

Ap+1>4q[A; +1]—¢
g "B, + 1] g gg” "B 1] — g
g OB+ 1> B 1] — g
By ;> By g —q"

The statement now follows from Theorem 2'.

3 EXAMPLES

1. Consider the degenerate binary simplex code C+ with parameters
n=2%_—-1, dimC*+ =u, d=2%"142v!
and weight distribution

By=1, Bj=2"—1.
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(see [5, Ch.8, Ex. 1 of §7]).
Forany / =d+1,...,n
n—f<n—d=2"-1-2""1_2vt=90n"1_ovl_1c¢
and hence
ne1 =B, =0.
According to Theorem 2 the code C' is proper.
2. Consider the MacDonald codes C}(g) with parameters
[n = %,k,d:qk_l—q“_l, 1<u<k-—1]
and weight distribution
By=1, By=q*—q" ", Bpr=g"*—1

(see [6], [7])-

Let ¢ > 2. Then forany / =d+1,...,n

qk—l _ qu—l
qg—1

n—~<n-—d= <d

and
B, =B, ,=0.

If ¢ = 2, then n = 2d and the above equalities hold for £ = d + 2,... ,n. It is
easy to check that always

B < 24F

except for the [4, 3, 2] and [2, 2, 1] codes. Hence, the dual codes of the MacDonald
codes are proper.

3. For a cyclic redundancy check (CRC) code C of length n and with generator
polynomial g(z) the dimension of the dual code C* coincides with the degree r
of g(x). For all practically interesting CRC codes

n—r=degC >r.

Therefore, the use of Theorem 2 instead of Theorem 2’ will reduce the complexity
of computations necessary to test a CRC code for properness.
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4. Consider the binary codes G, with parameters [n,n — 12,8], 19 < n < 23.
It was shown in [8] that G,, is unique up to equivalence and that there exist
exactly two nonequivalent [18,6,8] codes Gig and G%s. All codes G,,, Gig and
G3, are shortened of the extended binary [24,12,8] Golay code. Their weight
distributions are listed bellow:

B[ Bs [Biz | B |

Gig |1 |46 |16 |1
G% |1 |45 |18

G |1 |78 [48 |1
Gy |1 [130] 120

Gor [ 1 [210]280 |21
Gy |1 |330]616 |77
Goz |1 | 506 | 1288 | 253

A straightforward application of Theorem 2 shows that the duals of all these
codes are proper.

References

1. R. Dodunekova and S. M. Dodunekov, Sufficient conditions for good and
proper error detecting codes, IEEE Trans. Inform. Theory vol. 43, No.
06, 2023-2026,1997.

2. S. Lin and D. J. Costello, Jr., Error Control Coding: Fundamentals and
Applications. Englewood Cliffs, NJ: Prentice-Hall, 1983.

3. T.Klgve and V. Korzhik, Error Detecting Codes. Boston: Kluwer Academic
Publishers, 1995.

4. F.J.MacWilliams, A theorem on the distribution of weights in a systematic
code, The Bell System Technical Journal, v. 42, 79-94, 1963.

5. F.J.MacWilliams and N.J.A.Sloane, The Theory of Error-Correcting Codes.
New York: North-Holland, 1977.

6. J.E.MacDonald, Design methods for maximum distance error-correcting
codes, IBM J. Res. Devel. v. 4, 43-57, 1960.



7. A.M.Patel, Maximum g-ary linear codes with large minimum distance,
IEEE Trans. Inf. Theory v. 21, No 1, 106-110, 1975.

8. S.M.Dodunekov, S.B.Encheva, On the uniqueness of some subcodes of the
binary extended Golay code, Prob. Inform. Transmission vol. 29, No 1,
38-43, 1993.



