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Abstract

We prove that the solution operators £;(¢, ) for the nonlinear wave
equations with supercritical nonlinearities are not Lipschitz mappings from
a subset of the finite-energy space (H1 N Lyy1) x Lo to HS for ¢ # 0, and
0<s<1,(n+1)/(1/2—-1/q¢") = 1. This is in contrast to the subcritical
case, where the corresponding operators are Lipschitz mappings ([3], [6]).
Here &(¢,1) = u(-,t), where u is a solution of

uli—o(z) = ¢(z),
Oruli=o(z) = ().

where n > 4,m > 0 and p > p* = (n+2)/(n — 2) in the supercritical case.

{ 02u — Agu+m?u+ [ulftu=0,t >0, z € R",

1 Introduction

We will in this paper discuss properties of the semilinear semilinear hyperbolic
equation

Ofu— Au+m?u+ |[ulf lu=0,t> 0, z € R", ulp= ¢, 0ulo= v, (1)

where m > 0,p > 1 (we will add more assumptions below) and the data ¢,
belong to (H' N L,11) x Ly = X,, the energy space for the nonlinear equation.
If m = 0, the space H' is replaced by the corresponding homogeneous space H'.
If m > 0, we denote the equation (1) by NLKG (the nonlinear Klein-Gordon
equation), and if m = 0, we denote it by NLWE (the nonlinear wave equation).
Notice that for any solution u the energy

1 1
E(u) = 3 /(|835u|2 + m?|ul? + |Oul?)dx + p? / lu|Ptdx



is uniformly bounded for such data by the energy of u(0). We will investigate the
solution operator of (1) for small values of ¢ > 0, in which case the behavior in
time of the kernel of the solution operator as a map between L,-spaces on Besov-
spaces is the same for the NLWE and NLKG. In order to have a less complicated
exposition, we will treat the case of the NLWE, i.e. the case mm = 0 in (1). The
results, with obvious modifications, work also for the NLKG, however.

Above H;’ denotes the homogeneous Sobolev space of order s, based on L, where
for p = 2 we usually drop the reference to the Ly-space, with norm

Jull, = ( / |f—1(fu<s)|§|8)<a:>|f’dx)’1’,

where F denotes the Fourier transform on R". Correspondingly, we define the
H; space as H; N L, with norm

[ullry = llull, + [lull -
We will investigate mappings
(Hy M Lpa) x Hy ™' 3 (6,9) = €0, ) = ult) € Hy (2)
where u is a solution of (1) with data ¢, 1.

We know that for data in X, the solution operator & of (1) is bounded on X,
but from the above result we will derive the main theorem of this paper:

Theorem 1. Let n > 4. If p is an odd integer, and p > Z—Jjg, then for t in a
neighborhood of t = 0 the solution operator & of the (NLWE) is not a Lipschitz
mapping at 0 from XN (H; X Ly) to Hy, where (n+ 1)(% — %) =1, q and ¢ are

dual exponents and 0 < s < 1.

Notice that X, is a subset of H;, X Ly if s = n%l This means that & is not
Lipschitz from X, N (H; X Ls) to Hj. The result in Theorem 1 holds also for
S Z _nLHa o
we map to Hj where 0 < s' < s, provided the space dimension is high enough
(n > 8 will do).

in which case Ly C H qs,. In the theorem, the same conclusion holds if

The theorem holds also for the nonlinear Klein-Gordon equation as remarked
above; that is, with an added mass term m?u, where the energy space is exactly
X. N (Ly x Ly). As a contrast to the results of Theorem 1, in the subcritical
case the corresponding map is Lipschitz, which e.g. as a consequence has the
uniqueness of weak solutions in that case (cf. [6], [3] where a simple proof of the
Lipschitz properties of the solution operator at ¢ = 0 from X, to L, is given).



In the linear case the map is Lipschitz on the energy space; that is the case

§=—-"

As far as the authors know, our theorem is one of the few results that distinguishes
the sub- and supercritical cases for the NLWE. The critical case p = Z—J_’g has
properties that resembles those in the subcritical case (cf. [7], [8], [15], [16], [17]).

The result of the present paper is based on a construction used by one of the
authors ([11]) in his thesis to prove that there is no improvement in the smoothing
properties of the solution operator in the supercritical case, compared to the
subcritical or linear cases. We have also been encouraged by a number of our
collegues to have the results of [11] more generally available.

The proofs of the main results will be carried out in some detail in the following
sections. For the convenience of the reader we have tried to give as complete and
self-contained an exposition as is reasonably possible. We have, however, for the
technical background on real interpolation and Besov spaces to refer the reader
to [2] and [4].

2 Basic lemmas and concepts

The proof of the main result is composed of a local existence result for smooth
solutions of (1) (Lemma 3), a decay result for smooth small solutions of (1)
(Lemma 4) and a nonlinear interpolation result due to Peetre [14]. The nonlinear
interpolation in our context will, however, be rather inspired by than directly
using Peetre’s result.

Below we formulate these lemmas, in the next section we discuss certain aspects
of real interpolation and (truncated) Besov spaces. We then supply a proof of
Lemma 4, and we then proceed to the proof of the main theorem in the last
section. We give some auxiliary constructions in an appendix.

Next, we shall prove an (H,, H ;,' )-version of the following well-known H*-existence
result (for a proof see [5] and [9]):

Lemma 1 (Local existence of smooth solutions (H*-version)). Let ¢ € H?,
n ~ ~

v € H*™! where s > 5 Then there ezists a positive number T = T(||d|| us, ||¢|| gs-1)

and a constant C' > 0 with the properties:

There is a unique solution
u € C*([0,7), Ly)

of (1) such that



i

1. %u(t) e C([0,T),H*™) fori=0,1,2

2. limyz [|u ()] gre—s = 400 if T < oo.

8. Let K =1+ [|@|lus + |¢lls-1. Then

T > cic—(p=1).
Let E(t)v denote the solution of LWE/LKG with data u|;—o= v, Oyu|—o= 0. We
have the following standard estimate, see [3], [12].

Lemma 2 ((H;,Hlf,')-decay estimates). Let s, € Rand1 <p<2<p <

oo, where 1 + L =1, and set § = % — L. Assume that
p D D

0<1—(n+1)d+s—5"
Then there exists a constant C > 0 such that

t172n6+s—s’||v||Hg’ 0<t<l,

r <
£l s < C{ (14 6)~=D3 (1 4 tm) S ||o] g, 1<t

. ! .
We can now give the local Hy, Hj-existence result:

Lemma 3 (Local existence of smooth solutions (H, H;f )-version). Let
¢ € Hy o € H;_l,s’ > n/p, and let 1/p+ 1/p' = 1 and s,s" restricted as in

Lemma 2. Then there exists a positive number T = T(||g/>||H5, %]l gz3-1) and a
constant C' with the properties.

There is a unique solution
u € CQ([Oa T), Hp')
of (1) such that

i

1. %U(t) € C([O,T),H;,fz) fori=0,1,2

2. limyz [lu(t)|| ;- = +oo if T < oo.
p/
3. Let K =1+ |[@|lug + [[¥]lgs-2- Then

(i) T > Ty = CKT s

(#0) [u@)ll gy < K for t €0, Eil



The proof is the same as in the H*-case, using now Lemma 2 to obtain

t
)l < o0y +C [ (6= 7)1 5wl

where ug is a solution of the linear equation with data ¢, ¢ (and has K=constant,
actually, then 7' = 00), where we can estimate

£ () = f@)llmz < Clllull gy + [0l + 1) lu — Ol
An application of the fixed-point theorem now completes the proof of Lemma 3.

Lemma 4 (Decay result for smooth solutions). Let p' > 2,s' > 0 and set

0= % — 1%. Assume that n > 4 and p > p* = Z—J_FQ Then for smooth, small and
compactly supported data there exists a global smooth solution u(t) of (1) and

constant C' = C(u,s") > 1 such that

1
o+ £)" (L4 tm) 0 < lu(®) ]| < CL+8) (L4 tm) =7,

for allt > 0.

The proof of the next result is implicit in the arguments in Section 5.

Proposition 1 ( Mapping results for the solution operator of NLWE).
Let 0<TeR and 1 < p <2, ;}—i—z%:l andsetdz%—ﬁ. Moreover let s > 1
and s' > 0. Assume that n > 4 and that p is an odd integer > p* = Z—f; Then

there exists data (¢,1) € (HS N Lyy1) X Hi™ such that for 0 <t < T, (e, ) is
not bounded in H;,' , provided that

p’((n—l)(S—pZTl—s')+p(p%1+s)<0

(n—1)d<1

3 Besov spaces and real interpolation

In this section we will shortly remind us of the basic definitions and properties of
real interpolation and Besov spaces. We will then introduce a scale of semi-norms
on Besov space which we, for the sake of simplicity, call truncated Besovspaces.
These truncated Besov-spaces will come up naturally in our problems, as shown
in Section 5 below. The basic references are [1], [2] and [4], to which we refer the
reader for additional information.



Let C; C Cy be a Banach space couple. Then the K-functional K (¢, ¢; Cy, C1) is
defined by

K (t, ¢;Co, C1) = inf{{|dollc, + tl[d1llcys @ = do + b1, 8 € Ci},
where ¢ € C;. We define Cy, = (Co, C1)g,4 as the completion of C; in the norm

dt

HM@&=(A &*K@¢xhco)tym

It Cy = Hy',Co = Hp°, 51 > 8o, then Cy, defines the Besov space B¢, where

= (1 —0)so + 0s;. By the definition, the family of Besov spaces have a number
of natural convexity and inclusion properties, for which we refer the reader to the
already given basic references, and in particular to [2].

We will need a set of truncated integrals of K-functionals, defined by Banach
couples based on H-spaces (including H*-spaces). The properties of these will,
in many respects, be parallel to those of the ordinary Besov spaces.

Let t* < 1, and define the Cp,(t*)-norm (seminorm) by
© A
9llco,r = ( [ ('Kt 60,0005 )
t*
In case Cy, = B, we use the obvious notation Bj?(¢*). In our applications
¢ = ¢(7) will depend on a parameter 7, and t* = t*(7) — 0 as 7 — 0.
We will need some simple inclusions which follow (as in the case t* = 0) by

convexity:

S, * 8,2 (4%
By(t*) D By*(t*), ¢ > 2.

Next, the Besov spaces can be described in terms of integrals of moduli of conti-
nuity. A similar result holds for the truncated Besov-norms B,?(t*)

Lemma 5. Assume 0 < s < sy < §', where s < §' are non-integers. Let 6 €
(0,1) be defined by so = (1 — 0)s + 05'. Moreover let [so] denote the integer
part of so. Let r be an integer > 1 and let w ( f) denote the r-th modulus of
continuity of f in Ly, i.e.

60 =sup 132 (1) 4+ Rl

hI<t %o

Then there is a constant C > 0 such that

o0 . d
( / (t‘aK(t,f;H;,H;))q%> >

00 dt\ e
> —so0+[so] (r) D% q
_C<l (t Y Wi, ﬂ);)

: la/=[s0]

Q=

6



for2<p=q<ocoand0<t"<1.

Let us remind us of the following well-known interpolation result: Let H, denote

the (usual) Sobolev spaces, and Hg the corresponding homogeneous spaces. Then
forl<p<ooands<sg

‘s 178’ _ p(1-8)s+0s'=s*q
(Hzn Hp )9,4 = Bp

where B,? has the intrinsic norm (among many)

e = 3 ([ @ ufe, 02 ®

|a|=]s]

where [s] = sup{m € Z : m < s} and r > 1. Here B;’q denotes the standard
homogeneous Besov space.

Thus our lemma establishes an estimate of the form (3) also for our truncated
Besov spaces.

In order to prove our lemma, we need some estimates of the K-functional. We
will use the following estimates, assuming that 0 < s < s’ <1 (the modification
for general s',s will be obvious). We let p > 2. The following estimate and
formula are well known.

K(t, f, Ly, H") > Cw™ (™, f), m € Z,. (4)
(See [1], p.339)

1/A
t do

e . 1/p
K, f;Hy,Hy) ~ </0 (O'OOK(O',f;Lp,Hj))p—> +

g
00 . 1/p
i [ e K )
t

1/X g

(5)

where 0y = s/2, 0, = s'/2 and A = 0; — 6y > 0. This follows from Holmstedt’s
iteration formula (see [2], p. 52), since HS = (L,, H2)g,, and HS' = (L,, H2)g, ,-

Now (4) and (5) give
$1/A 1/p
ke sty = ([ @ e )
0 o
o0 1/p
i [ mepwanr?) L

1/

7



The truncated Besov space norm on B;°P(t*) is given by

(/:(t_aK(t,f B HY ) it) 1p |

where 0 = 2=2. So, let us first compute

T

In order to do this, we will use Marchaud’s inequality (see [1] p.333).
Let 0< k<7, k,r € Z,. Then

219*7"&47") (ta f) S w;l()k) (ta .f) S Ctk/t - u

Let k = 1,7 = 2 and change variables u — /0 in the right-hand side integral in
(7). Then

(2) 1/2
(tf)<Ct/ Md_u_c / #d_a (8)

t U u o

Let us first estimate (6) for p = 1 and p = oo, while keeping wS? fixed, and then
obtain a general estimate by an ordinary interpolation

oo do 0o w( )( 1/2 f) do
01, (2)(1/2 9O 1/2—6, “p ao
/t o wp (U af) - /tl/A ol/2

1/ g g

> C(t1/>\)—1/2t(§—91)/>\w1()1)(t1/2>\’ f) _

= Ct_(l/A)elw](Jl)(tl/”‘,f) > C’ = (2) (tl/ZA )

where we used (8) and (7), and the fact that 1/2 — 6, > 0.
Thus (6) is (for p = 1) estimated from below by

* t (t*)1/2)\ P t



Since)\=01 90, 01—3/2 90—8/2&Dd0—
of (6) in the case of p=1 (A € (0,1/2) and ¢* < 1)

o0 dt
—S 2
C/t t 0wz(,)(t,f)7

*

In case p = oo, we estimate (6) as follows:

sup[t~%t sup (u_elwl(,z) (W', )] >
>t uZtl/)\

>+

>C sup (PP, f)) > sup(tT 0w (¢, f))
tZ(t*)1/2’\ t>t*

and so the interpolation gives a lower bound of (6) for general p, 1 < p < o0, as

([ e ny®)” )

and hence (9) is also a lower bound for the semi-norm in B>°*(t*). In addition,
using (7) and Hardy’s inequality, we may (as in the case t* = 0) replace w,(f) in

(9) with w,(,l), and the lemma is proved.

4 Proof of Lemma 4

Our proof differs slightly from that of Kumlin [11], which is modelled on a method
due to Klainerman/Ponce [12], but differs substantially from an earlier proof of
von Wahl [18].

We first prove the existence of smooth global solutions of the (NLWE) for small
and smooth data. As a consequence we obtain estimates for the rate of decay
of such solutions in H;—norms as t — o0o. We then estimate the decay of the
contribution to the solution by the nonlinear term, and show that for the values
of p we consider, this contribution decays faster than the solution of the linear
wave equation. Thus the maximal rate of decay of the nonlinear and linear wave
equations are the same in the supercritical case. As the asymptotic behaviour
of the solution of the linear wave equation is well known, we are in position to
prove the decay estimate in Lemma 4 thus completing the proof of Lemma 4.

Let u and ug be solutions of the nonlinear and linear wave equations, respectively,
with the same initial data. Assume that this data belong to H® x H* !, 5 large,

9



§ € N, with small norm in this space, which will be made precise below. Then u
and wug exist locally in ¢, see Lemma 1, belong to H® and

u(t) = uolt) / E(t — ) f(u(r))dr, (10)

where E(t)¢ denotes the solution of the linear wave equation with data v =
0,0,v = ¢. From the energy estimates for the linear wave equation we get

[l s < [luo() s +/O 1S (w(m) | jys-r -

Hence the Holder inequality together with the Gagliardo-Nirenberg inequality
applied to f(u) = |ul’~'u with p > 242 an odd integer yields

0
1F )| rs=s < [l el e
where

= ——,r=2——. (11)

With ||u||%, < 1+ ||u||zs we obtain

t t
-6 —0
lu(®)] s < ||u0(t)||Hs-+C/0 lu(r)IIZ, dT+C/0 lu(m)IL, Nu(m)l| gsdr
and hence by Gronwall’s inequality,

[l s < Clluo(®)llizs + CLo(2)) exp(Cly(t))

where
ity = [ Il (12)
Thus
sgp Iy(t) < o0 (13)
will imply that
sup [|u ()] = < o0 (14)

since

sup [|uo () |z < Clluo(0)ll s 190 (0)]] srs-1) < 00,

10



where C(0,0) = 0 and C is a continuous function at the origin. See Lemma 1.
This proves, provided (13) is satisfied, the existence of global smooth solutions of
the NLWE in the case of small, smooth data. Notice that we have essentially only
used Ly-estimates so far. In order to prove (13) and at the same time prove the
Ly-decay estimates, we will turn to the use of the (H,, H;,' )-estimates in Lemma
2.

From lemma 1 we conclude that

t
IIU(t)IIH;; < CIIUo(t)IIH;; + / (t = 7)1+ m(t — 1) f (w(r)) | g .
0
Here we assume that

n+1)0<1+s—45, (n—-1d<1. (15)

The norms are non-homogeneous, in contrast to the discussion above, Let [s] =
max{k € N :s > k}. A straightforward but tedious calculation with the Holder
and Gagliardo-Nirenberg inequalities yields

I g < W@ g + 1 @) gver < ClllullGgs, + Nl s ) ullz”

where
1 _
o=l g 2l <si=L"1  pe(). (16)
Y Y » 3

Here we assume

1 1 !

—>——250, i>p, (17)

TP n

which implies that H;’,' C Lz. We conclude that

1 (@)l < CllullGs, + lullGs, )l

a4 H#2 e,
By similar calculations it follows that
1 @)z, < Cllullfllully.
P
provided
n(1+2(1 —n)d) + 27 1 n—2
<p< —[1 - : 18
Yo _p_n+p(1%_%)[ ] (18)

Note that if (n — 1)d < 1 but close to 1, we have to let n > 4, in which case any

odd integer p > Z—i’g will satisfy this inequality for n close to 1. If n = 3 this

11



. . . 14+2(1— 2 . . .
oses a restriction on  since MLH2U=MIF21 {o0hmes arbitrarily large if n = 3
P n—20mn Y

and (n — 1)0 approaches 1. The estimates above yield

1-X 1—A _
£ @)y < CUalSE D al B + a2l 22 + flall ) llulo7

H1 HS3 H! Hs;’
P
where
5—31 §_§2 N
A = — >A25_7>0,81>1. (19)
s—1 §—1

If we let € = ||u(0)]| go + [[u(0)|| ;2 < 1, we obtain

t
[u@llzs < Nuo®)llgy + e /O (t— )" (1 + Ig(7)) exp(CIo(7)) u(r)1, . dr
where € = €(¢g) is a non-decreasing function with €(0) = 0 and x > 0. Now, set

m(t) = sup [|u(7)l| 7 (1 + 7))

T7<t

and define my(¢) in the same way in terms of ug instead of u. Moreover we assume
that

| —=

s
_ES IEl p,Sr (20)

<

L
v
and
(p—1Dn-1)¥>1 (21)
which implies
Iy(t) < CmP(t)

and we obtain

m(t) < mo(t) + € /Ot(t =) (14 7) DD (1 4 m(7)*) exp(Crm(r))dr,

for some ', k" > 0. We conclude that for some p > 0
m(t) < mp(t) + eC(2 + m(t)") exp(Cm(t)"). (22)
But now

mo(t) < €(e) <1,

12



where €(¢y) has the same properties as €(e€g) above. See [11]. Hence since m(0)
is small, any m(t) satisfying (22) will be bounded by a constant (depending on
€0, k' and k"). Thus

()] g < C(1 + £)~(D3

and with (20) we have the same estimate for ||u(t)||.. Consequently we obtain
t
Iy(t) < C’/ (14 7)~=0C="Dgr < C < oo,
0

by our choice assuming that (n — 1)d < 1 is close enough to 1.

This not only proves the boundedness of H® for 1 < s < 5, but also that for given
s', p' satisfying (11), (15), (16), (17), (20), (21)

lu(@ll gy < OO+~ (23)

for (n — 1)0 < 1. In addition the proof gives that

I B = ) u)drlg = o1 +1) ¢ 9), (24)

with the same choice of parameters.

Now (23) implies the existence of a solution u. of the linear wave equation such
that

u(t) = uy(t) + /tOOE(t — 1) f(u(r))dr.

By well known asymptotic properties of solutions to the linear wave equation

s ()| g > C(1L 4+~ C > 0.
pl

See [11]. Thus by (24) the difference between u and u, behaves as o((1+1)~("~17?)
ast — oo in H;,', and we obtain

lu@llzsy 2 lJur Ol = ut) = ws (@l 7 = €O +1)7 T (25)

This completes the proof of Lemma 2 for the particular choice of parameters

', p' above. Moreover since (23) and (24) are valid with s’ replaced by s” for 0 <

s" < s, due to the embedding H;," C H;,', (25) follows for ||u(t)|| 7« replaced by
pl

" > s' the corresponding estimate from below is concluded

||u(t)|| ;7. Finally for s
pl
from the interpolation inequality ||u(t)|| o < (|u(®)|| gs#)“ - (Ju(@)|| o )' ', where
v’ o’ 4
s'=¢§"w+¢"(1 —w), and (25). The proof is completed.
Let us remark that from the above construction it follows that the constant C' in
(25) is bounded from below by a constant times the Hj-norm of the data.

13



5 Proof of Theorem 1
Let Ag = X! N H and A, = X! N H, where X! = H} N L, and let By =
H;,, B, = H'n H;;,' Consider ¢ € Agy = (Ag, A1)gy for 0 <0 <1,1<¢ <00
being fixed for time being. For each ¢ > 0 there are ¢} € Ay, ¢! € A; such that

¢ = ¢6 + (bi,
K (t, ¢; Ao, A1) ~ 1165l a0 + tl 6111 41

where K is the K-functional associated with the Banach space couple A; C Ap.
We observe that from this and the fact that Ay, C Ag

1 -
16314, < CZK (L, 6 Ao, A1) < Cllllaget”™,

where (' is independent of £ and ¢. Now let T' denote the mapping ¢ — T¢ =
{uy(7)}rer, where uy(7) denotes the solution of NLWE with data (u, dyu)|o=
(¢,0) at time 7 where 7 is close to 0. We note that the statement of existence
of a uniquely defined solution for finite energy data is part of the hypothesis of
Theorem 1. More precisely we assume that 7" is uniformly Lipschitz at 7 = 0, i.e.

1Té(T) = To(7)l[y < Cll¢ = ¥la0,

for 7 € (—n,n) some n > 0, and C independent of 7, ¢ and . Moreover from the
local existence result Lemma 3, and the corresponding L,-estimates, we conclude
that for s' > % and 0y = 1/2 —1/¢', we have that ug (1) exists as a Hj,'—valued
function for

T <Ol E, p=1—(n—1)5,.

and in particular, for

(p=1) ezl (p-1(1-9)
I

7 < C(lla, 2 = Cllaly, ¢

= 7"(), (26)
where C is a fixed numerical constant.
Furthermore Lemma 3 implies that

luge (T)llB, < Cllgt ]l

for |7] < 37*.

Consider K (t,uy(7); By, B1). We immediately observe that from the hypothesis
of the theorem we have

K(t, ug(7); Bo, Br) < |ug(T) = ugy (7)l| 3o + tllugs (7)]]5:-

14



Here the right-hand side exists for [7| < 17*. Hence for |7| < 17*(¢), t > 0 we
obtain

K(t: U¢(7—), BO, Bl) S CK(t: ¢a AOa Al)

Now set

1
r

lus(T)I5,,, ) = ( /too(tﬂK(t, ue(7); Bo, By))? %) | (27)

*

where t* denotes the inverse function of 7* in (26), i.e.,

R 1 u
* = Cllgll3,}, T,
This yields

96(7") = sup [[u(7)B, () < CliDlla,, < oo
27<*

The contradiction that will eventually falsify the Lipschitz continuity of the so-
lution operator at 7 = 0 follows by supplying a function ¢ € Ay, such that

sup [lug(7)||B, ,(r) = 00
2r<*

We next construct data ¢ based on scaling and dilation. Let ® € C§°, supp ® C
{|z| < 1}, and let us for a given sequence R;, R; | 0, and given 7 > 1 choose a
sequence y; € R" such that for some € > 0

(a) infiz{ly; —yel — Rj — R} > 7
(b) inf#k |yj — yk| > 2+ 2RLJ + 24+ RLJ
Let u; be the solution of the NLWE with data

i [T Yi
¢J:RJP 1@( R >’ wj:o,
7

The finite speed of propagation for solutions of the NLWE implies with (a) that

U supp w;(,6) () U supp wel-t) =0, j#k.

[ti<r [t|<7

and hence uy = ) u; is a solution of the NLWE for |¢| < 7, which by standard
results is unique (see [10]). Let ¢ = )" ¢,.

15



We have for s > 0

||¢j||Lp+1 ~ Rj2
—__2_ _q4n
Ioll g ~ R, 7T

2

151l ~ B; ™

s
—5+2
+P

and thus
¢ € HN Hy N Ly
if
ZR;<OO (28)
form:min{—p%l+ﬁ,_ﬁ_1+%’ _p%l_g_{_% _

Moreover, provided (28) is valid, there is a C < oo such that

max(||@lL,is [6llay: 9]lug) < C < oo,
where C is independent of {y;}%2,.

We will prove that © = ug with our choice of the parameters, and the suitable
choice of R;’s will be such that g,(7) is not uniformly bounded as 7 — 0*. This
in turn will enable us to draw the conclusions stated in Theorem 1.

Let s* = (1 —6)s + 6s'.

Now, by the same argument used to prove that g,(7) was bounded in the case of
Lipschitz continuity in H o+ also proves that u; € H ;,*. Actually, this is an direct
application of Lemma 3. In this case global existence in time is evident, and also
Lipschitz continuity in H;,. In addition, by the (non-linear) energy inequality,
uj € Hg, for some € > 0, and 2 < ¢’(< p+1). In particular, u; € H(Ef*], where we
may assume that 1 < [s*] < s*. If [s*] = s*, we should replace [s*] with s* — 1,
and the first order differences below with the second order differences. The main
point is that the non-zero coupling constant and the supercritical value of p,

allows for the conclusion that u; € H(Ef*] uniformly (in j). This will be crucial in
our estimates from below of wé,l )(t, 0" ), and so of 9s(7).

Next, with this choice of s*,

1
ol

o0 . ., dt\ ¢
([ ww . m)p)

*

- * 5* —S* a[s*] Idt q
> o ([T 2 )
7j=1

&rg-s* ]

(29)

2~
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uniformly for 0 < ¢* <1 by Lemma 5.

We note that

5*

N
‘Za 7 (i (@ + R, 7) = uy(z, 7)) "dr =

j=1 x1
[

Z {2+ M / 8 sSly T+h h T oy 1,
= S R i - (— . —)|9 d =

-
|h|<t J B(0;min;;{|y;—y;j|—2—27—2t})

supZR i tle LEREY

|hl<t 52

a[s h T 8[3*]/0 T ;
X |—* T+ —,—= ——*(;U,_)|q dz,
/B(O;...-Rj) ozl] ( R; Rj) 01 R,

where v is the solution of NLWE with data v|op= ® and 0,v|o= 0. Notice that we
only need to consider the case ¢ < 1 in the following.

Now, set
A(n,, A) = / 8@ + n,7) — 0 Wo(z, 7) |7 da
A

where n € R",7 € R, and A C R".

With this notation and the estimate above

1 * !
(153 08 g (7)) >

~{L+setn [ h T
> R e M —=—,—.,B
sup R'R; )

where B = B(0,min ix; {|ly; — y;| —2 — 25 — 2t}R;). Since t < 1, we have
5L,j<N

M7 B ) 2 X ;’ e B0.0)

where p; = infi;{|y; — y;| — 2 — 27 — 2t}, and hence p;R; > € for £ <1 by (b).

Since 8Li*]uj € Ly independent of our choice of y;, we get that there is a ¢; > 0
independent of R; such that

(1 =c1)A(h,7,B(0,¢/R;)) > ciA(h, 7,R™ \ B(0,¢/R;)).

for7 <1, |h| <1
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Let k = —{2/(p— 1) + [s*]}¢'. Then

N
6305 i )

win, BT
>CZR * A(ﬁaﬁaB(an))>
j=1 ] ]
—KTNn h T n
20 BN R
j=1

It remains to estimate \(Z- g R ,
effect we introduce the notatlon

R") from below in terms of R;, h and 7. To this

Opv(z,7) =v(x + h,7) —v(,T).

We will in Appendix 1 below show how to construct data ® such that
||8h<I>||Hg > C'min(1, h).
By the remark in the end of the proof of Lemma 3, we then obtain
||ah1)(-,T)||H;’I > C'min(1, |h|) - min(1,7)"®"V% 7 >0

where §y = 5 — ; > 0. The calculations above yield

A, 7) = Mn, 7, R*) > C(min(1, [p]) min(1, 7)=®=D%)7 7> 0.

Using this estimate, we obtain

N
o 75* S* 8[8*] Idt
/t* (¢ ]wé’l)(za (7)) 72

j=1 013
o +[5 ]}q +n h/ T e * Idt
20/ sup SR, A( , )t{ s+ 9 20
b |h<tZ R; R, t (30)
n © t * * q’ dt

From Lemma 3 it follows that
t*(7) ~ TG (== D3) (31)

and hence for 7 > 0 small, 7 < t*(7) provided the exponent of 7 is < 1.

18



For fixed N we chose 7 so small such that
Ry >Ry >...>Ry>2t"(r) > 7 >0.

Then the right-hand side of (30) can be estimated from below by

CEN:R,‘{%Iﬂs*]}q’M /Rj+/oo (min(1, =) min(1, )~ tn-Day g+ L _
j:1 J 1 Rj ’ R] ’ R t

J

N *11 o/ R;
= CZR]_—{,%W Ita +n{/ ! ijqlt(lfs*+[s*])q,fldt+

j=1 t*

+/ H(=s"+s e’ 1dt}R”15"12
R;

]

> CZR p= 1+[ ‘1t _HL{R [ (1=s"+[s g (t*)(l—s*+[s*])q']+
j=1
n— ' s* n+(n—1)6,
R§s+ q}R 15q>CZR{ i +s*}d +nt+(n—1)d, ¢
7j=1

Here we have C' = C(7).

In view of (28) the data ¢ satisfies
$=> ¢;€H NHyN Ly, $=0€H, " NL, (32)
provided

q(p%1 + s*) <n
(33)
2(p%1 + 1) <n

for suitable choice of R;. Note that the last inequality in (33) is equivalent to

n—+ 2
n—2

p >

In order to estimate g,(7), we note that

which follows from (27) and (31). We find that (33) holds, and in the same time
we can choose R; so that the sum in the estimate from below of (30) tends to
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infinity with NV, provided
—q'(% +5*) +¢(n—1)8y < min (— q(ﬁ +5*),—2(-% + 1))
(n—1)5y <1 (34)
n+2

p> 2

n—2

Can (34) be satisfied? Since d,(n + 1) = 1, the first inequality in (34) and in
(33) are satisfied if

-1 2 2
n L S . (35)
2¢  p-1 g p—1
This is certainly satisfied if p is an odd integer larger than Z—’_Lg This also gives

the value of 0, by

s* —s

0= (36)

s —s
We can satisfy (31) with exponent < 1, provided ¢’ satisfies (n + 1)y =1, if

(1=0)(p=1)> 1= (0 =15 = ——

and since p—1 is at least 2 and (1 —6) has a minimum value of 5';—,5 for0 < s <1,
we get by using (36) and that s’ > & that (31) holds with exponent < 1, for

7

2
(n+2)(p-1)
which can easily be verified to be consistent with s* satisfying (35) for n > 4,
with (n + 1),y = 1 and %—l— i =1.

sF<s'(1—

)

If s is not the same in the definition of By and Ay, this reflects in the expression
for 0, which poses restrictions on # which for differences in the s-values close to
1 poses lower bounds on s and ', i.e., on the space dimension in Lemma 1.
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Appendix 1

We now give the construction of the data ® used in our proof of the main theorem.

Opv satisfies the equation

A

(%)2(%1) — AOpv + ( Y (-4 h, ) ((-,)) o =0

<
Il
)

with initial data

{ 8h’l)|t:0: 8h<I>
%ah’l)h:(): 0.

A crucial estimate is that of ||0,®||#s from below in terms of |h|, where s ¢ N.
Choose ® € C§°(R™) such that
s|+2
1) ®(x) = Gt o, x € B(0,3)
2) supp ® C B(0;1).

Hence we get ai[[i]h ®(z) = 322 for z € B(0, 1) and in particular
ov! 1 2 2 2, .2
Anahﬁ@(x) = 5((3)1 + hl + 7]1) — ($1 =+ 771) — (.Tl + hl) + .’L‘l) =
Ty
= him

for z,z+h,z+n,z+h+n € B(0,1). Assume h = (hy,0,...,0) so that |hi| = |h].
Consider the cases:

a) |h| small, e.g. |h| < %
b) |h| large, e.g. |h| > 9

Case a: For 0 <t < % we have

[s]
e LR
xr

1

and for 8 < ¢t we have

olsl
(wp(ahﬁfb(-);t))” 2 |hfP.

1

Hence we have

[s]
(@p(On B Z P min(1, ), ¢ >0
xr

1

22



Case b: For t > 0 we have

[s]
(@ (O ®(); ) 2 min(L, ), ¢ > 0.
ox;

We conclude that for a general h we obtain

olsl
wp(Oh—3

ax[s]q)(-); t) 2 min(1, |h|) min(1,¢), ¢>0.
1

This gives the estimate

olsl dt

(0l = [ (6 p(rr (0P
P 0 0x; t

> (min(1, |h|))p/ (4= min(l,t))p% > C'min(1, |B])7.
0
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