On the stationary Povzner equation in IR".

L. Arkeryd * & A. Nouri

Abstract. The stationary Povzner equation is considered in a bounded
and strictly convex domain of IR". Existence theorems are established for a
class of collision kernels in the case of hard forces and for diffuse reflection
boundary conditions. Generalizations with respect to the collision kernel
and boundary conditions are discussed.

1 Introduction.

We consider the stationary Povzner equation for a strictly convex bounded,
piecewise C' domain  in R",

v Vol (2,0) = QUf, f)(@,v), £ €Q, ve R" (1.1)

The details of the collision operator Q(f, f) will be introduced below. The
boundary conditions are of diffuse reflection type

F(z,0) = M(z,0) / 1o -n(z) | f(,o)do, (1.2)

v’ -n(z)<0
z €0, wv-n(z)>0.

Here n(x) denotes the inward normal to the boundary. We shall restrict the
discussion to the IR® case with no loss in generality methodwise. M is a
given normalized half-space Maxwellian

M(z,0) = 5 e

DU T arm2(0)¢

such that % is a measurable function on 0f2, uniformly bounded away from
0 and oo.
Let us first recall that in the case of the time-dependent Povzner equation

(ft"’U'VJ:f)(tawav) :Q(faf)(tamav)a tER-H CCEQ’ UERSa
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the Cauchy problem has been studied by a number of authors. Existence
and uniqueness results for global solutions in the whole space (i.e. Q = IR?)
have been given by Morgenstern [28] and Povzner [31]. Existence results for
the Povzner equation in a bounded domain with periodic boundary condi-
tions have been proven by Lachowicz [23]. The existence of non-negative L*
solutions to the Povzner equation in a bounded domain with a general type
of boundary conditions (including the maxwellian diffuse reflection case) has
been established by Broman [8].

In this paper we concentrate on solutions to the stationary Povzner prob-
lem. Stationary solutions are of interest as candidates for the time asymp-
totics of evolutionary solutions. They also appear naturally in the reso-
lution of boundary layer problems, when studying hydrodynamical limits
of time dependent solutions. However, they cannot be obtained by the
techniques so far used in the time-dependent case, since for the latter nat-
ural bounds on mass, energy and entropy provide the initial mathematical
framework, whereas in the stationary case only bounds on mass, energy and
entropy flows through the boundary are easily available. Instead the crucial
steps in our proofs are based on estimates involving the entropy dissipation
term. That requires a more delicate approximation approach than for time-
dependent and earlier stationary kinetic problems.

Similar difficulties are faced when dealing with the stationary Boltzmann
equation. In the slab case mathematical results on boundary value prob-
lems with large given indata are presented in a measure setting in [1], [11]
and in an L! setting in [3], [4]. For the nonlinear Boltzmann equation the
long time behaviour under constant temperature, diffuse reflection bound-
ary conditions was treated in [5]. In all these results except [11] and [4], the
control of the mass was obtained by introducing truncations in the collision
operator for small velocities. In this paper, we do not introduce such trun-
cations, but control the mass with the energy and the entropy production
term.

We should also point out that a number of results are known concerning the
non-linear stationary Boltzmann equation close to equilibrium, and solutions
of the corresponding linearized equation. There more general approaches
can be utilized. So e.g. in an IR" setting the solvability of boundary value
problems for the Boltzmann equation in situations close to equilibrium is
studied in [18], [19] and [20] in bounded domains, and for exterior regions
in [34]. Stationary problems in small domains for the non-linear Boltzmann
equation are studied in [21], [30]. The unique solvability of internal sta-
tionary problems for the Boltzmann equation at large Knudsen numbers



is established in [27]. Existence and uniqueness of stationary solutions of
the linearized Boltzmann equation in a bounded domain is discussed in [26],
and for the linear Boltzmann equation uniqueness in [32], [33], and existence
in [12] and others. A classification of well-posed boundary value problems
for the linearized Boltzmann equation is given in [16]. For discrete velocity
models, in particular the Broadwell model, there are a number of stationary
results in two dimensions, among them [6], [7], [13], [14], [15].

Let us next recall a few well known facts from the kinetic theory of neutral
gases, and some details about the collision term in the Povzner equation.
The gas is modelled as a density at position z and velocity v, and repre-
sented by a nonnegative function f(z,v). In a number of different kinetic
equations the evolution of f is driven by collisions, and the rate of change is
defined through the collision term (). In the Boltzmann equation, one of the
assumptions in the derivation of the Boltzmann collision operator is that
only pair collisions are significant and that each separate collision between
two molecules occurs at one point in space. Povzner [31] proposed a mod-
ified Boltzmann collision operator, considering a ’smearing’ process for the
pair collisions. This modified Povzner collision operator looks as follows,

QUNGw) = [ (1= 1£)B(o — yv — v.)dydv.,

Qx IR3

where B is the collision kernel and f = f(z,v), f« = f(y,vs), f' = f(z,v'),
fi = f(y,v.). Here the post-collisional velocities v' and v, are linear func-
tions of the pre-collisional velocities according to

v' = (I —a(z —y))v +aly — 2)vs, v} = a(z —y)v + (I - aly — 2))vs,
where a is a 3 x 3 matrix and I the 3 x 3 identity matrix. These last relations
imply the conservation of momentum v’ +v! = v+wv,. They also imply that
simultaneously interchanging x with y and v with v, gives an exchange
between v’ and v.. The conservation of energy v?+ ’U;Q = v2 4 02 yields
¢,
that a(¢) = a(—¢) and a*(¢) = a(¢). In this paper we consider a({) = %,
so that
T—Yy T—Y
lz—yllz—yl’
T—y T—Y
. . (1.3)
lz—y[lz—y]

vV =v— (v—u,)

vl = v, + (v —vy)

That implies in particular that head-on collisions (when z — y and v, — v
are parallel) exchange (z,v), (y,v) into (z,v), (y,v).



The Povzner equation was first introduced for purely mathematical reasons
and usually ignored by the physicists. However, when considering the Grad
limit of a system of N interacting ’soft spheres’, Cercignani [10] obtained
a hierarchy of equations factorized by a Povzner-like equation. Lachowicz
and Pulvirenti [24] considered a system of N spheres colliding at a stochas-
tic distance. They proved that when N tends to infinity, the one-particle
distribution function converges to a local Maxwellian with density, velocity
and temperature satisfying the Euler equations. At an intermediate step
the Povzner equation appears.

Let us conclude this introduction by detailing our results and methods of
proofs. Later in this section a central existence theorem is stated for the sta-
tionary Povzner equation in the case of maxwellian diffuse reflection bound-
ary conditions for the kernel B = 1. It is then established that the stationary
Povzner problem is equivalent to another kinetic problem with collision fre-
quency equal to unity via a transform of the space variables and involving
the mass, here called the sm-transform. The transform was first introduced
into radiative transfer and boundary layer studies, later in the mid 1950ies
by M. Krook [22] into gas kinetic for the BGK equation, and recently used
by C. Cercignani [11] for measure solutions to the Boltzmann equation in a
slab. The second section is devoted to a crucial construction of approximated
solutions to the transformed problem with a modified asymmetric collision
operator in the case of maxwellian diffuse reflection boundary conditions.
The asymmetry introduced in the collision operator allows monotonicity ar-
guments which lead to uniqueness of the approximate solutions. Moreover,
we prove pointwise bounds from below and from above of the mass flow
through the boundary by taking into account the diffuse reflection type of
the boundary conditions. In the third section the symmetry of the collision
operator is reintroduced. Weak compactness in L!(Q x IR?) is obtained by
controlling the approximate solutions inside Q x IR? by their values at the
outgoing boundary. There the transformed situation is being utilized, en-
abling a pointwise boundedness of the collision frequency. In the last section
the passage to the limit for a solution of the transformed problem is per-
formed. The mass of the transformed approximations is controlled by using
the bounds of the energy and the entropy dissipation term. The technique
of obtaining compactness directly from the entropy dissipation term without
involving the entropy property was to our knowledge first introduced in [3]
for a slab problem, and is here extended to a higher dimensional context.
Towards the end of Section 4, generalizations from B = 1 to hard forces are
also discussed in the main result of the paper, Theorem 4.8. With minor



changes, but to the price of a few additional arguments the proof can be car-
ried through for the original equation without introducing the sm-transform
(cf [4] for such an alternative proof). The approach of this paper can also
be used for given indata problems (cf [4]) in both the hard and the soft force
cases.

Definition 1.1 f is a weak solution to the stationary Povzner equations
(1.1-2) if f belongs to L*(Q2 x IR®) and for any test function ¢ € C1(Q x IR3)
vanishing on 0Q~ U 090,

| (o Tap+ QUL Dp)dado
QxIR3

+ v - n(:c)M(:c,v)go(x,v)(/ | v -n(z) | f(z,v")dv")dzdv = 0.
Nt v’ n(z)<0

Here v' and vl are given by (1.3) and

o0~ = {(z,v) € 00 x R v -n(z) < 0},
o0 := {(z,v) € 90 x R*;v - n(z) = 0},
o0 == {(z,v) € 90 x R*;v - n(z) > 0}.

Let us next state a key result of this paper.

Theorem 1.2 There is a weak solution f in L'(Q x IR3) with given total
mass k to the stationary Povzner equations (1.1-2) when B = 1.

Extensions to more general pseudo-maxwellian and hard forces are given in
Theorem 4.8.

Remark. The theorem holds with an analogous proof in IR*, n > 2. It is
obvious from the proof that given indata problems can also be treated by the
method of this paper. In that case some of the more elaborate arguments
from the present diffuse reflection case are not needed due to the a priori
control of ingoing entropy flux.

Lemma 1.3 (i) If f is a weak solution in L% (Q x IR®) to (1.1-2), then

X

F(X,v):=f(———m——
( 7,U) f(ff(l',v)dxdv’v)
is a weak solution to the sm-transformed problem

1
. F =
VXS TRX, 0)dX do

/ F(X,o)F(Y,v.)dY dv, — F,



X

( -, v) € Q x IR, (1.4)
(f F(X,v)dXdv)4
X
PG = MU X wyaxan
X
. R o) | F(X,w)dw,
’LUTL(W)<O (f F(X,'U)dXdU)4
( X ,v) € 00+, (1.5)

([ F(X,v)dXdv)1

(ii) Reciprocally, if there is a positive real number k such that there is a weak
solution Fy in L (kQ x IR®) to the sm-transformed problem

1

- UxFp = F. (X, 0") Fy (Y, v})dY dv, — F)
v UxFk = s | B R )Y dv, —

X

(?,'U) €0 x IR, (1.6)

X X

Fp(X,v) = M(— -n(—) | Fp(X

KX = M) [ G [ FeXow)du,

(%,v) € 90, (1.7)

then there is a weak solution f € L (QxIR?) to (1..1-2), with k = [ f(z,v)dzdv.

Proof of Lemma 1.3.
(i). If f is a weak solution to (1.1-2) belonging to L% (€2 x IR®), then
F(X,v):= f(m,v) is a weak solution to

1
v (ff(x,v)dxdu)4/ (X,v)F(Y,v,)dY dv, — F,
= v) € Q x R

(f f(z,v)dzdv’
Then

/F(X,U)dde = (/f(ac,’u)da:dv)4

implies (1.4). Finally, (1.5) is straightforward.
(ii). Reciprocally, if for some positive number k, there is a solution Fj €



LY (kQ x IR?) to (1.6), let us define the L} (Q x IR?) function f by

k4
" [ Fu(X,v)dXdv

flz,v) Fy(kz,v).

The function f satisfies
v-Vaf = /f(m,v')f(y,vi)dydv* —kf, (z,v) €Qx R?,
and
k= /f(:v,'u)dwd'u,
which implies (1.1). Finally, (1.2) follows from the definition of f and (1.7).
2 Approximate solutions to the transformed prob-

lem.

Let K > 0,7 > 0and j € IN be given. The aim of this section is to construct
solutions f77 to the following approximate problem

} 1 )
v-Vaf? = W /XT(:E — 4,0, 0) X’ (T — Y, v, v4)
; PN i / S XX (y, 04 dyd,
J,T1 g _ d d « — 7,7 ; ,
FraefTL+ S ) o, = 7 g
(%,v) €0 x RS,
7T =M= . d Ot )
f (‘T’ 'U) (k ’ 'U) fa(kQ) ﬁ],r(a:)dx’ (k ) U) € 6 ’ (2 1)

where,
)= [0l | P wdo ) @)

Here, ¢7 is a normalized density with support in a neighbourhood of z,
defined as follows. Divide 0f) into 2" subdomains S each with area
| S7l=2"10Q|,j =1,..,2" so that for fixed z the maximal diameter



Dy, of 57,5 = 1,...,2" tends to zero when n — co. Denote the characteristic
function of S by Xsp and define

n .
oz (y) = mXS}?(m)XS;»(y), z €St

The functions x" and x? are C§°, invariant under the transformations (v, v,) —
(v',0)), (v,v4) = (vs,v). They are defined from a function 1 on IR. Take
L &r p(s) =0for s < —L, 4(s) =1 for s > L 4(s) increasing from 0
to 1 in the interval —% <s< %, 1 € C®. Define

X' (@ = y,v,0.) =97 (0)¢" ()" (V)97 (v))

_E_ V — Uy T—Yy v —
e I ALl

m

Y 2
|__)7
yl m

Vs T —

ve| Jz— va| |z—
with ¢"(v) = 1(] v | —r). Analogously define
X (@ = y,0,0.) = 97 (0)9 (v)9? (0")9 (0)),

where 97 (v) = (j— | v |?) and m = 2.
In the paper | Q | and | 6Q | denote volume in IR?® of (2, respectively area of
09, and D is the diameter of €. Define s by

sT(y,v) = inf{s > 0; (y—sv,v) €T}, (y,v) € Qx IR,
and

s (y,v) == inf{s > 0; (y+sv,0) €N}, (y,v) € QxR
Denote by

_ Jroxms XX f (y, ve)dydvs
()= Jeaxms [ (¥, ve)dydoy

The following geometric property of 02 will be used in the sequel. For
T €00, we R with |w =1, w-n(z) <0, set y =z — s7(r,w)w. Assume
that the Jacobian | % | is uniformly bounded away from zero and infinity
as a function of z, y € 09Q. Since the truncation x” will be removed only at
the very end of the proof in Section 4, we shall skip the index r in x" = ¥,



fir = i gir = i, v; = v; and elsewhere. Let 0 < @ <1 be given. Let K
be the closed and convex subset of L!(kQ x IR3) x L'(8k) defined by

K ={f € L}kQ x R%); 0< f(z,v) < ¢}
x@eL%mnﬁogp@L/ p(z)dz = 1}.
k&2
The boundary integral (2.1) is related to the total inflow condition [, p(z)dz =

1 in the definition of K.
For % > ¢ > 0 let us be a mollifier in v with support in | v |[< §. Denote by

1 F f
T(F = J ! "dydv,.
Q (R ) = - [ xx T E )
Let T be the map defined on K by T(f, p) = (F, o), where F is the solution
to

kaXIR3 XXJf(ya 'U*)d’gd’l)*

aF +v-vF = Q" (F,f)*us—F [ F(y, ve)dydo,

(%meﬂxmi
F(z,v) = M(Z,0)(px ¢2)(@),  (7.v) € 007, (2.2)

and

Jwn(@y<o |w-n(%) | F(z,w)dw

fa(m)f |w-n(§) | F(z,w)dwdz’

o(x) =

Below we shall state the results with respect to k, but for easy reading only
carry out the proofs for k = 1.

Lemma 2.1 There is a positive lower bound ¢; for [ F(z,v)dzdv, with ¢
independent of 0 < a <1 ,0< 8 < L, and of (f,p) € K.

m’

Proof of Lemma 2.1. It follows from the exponential form of (2.2) and the
boundedness from above of v by 1 that

F(z,v) > M(z — s (z,v)v,v)p * @ (z — 3+($,v)v)e*(1+a)5+(5"”).
And so for, say, 1 <| v |< 2 and for some ¢ independent of (f,p) € K,

F(z,v) > cp* ol (z — sT(z,v)v),



/ F(z,v)dzdv > c/ v-n(z)s (z,v)p * i (r)dzdv,
Qx IR3 A
with
A={(z,v); €0, 1<|v]|<2, v-n(z) > 0}.
It follows that for some ¢; > 0,
/ F(z,v)dzdv > cl/ p(y)dy = q. O
QxIR3 o0

Lemma 2.2

sup o(x) < Cjn,
0k

with cjn, independent of a and of (f,p) € K when

/ f(yav*)dydv* > q.
kQx IR3

Proof of Lemma 2.2. Obviously in (2.2),

sup p * @y < sup gy < oo,
N n,T

and the gain term Q7 (F, f) * ps is bounded by

4 . 3 j2
Cj:§|9|(1+1)20—l-

So from the exponential form of (2.2), for r — % <lv|<V7+1,

F(z,v) =
0
M(.’L‘ _ 3_|_($’ ’U)’U, U)p % (p;z (LL' . 3+($’ ,U),U)efas"‘(wﬂl)*ffsﬁ%w,v) v(f)(z+sv,v)ds
0 0
i easffs V(f)($+TU,U)dTQ+ (F, f) * u(s(x + sV, ’U)dS
)
n ch j+1
< sup M (y,v) sup ¢, (z) + 5" (v).
yeaﬂ n,y,z r— E

In fact this estimate holds for all of 2 x IR3. Also an estimate downward in
the exponential form of outgoing F' by ingoing ones gives

/ | v-n(z) | F(z,v)dzdv > CT/ p(y)dy = ¢ > 0.
o0~ o0

10



And so
O'(.T) S Cin,
for some ¢y, independent of a and of (f, p) € K with [ f(y,v.)dydv, > ¢;. O

It follows that T" maps
Kin={(f:p) €K [ fdydo. > i, p<ein)

into itself. For (f,p) € Kjn, one solution F' is obtained as the strong L' limit
of the nonnegative monotone sequence (F,,), bounded from above, defined
by Fy =0 and

aFm1 + vV = QY (F™, f) * ps

I xx7 1 (y, vi)dyduv,
[ fy,v)dydv,

Fpii(z,v) = M(z,v)(p * o) (x), (z,v) € Q.

—Fni1 (z,v) € Q x IR,

Moreover, F' is unique since if there were another solution G, then

OZ(F—G)—F’UV(F—G) = (Q+(F,f) _Q+(Gaf))*/vt5

I xx7 f(y, v,)dyduv,
—(F - Q) T Fy, o)dydo, (z,v) € Q x IR?, (2.3)

(F - G)(z,v) =0, (z,v)€oNt.

Multiplying (2.3) by sgn(F — G) and integrating it over £ x IR® leads to
a/ | F— G | dzdv <0,
QX IR3

which implies that F' = G.

Let us prove that 7" is continuous for the strong topology of L. If (f;, p;) con-
verges to (f, p) in L'(Q x IR?) x L'(0R), denote by (Fj,0;) = T(f1, 1) It is
enough to prove that there is a subsequence of (Fj, p;) converging to (F, o) =
T(f,p), because of the uniqueness of the solution to (2.2). But [ xx’ fidydv,
and [ fidydv, converge to [ xx’fdydv, respectively [ fdydv,. There is a
subsequence, still denoted (f;) such that decreasingly G; := sup,,;>; fm, and

11



increasingly g; := inf,,>; f converge to f in L'. Let (S;) and (s;) be the
sequences of solutions to

1 !

. = (—— J !
s, L0 oy, vi)dydv,
fGl(yalU*)dyd’U* ’
Sy(z,v) = M(z,v)(p* M) (z), (z,v)€ o,

(y, v})dydv,) * ps

(z,v) € Q x R3,

and

1 L8]
as;+v -S| = (m /XX]H—ﬂ(%UI) 1+ 2 (y,v;)dydv*) * g

J J

I xxIGily, v.)dydv,
fgl(y,U*)dydv* ’
s(z,v) = M(z,v)(p* ¢2)(z), (z,v) € INT.

(z,v) € Q x IR,

(S) is a non-increasing sequence. Indeed, S; = limy, 400 S/, with SP =0
and Slm'"1 solution to

aSt v 7S

= (e [ o0d = ) e, o)
- Sgm bl G » Yx *
[ qidydo, 142 1+ 4

_gmit] XX’ g1(y, vs ) dydv,
: [ Gi(y,v.)dydv, ’
Slm+1(117,v) = M(z,v)(p * o) (z), (z,v) € 0NT. (2.4)

(z,v) € Q x R3,

(From (2.4) in exponential form it is easy to see that (S]*); is nonincreasing
in [ for any m. Analogously, (s;) is a non-decreasing sequence. Moreover, it
can be proved from the iterates that s; < F; < S;. Then (S;) decreasingly
converges in L' to some S and (s;) increasingly converges in L' to some s,
which are solutions to

1 - f
. _ j ' i
a8 +v- 7,8 (”dydv*/xxH?(w,v)H (v, o) dydo.) * g

S xx f(y, v.)dydv,
ff(y,v*)dydv* ’
S(z,v) = M(z,v)(p* o) (z), (z,v)€ 0T, (2.5)

S

-S (z,v) € Q x IR?,

12



and

1 .8 f
; — J ! !
as 4 Voo = (g [0 @) 7 )«
fxxjf(y,'u*)dyd'u* 3
- ) z,v € 2 x R )
[ f(y, v)dydv, (2v)
s(z,v) = M(z,v)(p * o) (z), (z,v) € IQT. (2.6)

By the uniqueness of the solution to the systems (2.5) and (2.6), S =s = F.
It then follows that (Fj) converges to F in L'. Also, for z € 09

/ |w - n(z) | File, w)dw =
w-n(z)<0

w - n\x a:—s"'a:www
Loy 10 | Mo = 5 )

) —a5+($,w)—ffs+($ w) u(fl)(z—I—Tw,w)dew

Tz, w)w)e

(o * ) (x — s
0
o na) | (O QHE, f) (a4 s, w)ds)duw,
zc)<0

—st(z,w)

converges in L'(09) to
/ | w-n(z) | F(r,w)dw =
w-n(z)<0

/ | w-n(z) | M(z — s (z,w)w, w)
w-n(z)<0

0
(p* o) (z — 5+(£C,w)w)e_aer(I’w)_f_va(m,w) v()(etrowdr

0 0
/ oo | 2@ | [ el i Qi (F, £) s oo+ s, w)ds)

—st(z,w)

Hence (0;) converges in L'(852) to o, which ends the proof of the continuity
of T.

The compactness of T is a consequence of the following argument. Let
(Fp,0m) and (fin, pm) be sequences in L' (Q x IR3) x L' (09Q) with (f,, pm)
bounded and (Fp,,0m) := T(fm,pm)- The sequences (g

Fm
1+]-

) as well as

(v-Vaz - f Tg_m) are uniformly bounded in L*, hence weakly compact in L.
J

13



Also
( XXj?f'?_g(y, vl us(9 — v)dydvl) is compact in L', and so the sequence

_ 1 Fm /
Q@ B fn) #s(2,9) = o [ 17 (o)

. f B

( / XX = (y, vl ) s (0 — ) dydv, ) dv'
1+ In

is compact in L!(Q x IR3) by the averaging lemma (cf [17]). And so the

exponential form of (2.2) for F,, together with the compactness in L' (2 x

IR?) of

M(z — sT(z,v)v)(pm * ) (z — sT(z,v)v)

—ast _re
e as™t(xz,v) f_s_,_(m’v) v(fm)(@+TU,0)dT

due to the boundedness of (p,,) and the convolution with ¢}, implies that
(Fy,) is compact in L' (92 x IR?). Moreover,

w - n\r .’L‘—S+.’L"U)’U)’LU
Loy 1 @) | MG =" o )

0
(om * @) (z — s (z, w)w)efaﬁ(gc’w)*f—”(%w) VUm )t To )T g

is compact in L'(82). Together with the compactness of (QT (Fy,, fm) * t5)
in L}(Q x IR3), this makes (0,,) compact in L!(89).

T is thus continuous and compact from the closed and convex subset
K, of L' (9 x IR?) x L'(09) into a bounded subset of K}, so by Schauder’s
fixed point theorem it has a fixed point (F'*,0%), solution to (2.2) with
f = f% p = 0% Arguing similarly to the preceeding analysis of T', we can
also by compactness pass to the limit when « tends to zero. That limit F?
is then a solution to

1 . F° F°
. 6 _ - j & A !
v-VF° = fF‘sdydv* (/XX 1+ FT-E(:E,U )1 i FTfS(y’U*)dydU*) * s
_Fdf XXjF6 (ya U*)dyd'u*
fFJ(y,’U*)dyd’U* ’
fw-n(.)<0 | w- n() | Fé(aw)dw
I} * QD;L (:C),
Joa— | w-n(y) | F*(y, w)dwdy
(z,v) € 0QT. (2.7)

(z,v) € Q x R?,

F(z,v) = M(z,v)(

14



In order to remove the us convolution, we shall next prove that the family
(F%) -0 is strongly compact in L'. Denote by

é j F° ! F° !
q°(z,0) = /xx T 2 @) g v ) dydv..
j j

To prove the compactness of the family (Q1(F?, F9)), and again using the
previous compactness argument for Q* (Fy,, fim ) * 145, it remains to show that

[ Q) wpus = @ (1, 1) | dedv 0 (2.8)
QX IR

when § — 0 (cf [25]). Similarly to the earlier analysis of T', the compactness
of (QT(F?, F?);s¢ implies the compactness of (F?)s.

The proof of (2.8) comes back to proving the strong L' translational
equicontinuity in the v variable of (¢°). Use the Hilbert-Carleman parametriza-
tion

5 (@, o=Y) F v —wv
P = [(f P @ s o))

, S
stz 1+ 2

[v/ —|

1 . F(S

(/E | v — v |2XXJ 14 o (-’E,Ui)dvi)dv',
v,v! 7

where E, . is the plane containing v and orthogonal to v — v’. We split
@ (z,v + h) — ¢®(z,v) into A% (z,v) + B (z,v), where

d 1
AWz, v) = /(/32 FF5 (z+s vy ,v')ds)

1+T |UI—’U|
d’l)!'< . F‘5 d’U’ ) F5
J .’L','Ui _/ * J -/E,,Ui d’Ul’
(/Ev+h,v"vl_v_h|2xx 1—I—F—6( ) EU,vI|IUI_IU|2XX 1+F7'6( )
and
B (g, v) :==
Fd ’UI_’U—h F(s /UI_/U
2
/(/5 /[1+F_f$($+8|fu’—v—h\’”I)_@(x+sm,v')]d8)
J J
dv!, .
J / d I.
(/EHW [ —v—h P 1+F7'6(x’v*)) ’

15



First
1
| 4% < c [ db [ dodo | D.Ca0) P
0

where

dv! .
o XX T (@ v} (@0 + OR) - b
v,v! 7

C¥(z,v + Oh) = /
E
Hence by [35],

F9
| A e h |

2
—=)*(z,v)dzdv,
vagm(1+F7?) (&%)

which tends to zero when h tends to zero. This proves the translational
equicontinuity of the A%-term.

The B%" estimate is connected to averaging. We give a direct proof. For h
small

F vV —v—nh
8,h 2
|B (x,v) |S C/ | /S [@((E‘I—Sm,v’)
FJ 1
(:c—l—sl Z'—Z |,'u')]ds | dv'. (2.9)

-
1+ £

Write the difference within absolute values in (2.9),

F v —v—h F v —w
2 / !
/S [1+F7f5(x+sm’v)_1+F7§($+5|’U/—’U|’v)]ds’
S
Fo

with each term in mild form. Then there first appears a difference of

boundary terms whose integral tends to zero when h tends to zero, essentially
because of the convolution with ¢”. There also appears a difference of gain
terms along characteristics. There finally appear differences for the loss
terms and for (1+ FT.J)_Z which can be treated analogously to the differences

in the gain term, only simpler. The gain term contribution to B»"(z,v) is
a v’ integral of an expression of the type

5™ (@570 0 . ' h
W=/ 9 / j v v ;o
s dsl/ —(r+ 85— + 510, v
/_s+(z, vi-v ) | —st (a4 LU=t o) XX 1+ _1*;5 ( |v' —v—nh| Vi)

Jol —v] v/ —v—h|’
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F6
7F6 (yl ) vlh*)dyl dwy

1+ =
0 . v —w
— dsl/ I — (x4 s——— + 510, V]
‘/_S+(w+s|31:3|7”') XX 1+ FTJ( | v — v | 1)
F(5
= (y1,01. ) dyrdun]ds, (2.10)
1+ £
J
where
v —v—h
Vipe = vi(z + Sm + 510, y1,0", wy),
v —v—h
’U’lh = ’U’(.T + Sm + Slvlaylavl,wl),
v —w v —w

ro_ ! / It ' /
Vg = ($+3 +31Uaylavaw1)7 U1 .—’U(IE-[—S +31’Uaylavaw1)'

| v =] [ v =]

We split (2.10) into a difference in the xx’ terms which tends to zero when
h — 0, and the sum of

/8‘(I,|ZCZ|)82/0 / [ a:+s vov=h + 510", v1,,)
_3+(z,‘zj:z‘) s+ (o5 o —y— ZV”') XX v —v—1| 1V, V1
F v —w F
_7}75(;5 +8———— + s ,ful)]iFé(yl,vlh*)dyldwldsdsl,
1+ £ [ v =] 14+ 5
(2.11)
s™(2,578) 0 - -
/ | ,_l 82/ B /XXJ =5 (T + 57— + 510", v})
*5+(w’\31_3‘) ($+8| T_ h|1v’) ]- + T ‘ v —=v |
Fo Fo
(1 5 (Y1, Vipy) — li(yl,%*))dyldwld(ﬁdsla
+ 2 1L
(2.12)
and
s‘(w,v:—:”) —s (w—|—s v " R 4 r
T o] 2/ v / ] v -0 1o
S r—+s + s1v,v
/—s+(z,|31:z|) [ st (ats (= o) e 1+F7.‘5( EETIRR 1

17



FJ
Fé
14 5

(y1,v],)dy1dwidsds; .

(2.13)

The contribution of the integral in v’ of (2.13) to the integral over  x IR® of
B%" tends to zero when h tends to zero, because the volume of integration
tends to zero with h. As for the two differences in brackets in (2.11) and
(2.12), we repeat the procedure of expressing them in mild form. Terms like

sS@y) o .
Loty ™ vy o 99
—st(z,5=%) —st(z+s5=2 v')

F6

Jv! —wv] v/ —v—h|’
0 !
v —v—nh
( dsg——— (T + s—————— + 510" + s9v],,, Vh)
5 1hx: Y2h
/—3+($+5|Z:_Z_Z|+51””“’1h*) 1+ FT [ v —v—h]|
0 F v —w
' ' '
_/ o —v , d32 F5 (.’,C + S ! “l_ 311} + 32’01*, 'UQ))
—s+(x+sm+sw’,vl*) + T ‘ v = |
F° , . F? ,
I (ylavlh)il ya (Y2, vaps ) dy1 dwr dyadwodsdsy
J J

will appear. Sets where ﬂtiz:’}:’ v', and v, are close to parallel can be
made as small as desired, to make the correspondi?g integrals as small as
desired because of the uniform boundedness of :W Except for the sets

7
!y —
where w, v" and v}, are close to parallel, we can perform a change of

variables with uniformly bounded Jacobians

!/
—w—h
(s,81,82) > X =z +s i

/ !
— 4+ 510 + 59V
|’Ul—’U—h| 1hx»

as well as a similar change of variables in the term without h. We end up
with a difference of volume integrals integrated over volumes differing by
¢ | h | and integrals containing the difference of the Jacobians. Each such
term tends to zero when h tends to zero.

We can now pass to the limit in (2.7), when § tends to zero. The limit
F7™ is a solution to

Fim — 1 j Fin . Finm )
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i J XX FI(y, v.) dydo.
[ Finly, v.)dydv,
: Jwn(y<o | w-n() | FP"(,w)dw
7, — : _ T
2y 0) = M) O ) | Pty w)dwdy) ™ 92

(z,v) € 0Q™T. (2.14)

—F (z,v) € Q x R?,

The aim of the present section to construct a solution to the approximate
problem (2.1) has then been achieved.

Lemma 2.3 Let f = f/™" denote a solution to the approzimate problem
(2.14), and for x € Ok set

B T 2. 0)dw J:E.:ﬂ
pla) = /M(%ko‘ G o, otw) =y

Then
o(z) > ¢ >0, z €Ik,
with c¢1 only depending on 02 and M but not on j,r,n.

Proof of Lemma 2.3. The ingoing mass flow equals one. Take a closed con-
nected part S of 9 with | S |= 2L and [0 * ¢ (x)dz > L. Fix a ball B
inside 2 and with centre zy. For each z; € 012, the line [ through z, and
xo intersect OB in between at z € 0B with (antipodal) intersection z, € 0B
and z; € 0€). Choose a symmetric polar cap on 0B with centre at z, such
that its projection S in 9Q around zs has area | S |= } | 9Q |. Make a
similar polar cap on 9B around z, with projection T' to 92 around z; and
area | T' |= i | 0Q |. Cover 02 with N such domains Sj,j = 1,...,N, so
that the corresponding 7’s also cover 0f). Clearly, for at least one j,

1
dr > —.
/5-0*% T2

J

Also for z € T, v - n(z) <0,
0
f(z,0) > f(z — s (z, U)U,’U)eivp(—/ v(z + sv,v)ds),

—st(z,v)

and so for z € T},

p@)2 [ [v-nia) | M@= s*(2,0)0,0)0 5 2w = 5* (2,00)
exp(— /0 v(z + sv,v)ds)dv,

—st(z,w)
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with
Ay, ={v e R? z— st (z,v)v €S, v-n(z) <0, 1 <|v|< 10}
Also

min inf inf

— . = 0
7 a:EijEij||’U| n(x)| 2 >0,

inf M(z,v) =c3 >0,
1</v|<10,2€0Q

0
inf — d
(m;v)eaﬂlzl,lﬂﬂflo el‘p( /—s"‘(z,v) V(TI»' v U) S)
inf exp(—st(z,v)) = ¢4 > 0.

T (z,0)edN,1<|v|<10
Set y = z — sT(x,v)v and change variables
v Dw
'U=|'U|m=tw—>(t,y), dv = t%dt | D—y|dy.
By hypothesis

. . Dw
min_inf inf | — |=¢; > 0.
1<j<N z€T; vEAs; Dy

Hence for z € T}

C5C4C3C2
N

p(z) > / cscacseao * @y (y)dy > = ¢g.

Sj

Here ¢g only depends on M and . Using the lower bound cg for p on
T; (and n large) by a similar argument p(z) > c¢; > 0 for z € §;, with
c7 only depending on M and 2. Finally using the geomerical fact that
z € 00\ (S;UTj) is "far” from either S; or T}, as well as the lower bounds
cg and c7 for p on S; and T, gives in the same way a lower bound for p on
all of 99 independent of j,r and (large) n. By Green’s formula for (2.14)

the outflow is bounded by the inflow,

| e < [oxgiads =1,

and the lemma follows. O
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3 Reintroduction of the gain-loss symmetry.

In this section we shall remove the asymmetry between the gain and the loss
terms by taking the limit j — co. The smooth increase of 9 from zero to
one in the interval [-1, L] was needed in Section 2 for the Radon transform
argument. That smoothness will also be removed from x" by keeping r fixed,
but letting m = 7 — oo.

Lemma 3.1 If FJ is a solution to (2.14), then for any r > 0,

2kD

Fi(z,v)dzdv < cge (3.1)

Ly

and

/ | v |?> Fi(z,v)dzdy < coe (3.2)
w|>r

Proof of Lemma 3.1.
Multiplying (2.14) by 1 and | v |? respectively, and integrating over Q x IR3
implies that

/ | v-n(z) | F/(z,v)dzdv < / v - n(z)FI(z,v)dzdv
o0~ Nt

= ol (z)dz =1, (3.3)
N

and
/ |v-n(z) || v |* F(z,v)dzdv
o0~
< / ven(z) | v|? F/(z,v)dzdy
ont
= C10/ o¥(z)dz = c1p. (3.4)
N
Also (2.14) implies that

d ] SI/' T T
E(F](x + 50, v)edo vilEtTINT) 5
so that

. . s (z
Fi(z,0) < Fi(z + 5 (z,0)v, v)elo

< Fi(z+ s~ (z,0)v,0)e7, |v[>r.

v) vj(z+Tv,0)dT
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Then

/ Fi(z,v)dzdv
Qx{v;|v[>r}
0

= / / Fi(y + sv,v)ds | v -n(y) | dydv
99-,lv|>r

—st(z,v)

IN

eF [ Fig)st(@,0) [ven(y) | dydo
o0~ ,|v|>r
2D

<e? [ Fye)|vn() | dydo,
00~ |v|>r

which is bounded by (3.3) uniformly in j. The proof of (3.2) can be derived
analogously. O

Lemma 3.2 The sequence of solutions (F7) to (2.14) is weakly compact in
LY(kQ x RY).

Proof of Lemma 3.2. By Lemma 3.1, (f‘v|>r_;_ FIdzdv) is uniformly bounded.
Also uniformly in j ’

/|v|<rl. Flddy < (sup M (z,v)(—— -n(z))dv)

N /|v|<rj—1,,v-n(a:)>0 | v |

(D ol * o (x)dz) < c,
N

and analogously for [, ., _1 | v |2 Fidzdv. Let us prove that (F7) is uni-
- J

formly equiintegrable. It follows from the exponential form of (2.14) for F7
that

s~ (z,v)

Fi(z,v) < Fi(x + s‘(x,v)v,v)efo vi@rroldt (g p) € Q x IR,

?

Hence

/ FilogF(x,v)dzdv
Qx{|v[>0}

D .
< e%(—/ Fi(z+ s (z,v)v,v)dzdv
0 Jax{jv|>6)

+ FilogF' (z 4 s~ (z,v)v,v)dzdv)
Ox{Jv|>0}
o D ;
=es (= [ |v-n(y) | F(y,v)s" (y,v)dydv
0 Joa-
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+ [ Lven(y) | FilogFi(y,0)s*(y, v)dydv)
o0~

D
<es—

= [ oen(y) | F,0)(3 +logFi(y,v))dydo.  (3.5)
o0

)

Here by (3.3) the first term to the right is uniformly in j bounded. As for
the second term the following holds.
Multiplying (2.14) by logF7 and integrating over Q x IR? implies
1
4 [oxms Fi(z,v)dzdv

/ e(F?, F7)(z,y,v,v,)dzdydvdu,
Q2 xRS

< / v-n(z)FllogF’ (z,v)dzdv + X7,
QX IR3

where
e(Fj,Fj)(:z;,y,'u,U*) =
xx! (F (@, v) F (y,vy) — F? (z,0")F (y,v),))
log F?(wav)F"_(y,U*) ,
Fi(z,v")FI(y,v))
and
Fi
XJ::-.i/ i (g4 (.0
) . FI n o .
(FI(z,v") + FI(y,vl) + #FJ (y,v.))logF? (z,v)dzdydvdu,.
Then
Fi .
XJ<.7/ I __ (g0 —(y, !
~ [ Fidydv, mxmﬁ,m(x,u)glxx 1+ %( )1 + %(y )
, . Fi no. ,
(F?(z,v") + FI(y,vl) + #Fﬂ (y,v.)) | log™ F?(x,v) | dedydvdv,.

Now using Lemma 2.3,

Fi(z,v) > cMo? % o (z — sT(z,v)v) > ¢ inanM(x,fu)cl.
zc

This is bounded from below by a positive Maxwellian Mj. So uniformly in j,
the denominator in X7 is bounded from below, and log™ F?(z, v) is bounded
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from below by c1 + ¢z | v |2. Tt follows that uniformly in 7,
X7 < c/Fj(l—l- | vy |?)dydv, < c.

This in turn implies that the outflow of entropy through 92~ (together with
the entropy dissipation) is uniformly bounded with respect to j, since the
inflow is uniformly bounded with respect to j (for n fixed). We conclude
that also the second term to the right in (3.5) is uniformly bounded with
respect to j. Since FJ is constant along characteristics for | v |< r — % and
uniformly bounded on Q" with respect to z, v, j (for n fixed), this ends
the proof of compactness. O

Lemma 3.3 The sequence (

FI Fi
T Fidie. I ) i ) dydon)

is weakly compact in L'(kQ x IR3).

) is uniformly in j

Proof of Lemma 3.3. The sequence ( T = (yv dpdo.
QxIR3 o

bounded from above, since by the exponential form of FJ and Lemma, 2.3,
Fi(z,v) > M(z — s"(z,v)v,v)07 % o (z — s+($,v)v)e_5+($’”),
>cM(z — st (z,v)v,v), T€Q, |v|>A

Hence, it is sufficient to prove the weak L'-compactness of
([ 0 (w,)Fi (g, o) dydv).
QxIR3

By (3.2) the total mass of F7 in | v |> X tends to zero uniformly in 7,
when A — o0o0. So it remains to study the equiintegrability for domains of
integration, where (z,v'), (y,v.) € Q x {v € IR%;| v |< A\}. But there the
equiintegrability in (z,v) is an immediate consequence of Lemma 3.2. O

We are now in a position to remove the asymmetry between the gain and the
loss term by taking the limit j — oo. Let us start from the weak formulation
of (2.14), i.e. for any test function ¢ € C}(Q x IR?) vanishing on 992~

/ (v V¢ FI(z,v)dzdv
QxIR3

1 . FI o Fi
+7fFjdydfu* /QQX”XX’(HFT;( ; )1+ ~(y,v,)
—FI(z,v)F! (y,v.))( (2, v)dzdydvdv.
=~ [, o n@)M(z,0)(0’ + ¢2) () (z,v)dodo. (3.6)
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First (for subsequences),

FJ FI

. ] ! ! —
jggloo - xxJ1 n FT_j(w,v)l n FTj(y,v*)C(w,v)dwdvdydv* =
lim xx! I (z,v") ! (y,v})( (%, v)dzdvdydv,,

j—+0o0 JQ2 xRS
by the weak L!'-compactness of (F7). Then, by the change of variables
(,U"U*) — (Iulalufk)a
/ XX F (2,0") F7 (y, ;) (2, v)dedvdydv, =
Q2 x IRS

o X0 (0,0) P (3, 0.)C (v, v, 0.)dadudydo.
Q2 x IR

(F7), as well as (v - 7o F7) are weakly compact in L'(Q x IR?) by Lemmas
3.2-3. Consequently, via averaging, ([gs F?(y, v:)((z,v' (2, y, v, v4))dv.dy) is
compact in L' (Qx IR3) and converges to [ps F(y, v.){(2,v' (z,y, v, v4))dv.dy,
where F is a weak L' limit of (F7). Hence

lim XX F (,0) F (y, v,)¢ (2, 0" (2, y, v, v,) ) dadydvdv, =
J—>+00 JQ2 xRS

| XF(@,0)F(g,0.)¢(@.v' @y, v,0.) dadydudo.
Q2% IRS
Moreover, (yTF7) converges up to a subsequence to (y*F), since (F7) and

(v -7z F7) are weakly compact in L'(€ x IR?). Hence we can pass to the
limit when j — +o00 in (3.6) and obtain

/ (v - V() F(z,v)dzdv
QxIR3

1
F NF !
+fQ><IR3 F(yav*)dyd’l)* /92><R6 X( ('T’IU ) (y,'u*)

—F(2,0) F(y,v.))¢ (@, v)dedydvdv,
_ _/6m v -1(z)M(z,v)(p * o) (2)C (z, v)dady,

which means that F' := F™™ is a weak solution to the stationary sm-
transformed Povzner problem

v- VzFT’n =
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1
Py | X @) F 0, 0) = F (o) F7 3, 0.) )y,

(z,v) € Q x R®,
F""(z,v) = M(x,v)(p"" * ) (z), (z,v) € 0QT. (3.7)

And so the aim of this section has been achieved, to obtain a solution for an
approximate equation with gain and loss terms of the same type, and with
the truncation x" a characteristic function.

4 End of proof of Theorem 1.2. The main theo-
rem.

We now have solutions F™" corresponding to the remaining approximations
of (1.3-4) involving x" and ¢". We will work with subsequences (r,) mono-
tonically decreasing to zero. The boundary convolution with ¢”, and the
small velocity truncation x” will no longer be used to control weak L' com-
pactness. Now that the gain-loss symmetry is reintroduced, that control
will be taken over by the entropy production term and by estimating in-
tegrals along characteristics. In particular the boundary convolution will
be removed through Jensen type arguments. In Theorem 4.1 the entropy
production term will be used to gain r, n-independent mass control. There
we carry out the analysis for an arbitrary element of the sequence (") (and
uniformly over n), but in Proposition 4.3 about weak L' compactness, sub-
sequences (F" ™) are being considered. Proposition 4.3 is used for obtaining
a last limit in the approximation scheme, thereby completing the proof of
Theorem 1.2. Finally in the main theorem of the paper, Theorem 4.8, the
generalization to hard forces is carried out.

Theorem 4.1 The mass of (F™™) is bounded uniformly with respect to r,n.

Proof of Theorem 4.1. Consider a sequence (r,) monotonically decreasing
to zero. If the mass of the corresponding sequence (FP) is not uniformly
bounded, then there is a subsequence (FP) such that

/ FP(z,v)dzdv > 3cae?PP, (4.1)
QxIR3
with c,e?? > 1. Set V, = {v € R?; r, <|v |< %} Then using (3.1)

/ FP(z,v)dzdv > 2c,e?PP > 2 FP(z,v)dzdv,
QxV, Qx{lv|>3}
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so that
2
/ FP(z,v)dzdv > —/ FP(z,v)dzdv.
axV, 3 Jaxm3

By (3.1-2), (FP is integrable, for any component € of v. Green’s formula
can then be used for the equation (3.7). Let II,, denote the plane through
o €  and orthogonal to the £ direction. By Green’s formula for one of the
subregions into which 2 is divided by I, it holds that

/ E2FP(z,v)dzdv < c,
Iy, x IR3
with ¢ only depending on M of (1.4). Hence,

/ 3{“QF"’(:L‘,'u)d:z:d'u <ec
Qx IR

Analogous estimates hold for the integrals of FP time the square of any
component of v. Hence

/ \ | v |2 FP(z,v)dzdv < c. (4.2)
Qx IR

Moreover,

FP(y,0.) > FP(y — st (y, v )vi)e* @0

st (v,
= M(y — s (y,v:)0,v2) (0P * P) (y — s (y, v5) v )e —stH(y,0)
> ¢

1< v, [< A,

by Lemma 2.3. Also using the same type of estimate for F?(y,v.) but from
above with respect to outgoing boundary, given x, for geometric reasons the
following holds.For y in an x-dependent subset {2, C Q with | Q, |> 5 1
there is pr with

| Qpy [> 2m(N® = 1) -1,

L >

and there is Qpy,; C Qpy with | Qe [>> 1, such that,

T—Yy . T—Y
'U;(J,‘,y,'u,v*) ::U*+(U_U*).(|:L'—y|)|$—y‘ GQPZI’
v € Vp, Vs € Qpya

Here the following lemma is needed to complete the proof of Theorem 4.1.
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Lemma 4.2 Under the hypothesis (4.1) for the sequence (FP), there are
Sp C 2, and for a.a. T € Sy, y € Qp, there are Spp C V) and Qpye C Qpy
with | Qpyy |> 1, such that

1
/ FP(z,v)dzdv > —/ FP(z,v)dzdv,
Sp I Spe 6 Joxms

and

FP(z,v) > p*FP(z,v' (z,y,v,v4)), «€ Sp, VESpg, YEQ, vs€ Qpyg,

whore o, ,02) = v — (0 — ) - (220 222

Proof of Lemma 4.2. Using the previous discussion, it is enough to prove
the existence of S, C 2 and for a.a. =z € S}, the existence of Sy, C V), and
Vpe C {05 1 <[ v [< A} with | V;g |< 1, such that

1
/ / FP(z,v)dzdv > —/ FP(z,v)dzdv,
Sp I Sps 6 Joxm?

and
FP(z,v) > p*FP(z,0v'), =z € Sp, VE Sp, vVE V;fz.
Let U :={v; 1 <|v|< A} and
Spi={z e /V,, FP(z,v)dv > p/UFp(a:,v)dv}.
Then

/ FP(z,v)dzdv Sp/ / FP(z,v)dzdv
\Sp /Vp ANSp JU

< pe.e?P < peQ(l_p)D/ FP(z,v)dzdv.
alv,

Hence

/ FP(z,v)dzdv > (1 —peQ(l_p)D)/ FP(z,v)dzdv
Sp JVp IV

1
> —/ FP(z,v)dzdv,
3 Jaxms
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for p large enough.

Let x € S, be fixed. By rearrangement, there are nonincreasing, non-
negative and left-continuous functions }3’%’ and FP respectively, defined on
[0,] V, |] and [0, 37(A3 — 1)] such that

|veVy a—da< FP(z,v) <a+da|=
| n€0,|Vp [l @—da<FP(n) <a+dal,

and
|veU; a—da< FP(z,v) <a+dal|=

4 _
|u€[0,§7r()\3—1)]; a—da< FP(u)<a+da|.

Let us divide the interval 0 < p <| V,, | into two intervals I, I3 in increasing
order, so that

~ 1
/Ffdu:—/ FP(z,v)dv, ve{l,2}.
I, 2 Jy,

For any fi smaller than the right endpoint of I3,

g P2 = F2G) | 1 = | PG

=— [ FP(z,v)dv > I—)/ FP(z,v)dv
2 Ju

VP
4 3
p 371'()\ 71) _
-2 F2(n)dp.

Hence, for any ji smaller than the right endpoint of I3 and any
RS [17 %W(AE; - 1)]7

which implies

for p large enough. Let

Spz = {v € Vp; FP(z,v) > EP(f1), for some fi smaller
than the right endpoint of I}.
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Then

- 1
// Fp(x,v)da:dv:/ Ff(,u)du:—/ / FP(z,v)dzdv
Sp / Spe Sp /1y 2Js, v,
1

> _
6 Jaxrs

FP(z,v)dzdv. O

End of proof of Theorem 4.1.
Multiplying (3.7) with logFP and integrating over Q x IR® implies

1

W /Q2XR6 e(Fp’Fp)(z’y7vav*)d$dyd’l]d’v* =

/ v - n(z)FPlogF?(z,v)dzdv =
0 xIR3

FP
. FPlog—(z,v)dzd
/89><1RSU n(zx) ogM(aU v)dzdv

+ v - n(z)FPlogM (z,v)dzdv.
OO x IR

Here

e(F, ) = X" (F(z,0)F (y,0:) = F(z,0) F(y, v;))logg((f ’:,))1;((3’ 1;*:))'

Also
/ v -n(x)FPlogM (x,v)dzdv =
ONXIR?
—/ v-n(z)FP(b(z) + c(x) | v |*)dzdv < c/ PP (z)dz = c,
OO X IR3 o0
and
FP
/ v-n(x)FPlog— (z,v)dzdv = / PP x @l (z)log(pP * o) (z)dz
a0+ M o0
< [ ons (Plog?) @iz = [ Ploge?(z)do,
onN onN
by Jensen’s inequality. Again by Jensen’s inequality (see [9]),
PP (x)logp” (z)dx
o0

FP
< / | v-n(z) | FPlog— (z,v)dzdv,
a0~ M
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since

FP
T) = v-n(x) | M dv.
o) = [ Joenla) | M3z
Hence
1
- P P
TFrdyan, /Q2><1R6 e(FP, FP)(z,y,v,v.)dzdydvdu, < ¢ < oo.

This together with Lemma 4.2 implies

1
/ FP(z,v)dzdv > —/ FP(z,v)dzdv
Sp J Spa 6 Jaxmrs
> c/ e(FP, FP)(z,y,v,vs)drdydvdv,
Q2 xRS

z C/ e(FP, FP)(z,y,v, v, )dzdydvd,.
mESp,’UESpm ,yEQp,v* Eﬂpym

The inequalities

FP(z,0) > p°FP(z,v), ¢<FP(y,v.) <1,
c<FP(y,vl) <1, €Sy, vESp YED, i€ Dy,

imply that
FP(z,0)FP(y,v.) — FP(z,0")FP(y,v,) > cF?(x,v),
and
FP(z,0) FP(y, v.) 3
Fo(a, o) FP(y,vh) =
so that

e(FP, F?)(z,y,v,0.) > cx"? F”(,v)logp.

Moreover, | €, |, and for a.a. = € S, y € €, | Qpys | are bounded from
below, uniformly with respect to p and z, y. Hence,

/ / Y FP(z,v)dzdv > clogp/ / P FP(x,v)dzdv,
Sp I Spa Spa
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which leads to a contradiction. This ends the proof of Theorem 4.1. O
Remark. In this step the condition of the diffuse reflection being Maxwellian
was used to obtain

/’U -n(z)FP(x,v)logM (z,v)dzdv < c.

A number of generalizations are obviously also possible, including the one
of replacing M by normalized functions ¢ with

/v -n(z)FP(x,v)logp(z,v)dzdv < c.

The key Theorem 1.2 will easily follow from the previous results together
with weak sequential compactness of (F"").

Proposition 4.3 Any sequence (F™™) with lim,_, o, = 0 is weakly com-
pact in L' (k) x IR3).

Proof of Proposition 4.3. The statement follows if the sequence (F"™™") is
uniformly equiintegrable. Given e, there is K, such that

/ / F™"™(z,v)dzdv < e.
Q J|v|>Ke

So if the proposition does not hold, then there is € > 0, a subsequence (F™)
and a sequence of domains (4,) with (4,) C Q x {r, <| v |< K¢}, such
that

F™(z,v)dzdv > €, |A,|<n 3.
Ap

Let us first discuss the case of
1
Ap COXV,=Qx{ve R r, <|v|< =}
n
By Theorem 4.1, for some ¢y > 0,
/ Fr™(z,v)dzdv < ¢y < 00,
QxR
independently of r,n. And so
/ F"(z,v)dzdv > € > = F"(z,v)dzdv.
QX Vp

Co JOXIR3

We can then proceed as in the proof of Theorem 4.1 introducing €y,
and €2,4,. We will also need a variant of Lemma 4.2, namely
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Lemma 4.4 There are S, C 2, and for a.a. © € Sy, y € Qy,, there are
Snz C Vi, Qnyz C Qg with | Qpyg |> 1, such that

/ F"(z,v)dzdv > i F"(z,v)dzdv,
w S 4co Jaxms

and for x € Sp, v € Spg, Y € U, Vs € Qpyy,

Fn(‘T’v) Z TLQFn(.T,’UI(:C,y,'U,’U*)).

Proof of Lemma 4.4. It is enough to prove the existence of S, C € and for
a.a. © € S, the existence of S,; C V,, and V!, C {v' € R?; 1 <] v' |< A}
with | V¢ |< 1 such that

/ / F™(z,v)dzdv > L F™(z,v)dzdv,
n ne 4:CO Qx IR3
and
F(z,v) > n’F"(z,v"), €8, vESn, v eV,

Let U:={v € R3 1<|v|< A} and
Sp = {z € / FY(z,v)dv > — [ F"(z,v)dv}.
Vi 2Cb U

Then by (4.2),

/ /F"mvdxdv<—/ /F"xvda:d SE
Q\S, J Vi, Q\ S, 2

S—// F"(z,v)dzdv.
2 JalJv,

1
/ F"(z,v)dzdv > —/ F*(z,v)dzdv

Hence

> i/ F"(z,v)dzdv.
2¢co Jaxms

Given z € S, introduce the rearrangements F’xn and F? as in the proof

of Lemma 4.2 and conclude as there that for any ji smaller than the right

endpoint of I; and any i € [1, 37(A\3 — 1],



Hence, for large n,

Fp (i) > n®Fy ().
Let
Spz = {v € Vyy; F™(x,v) > F(i) for some ji smaller
than the right endpoint of I }.
Then

// F"wv)dwdv—/ E™(u //F"wud:z;dv
n ne n /11 n n

> —/ F"(z,v)dzdv. O
4eo Jaxm?

Continuation of the proof of Proposition 4.3. From the proof of Theorem
4.1, we know that uniformly with respect to n,

/ e(F", F™")(z,y, v, vy )dzdydvdv, < ¢ < 00,
Q2 x IRS

which this time using Lemma 4.4 leads to the same contradiction as in the
proof of Theorem 4.1. We have thus proved that given ¢ > 0, there is n.

such that
/ / (z,v)dzdv < e.
w|<ngt

It remains to prove the uniform e-equiintegrability for (F™) on
Se=Qx{ve R n ! <|v|< K]} Assume that in the set S, there is a
sequence (A,) with | A, |<n 3 such that
/ F"(z,v)dzdv > e.
An
Then A, = A,, U A,,, with

1
Ap, = {(z,v) € Ap; meas{w € R3; (z,w) € A,} < E}’
Ap, = Ap\ Ap, -

Arguing similarly to the earlier case of | v |< n_!, there is ng € IV such that

/ F"(z,v)dzdv < E, n > ny.
An, 2
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It remains to exclude the possibility that [ Any F"(z,v)dzdv > § for an un-

bounded sequence of n. For this we first prove the weak L'(82) compactness
of (p"). That result is a direct consequence of the following two lemmas.
Write p" = G™ + H", where

@)= [ e

gn(z,v) :=| v n(z) | M(z — s¥(z,v)v,v)p" * @ (z — 57 (z,v)v)

0
— vn(z+sv,v)ds
e f—s+(m,v) ,

! / v+ n(z)
- vV-n\T
f F”dydv* 1]-71,(.1:)<0 _5+(m5v)

/XT” (z + sv —y,v,v,)F"(z + sv,v") F"(y, v.)dydv,dvds.

" (2) = W

Lemma 4.5 (G") is strongly compact in L'(0Q).
Lemma 4.6 (H") is weakly compact in L*(0S2).

Proof of Lemma 4.5. (G™) is uniformly bounded in L! by [, p"(y)dy. Next,
(G™) is an equicontinuous family, uniformly with respect to z € 92. Indeed,
for a fixed x € 99, let A, := {v € R%0 < _\%I ‘n(z) <6}, By :={v €
R30 < —v-n(x),|v|< d}, and

Cp:={veR%6< —TT n(z),d <| v |[< K}. The M-factor makes the
contribution from | v |> K arbitrarily small for K large enough. Writing
v in polar coordinates v =| v | w, w € $2, and bounding from above the
exponential term by 1, implies that

J, smi@vav< [ [wen() | (0" 5 ) (e = 5" (@)

Az €52;0<—w-n(z)<4d

+oo
/ v P M(z — sT(z,w)w,|v|w)d|v|dw
0

<cd (" * o) (x — 5T (z,w)w)dw.
weS%;0<—w-n(z)<d

By the change of variables w — y = z — s7(z,w)w € 01,

Dw
/ gn(z,v)dv < c6 (0" * 7)) | = | dy
A, Dy

y€09Q,0<— 2=t n(x)<d

<cé p" o = cd,
N
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since by hypothesis | g—‘;’ | is uniformly bounded. The contribution of B, to
Gy, is in the same way bounded by
i

|w-n(z) | (0" * p)(z — s (2, w)w)

/wESQ;OS—w-n(m)
6

([ 10 Mo = s*(n,0)r] v | w)d |0 o
0

ﬂ

<ch |w-n(z) | (p" * ©y)(z — s (z,w)w)dw

SZ
< c.

There remains to study the contribution from C; to G™.

/ gn(w+h,v)dv:/ | w-n(z+h) |
Crth —w-n(z+h)>4

K.
P e gineth—st @t how) ([ 0P M +h—st @+, v|w)

1 r _ n
fF"dydU* f—s+(z+h,\v|w)fx 7 (z+h+s|v|w—y,|v|w,vs) F™ (y,v« )dydvs ds
e d|v|)dw.

Set

_ h+sT(z+ b0
C|h+st(z+hv) |

Up

Obviously %Z” = identity for h = 0. By continuity, the convergence to this

value when A — 0 is uniform with respect to z € 92, v € C,. Also
limw - n(z+ h) —up -n(z) =0,
h—0

uniformly in z € 99,

1

1 (0 r _ n
. fF‘ndydv* fis+(w+h,|v|w)fx n(z+h+s|vlw—y,|v|w,vs ) F?(y,vx ) dydv«ds

lim (
h—0
1 0
_W f—s+(z,|v|w) fx’"(z+s\v\w—y,\v\w,v*)F"(y,v*)dydv*ds B
—e ) =0,

uniformly with respect to x € 992, v € C. Set

%WZL%@MW
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and change variables from dw to duy, in G} (). It follows that limy_,o G} (z+
h) — G%(z) = O(d), uniformly with respect ton € IN, z € 09, 0 < p €
LY(89) with [y, pdz =1. O

Proof of Lemma 4.6. It follows from the earlier discussion of ’small ve-
locity mass for F™’, that in the definition of H"(z) it is enough to consider
domains of integration with | v |, | vs |, | ©' |, | v} |> § > 0, and from the
uniform bound for [, -, | v |2 F*(z,v)dzdv that it is enough to consider

domains of integration with | v |, | vy |, | v' |, | v} |< }. It also follows from
the (Ay,) part that it is enough to discuss as domains of integration, sets

with | ﬁ . % |> 6. Let xs be the characteristic function of the remain-

2

ing v, vy, v/, v.. So with By, a set in 9 of measure < m™*, instead of

I™ = [ H"(z)dz, it is enough to discuss

1 0
A S — / :
J [ Frdydv, /g, xms | v-n(z) | o Xs
0
F™(x + sv,v")F™(y,v.)e” Js vl gsdydv,dzdv,

since the contribution outside suppys tends to zero with ¢ uniformly in n.
For s, v, v’ fixed, F"(x + sv,v') can also be expressed in exponential form as
an ingoing boundary value plus a gain term integral along a characteristic.
The contribution from its boundary term to Ij* gives - similarly to the
proof of Lemma 4.5 - a contribution to I§* which tends to zero when m —
00, uniformly with respect to n. Another xs truncation also removes an
integral in the gain part, uniformly with respect to n small of order o(1) in é.
Repeating once again the procedure of expressing the latest remaining gain
term in exponential form, leads to a boundary contribution tending to zero
when m — oo, uniformly in n, and an inner integral. Taking into account
that all the occuring exponentials of collision frequencies are bounded by
one, this inner integral is bounded by

1
K™ .— —)?’/ZF"(thl'*)Fn(yz,Vzl*)

([ Frdydv,
F™(y3, Va, ) F™(z + 510 + s2V] + 83V3, Vi) x§x3dzdvdy123dv.i123dsios,
where

! !
Vi i=v'(x + s1v,91,v,v4),
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‘/'2’ = ’Ul(x + s1v + 321/113 Y2, ‘/1171)*1)7
Vi = (2 + 510 + 52V + s3V3, y3, Vs, vs2),

and analogous definitions for the * variables, and

Z = {(z,v,Yi, Vsi, Si); T € B,
v E R3ayi € R?’afu*i € B?’,Sl € [—S+(LII,’U),O],
S2 € [—S+($ + 51U3V11)50]533 € [_3+($ +s1v+ 32V115Vv2’)30]}'

For (z, s;,y;) fixed, by the successive changes of variables (v,v,) — (V{,V/,),
(Vlla'v*l) - (VvQI’ ‘/2,*)7 (VQIaU*Q) - (‘/3,,‘/3,*), dvdv,123 is replaced by
Javidvy!, dVy, dVy,, where J is the product of the three successive Jacobians
and is bounded from above due to the x; truncations giving

v v v.o % Vi %

o] [V]] o] [ V5] RZERERZY

Hence K™ is bounded by

m ¢ n ! n !
<
K™ < G magdns | s VD .78

F™(ys, Va, ) F™(x + s10 + soV{ + s3Vy, V3)dzdVy dVY, dy;ds;,

where now v, V{ and Vj are functions of (z, V4, V/,,v;,s;). For (z,V4,V]),)
fixed, let us make the change of variables

(81,82, 83) —2z2=x+ 81V + 82‘/11 + 83‘/2/.

The set {z = =+ s1v + sV} + 83VJ; (z,v,9;, s, 8;) € Z} is a volume in IR3
and the Jacobian | g—j | is bounded from above due to the x; truncations,
so that

K™ <c|Bp| F™(2,V3)dzdVy < em™2.
QxIR?

We conclude that (H™) is weakly compact in L!(052).
End of proof of Proposition 4.3. It remains to study [ Any F"(z,v)dzdv, where

meas{z € Q; Jv € R3s.t.(x,v) € Ap,} <n 2

Write F™ in exponential form as the sum of an ingoing boundary value term
B™ and a characteristic gain term integral C™. For the integral of B™ over
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Ay, , again given v, split the x’es of A,,, into those zy where (zg,v) € Ay,
and the set of z = zo + tv such that (z,v) € A,,, has measure smaller than
n ! (small set along characteristic), and the rest which projected into a plane
orthogonal to v have measure smaller than n~! (small set of characteristics).
The B™ integral for the first subset of A,, is bounded by cn ™!, with c
independent of n. The B"™ integral over the second subset of A,, tends to
zero when n — oo by the compactness of (p™). So lim,_, fAn2 B" =0.

As for the (C™) sequence, the same type of arguments that proved the
compactness of (H") in Lemma 4.6, gives that lim,_, o Any C"™ = 0. This
completes the proof of the proposition. O

Lemma 4.7 The sequence (W Seern s X F™ (2, 0") F™ (y, v ) dydu,) is
weakly compact in L'(kQ x IR3).

Proof of Lemma 4.7. The proof of Lemma 4.7 is similar to the proof of
Lemma 3.3. O

Proof of Theorem 1.2. Consider the weak L' limits of (F™") and p™™" %
@l := p" % . Using the weak L!'-compactness of Proposition 4.3 and
Lemmas 4.5-7, we can pass to the limit in the weak formulation of (3.7),
analogously to the end of Section 3. The weak limit of (p™) is by the usual
trace arguments equal to the outgoing flux of the limit F' of (F™). Hence
F satisfies the sm-transformed problem (1.5-6), and so Theorem 1.2 follows
by an application of Lemma 1.3. O

The discussion so far was restricted to the collision kernel in the Povzner
collision operator being identically equal to 1. We shall now finally in the
main theorem of the paper extend the results to more general collision ker-
nels. Here test functions for the weak form of the Povzner equation are
functions in L®(Q x IR?), continuously differentiable along characteristics
and vanishing on 9Q2~.

Theorem 4.8 There exists a weak solution f in L' (Q x IR®) with given total
mass k > 0 to the boundary value problem (1.1-2) when the collision kernel
is a strictly positive function B(;:z',v —,), bounded in L®(S? x IR3) (of
pseudomazwellian type), or is of hard force type

T—y - T =y 3
B(————,v—v,) =B(———,v—wv,) |v—v |”, 0< B <2 4.3
(== =Bl o =) [v=v. P 0SB <2 (@43

39



Proof of Theorem 4.8. First, the existence of a weak Lﬁ_ solution to the
Povzner equation in the case of a positive, bounded C'° collision kernel
B(ﬁ—:yl',u — v,) can be proven in the same way as for Theorem 1.2 in the
previous sections, where the collision kernel was identically equal to one.
Let us next consider the case when the collision kernel B is bounded and
measurable. Let (B,) be a sequence of bounded C* functions uniformly
converging to B outside of sets of measure € for all € > 0. The existence
of a solution F? to the Povzner equation with collision kernel B, and total
mass k* for the sm-transform is already clear. Then the arguments in the
proof of Theorem 4.1 and Proposition 4.3 apply to (FP), so that (FP) is
weakly compact in L'. Using this weak compactness, as well as the uniform
convergence of (B,) outside of arbitrarily small sets, one can pass to the
limit in the weak formulation satisfied by FP.

Consider next the case of a collision kernel of the hard force type (4.3).
Lemma 1.3 holds also in this case. Namely, solving the original Povzner
problem (1.1) under (4.3), is equivalent to solving the following transformed
problem

1 X-Y
- xF(X,v) = B o
v OxF (X = o rearan | Px vt )
J BF(Y,v,)dY dv,

F(X,v"\F(Y,v,)dYdv, — F(X,v)

J(1+ | v |)BF(Y,v.)dY dv,’

where
X X
T To )P Fw,oydado’ ™" TOT [0 )P f (@, v)dedo

The proofs of the preceeding two steps imply the existence of solutions F? to
such transformed problem with collision kernels B, = min(B,p) and with
[(1+ | v |?)F(z,v)dXdv = k*. We can pass to the limit in the weak
formulation satisfied by (F?) when p — oo by once more applying the proofs
of Theorem 4.1 and Proposition 4.3. O

Remark. Other generalizations can also be treated by this approach, such
as given indata boundary conditions, there also the soft force case with
—3 < B < 0 by involving the renormalized solution concept, as well as more
localized situations such as

F(X,v) := f( €, velR.

B(.’I)—y,’U—’U*) ::B(iﬂj_v*)'v_v* |ﬂX($_y)7 _3</B<2a

where y is the characteristic function of a neighbourhood of zero. A paper
in preparation by V.Panferov [29], studies the latter more physical situation.
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