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Introduction. Eigenvalue estimates for operators of mathematical physics play
an important part in the study of asymptotic properties of the discrete spectrum,
scattering theory, stability of matter etc. Among such results, estimates having the
semiclassical order in the coupling constant are of special interest. The best known
example here is the CLR-estimate for the Schrodinger operator H(V) = —A -V
with the real potential V' € Ly jo:

No(H(V)) < C(d)/m(x)%dm, d> 3. (1)

Rd

Here and below we denote by Ng(H) the number of eigenvalues of a selfadjoint
operator H in the interval (—oo, 3), setting this to be oo if there are points of the
essential spectrum below (3; V stands for the positive part of V. Introducing the
coupling constant, i.e. replacing the potential V by ¢V, we get on the right-hand
side of (1) the factor q%, and this is exactly the asymptotic order that the left-hand

side has as ¢ — oco. Besides, the asymptotic coefficient is just ¢(d) f VE dx. In other
words, the quantity No(H (¢V)) is estimated by its own asymptotics (within the
value of the constant factor in the estimate).

Evidently, (1) implies the same inequality for N_(H(V')) with any v > 0.

The estimate (1) holds only for d > 3. In the two-dimensional case it fails, and
one has to change the right-hand side, in order to save the semiclassical order g =1.
Moreover, the estimates for N_.,(H(V')) with v = 0 and v > 0 look quite different.
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Let f be a function in L, jo.(R?) for some 7 > 1. For an arbitrary n = {nq,na} €
Z? denote Qpn = (ny1,n1 + 1) X (n2,ny + 1) and put

5= (/Q rds )

nez?

Then for v > 0
N (H(V)) < Clr,r)Si(Vs),  d=2. 2)

This result, which also has correct order in the coupling constant, was obtained in
[BBor]. Much later, this estimate was improved in [Sol], where the L,-norms in (2)
were replaced by the norm in the Orlicz space Llog(1+ L).

In the same paper [Sol|, estimates for Ny(H(V)) were obtained. The main
difference with the case v > 0 is that for d = 2 the contribution of the subspace of
radially symmetric functions has to be considered separately. As a result, No(H (V)
is estimated by the sum of two independent terms of a different nature, and neither
of them may be removed. In [BL] the same idea was used for the study of the
asymptotic behavior of No(H (¢V)) as ¢ — oc.

Let us now pass to the Schrodinger operator with magnetic field

d
Ho(V) = =) (0s; —ia;)* -V,

i=1

where a; = aj(z) € Lajoc(R?) are components of the magnetic potential a. For
H,(V) the inequality (1) (the magnetic CLR-estimate) also holds. A proof was
outlined in [S1]. Another proof was given later in [MRoz]. Both approaches do not
apply to d = 2. An attempt to handle the case d = 2 was made in [Ra2]. However,
the estimate obtained there involves rather restrictive conditions on the magnetic
potential a and the constant in the estimate depends on a.

In [RozSol], by establishing an abstract version of Lieb’s approach to the proof
of (1), its analog was obtained for Ny(A — V'), where A is a positive selfadjoint
operator in a rather wide class. In particular, this gave one more proof of the
magnetic CLR-estimate for d > 3. In this note we show that the approach of
[RozSol] allows one to treat the two-dimensional case as well. More exactly, in
Sec.1 — 4 we obtain an analog of the Birman — Borzov estimate (2), with a constant
not depending on the magnetic potential. Basing on this, we justify in Sec.5 the
Weyl type asymptotics for N_.(Ha(¢V)) as ¢ = co. Combining this result with a
statement of a rather general nature, established in [B2], we also study the discrete
spectrum in the gaps for perturbations of the operator H,(V). Thus, we extend
to the two-dimensional case the results of [Ral] and [BRa]. This, in particular,
removes excessive restrictions on the magnetic potential set in [Ra2].
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In the final Sec.6 we consider the much more subtle question on estimates and
asymptotics for No(Ha(V)). First we obtain an estimate for No(H, (V) +h(z)|z|~2)
with a slowly varying positive function h, i.e. with a regularizing term. For constant
function h this extends to our case a result of [BL] for the non-magnetic operator.
After that, we prove an estimate for No(Ha(V')), without the regularizing term.
This time, the constant in the estimate may depend on the magnetic potential.
Nevertheless, our result gives conditions ensuring finiteness of the negative spectrum
and is sufficient to prove the large coupling constant asymptotics.

1. The main result. We start with necessary definitions. Let a = {a1, a2}
be a magnetic vector potential on R?, whose components are real-valued functions
aj = a;j(z1,72) € Lajoc(R?), 7 = 1,2. The non-negative quadratic form

Aalu] = /R2 (|0z,u — ia1ul? + |0z, u — iazu|?) dz

with the natural domain Quad(A,) is closed in Ly(R?) (see, e.g., [S2]). By defini-
tion, A, is the self-adjoint operator in Ly(IR?), associated with this quadratic form.
Consider the operator Ha(V) = As — V, where V is a scalar (electric) potential.
Our main goal is to prove the following result.

Theorem 1. Leta € Lo 1oc(R?), V € Ly 10c(R?), and S, (V) < oo for somer > 1.
Then the operator A, —V is well defined as the form-sum, its negative spectrum is
discrete, and the following inequality is satisfied:

N_1(Ax — V) < G5, (V3). (3)

The constant C, does not depend on a and on V.

Incidentally, we obtain one more statement, which is then used in the proof of
Theorem 1.

Theorem 2. Letd >3, 0 < <1ord=2 0<6<1. Letac€ L2,1OC(R‘1),
V € Lijoc(RY), and Vi € Lg (RY). Then

No(A? — V) < C(d, 6) / Vi (2)% da. (4)

R4

The constant C(d,0) does not depend on a and on V.

In fact, this Theorem is an immediate consequence of general results of [RozSol].
Another application of it was recently given in [BPu].
Due to the variational principle, it suffices to prove all estimates for nonnegative
V only. We will treat this case in what follows.
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2. Technical preliminaries. Endow Quad(A,) with the metric form
1
lulls = Aa[u] +/ [ul*dz = || (Aa + 1) ull*;
R2

here and further || - || without subscript stands for the Lo-norm. Denote by H, the
resulting Hilbert space. For a € L, the space H, coincides with the Sobolev space
H'(R?), up to equivalence of the norms. Along with H,, consider also the family

of Hilbert spaces Ha g = Ha g(R?) = Dom ((Aa + I)g), 0 < 6 <1, with the norms
I’
lulla, o = || (Aa + I)2 ul|. So, Ha,1 = Ha and Ha o = La2(R?).

We also need a local counterpart of the spaces H, g. Let () be any unit square in
R?, whose edges are parallel to the coordinate axes. Let g be a vector field with real
components g1 2 € Lo (Q); here we do not consider arbitrary magnetic potentials
from Ly. The nonnegative quadratic form

Agqlu] = / (|8zlu - ig1u|2 + |0z, u — iggu|2) dx
Q

with the domain H(Q) is closed in Ls. Let Ag ¢ be the corresponding self-adjoint
operator. For 6 € [0, 1], introduce the spaces Hg 4(Q) = Dom ((Ag,Q + I)%), with

6
2

the norm ||ul|g 0.0 = || (Ag,@ +I)* u||. Due to the assumption g € Ly (Q), the
space Hg g(Q) coincides with the Sobolev space H?(Q) up to equivalence of the
norms.

Given a square (), we call “z;-edges” its sides, parallel to the coordinate axis z;,
j = 1,2. Extend the field g from Q to the whole of R?, in the following way. Let
I be the rectangle, obtained by the reflection of ) in each of its x;-edges. First we
extend g to II. Namely, we take the even extension of g; and the odd extension of
g2 through each of two x1-edges. Then we extend the resulting vector field through
both z,-edges of II. This time, we take the odd extension of g; and the even
extension of go. The new field, say g’, is defined on the square ), concentric with
@ and homothetic to it with the coefficient 3. We set g’ = 0 outside Q’.

Consider also a natural extension procedure for functions u € H'(Q). Given
such a u, we first take its even extension to II through z;-edges of @), and then
the even extension of the resulting function to @’ through x»-edges of II. The new
function, say v, belongs to H'(Q') and, by our construction,

2 _ 2

Then, fix a cut-off function ¢, which equals 1 on @ and 0 in a vicinity of 9Q’.

Extend the product v outside @' by zero and denote the resulting function by

Tu. Tt is clear that the operator I' acts from H'(Q) to H}(R?) and from Ly(Q) to

Lo(R?). By interpolation, it also acts from H?(Q) to H?(R?) for any 0 < 6 < 1.

We are interested in the properties of I' as an operator from Hg ¢(Q) to Hg o(R?).
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Lemma 3. Let g € Lo (Q) be a vector field with real components. Let the vector
field g' on R? and the extension operator I' be as above. Then

IPullge,, ey < COMullge, € Hal@) 0O <L,

where C(T') does not depend on g.

Proof. 1t is enough to handle § = 1 because the result is obvious for § = 0 and
extends to other # by interpolation. Denote max |Vy| = m. We have

2 o . 2 . 2 2
R €T V) — T2 -
I3 e = [, (e (o0) — imagnl s (o0) — igaonl + o) o
<2 ( [ 16l (2,0 = igro? + 0w g+ of?) o+ [ |Vs0|2|v|2dw>
Q' Q'

<2 (Il gy +m Il 0 ) -

and the result follows from (5). O

3. Semigroup considerations. Proof of Theorem 2. Consider the frac-
tional powers (—A)?, 6 > 0, of the operator —A on R%. The semigroup Q4 (t) =
et (=2 can be represented as an integral operator with continuous kernel, say

Qo (t; x,y). Its value on the diagonal does not depend on z:

Qo(t; z, ) = (2m)~4/? /Rd e tel gg = c(d, )t~/ (6)

It is well known that the semigroup Q1 (t) is positivity preserving, that is Q1(¢)f > 0
a.e. on R? for any ¢ > 0 and any nonnegative element f € Ly. The same is true
for the operators Qg(t) with any 0 < 6 < 1, which follows from [BrKiRo|, and can
also be seen from the analytical expression for Qg (t;z,y).

6
Along with Qy(t), consider the family of semigroups Pa ¢(t) = e_tAa, 0 > 0. For
0 < 6 <1 the semigroup P, () is dominated by Qg(t); this means that

|Pa,g(t)f| < Qa(t)|f] a.e. on RY, any t > 0 and any f € L2(]Rd).

For 6 = 1 this is a classical fact, established in [AHS]; see also [S1]. For 6 < 1, the
domination property follows from [BrKiRo].

Our proof of both Theorems 1 and 2 will be based upon [RozSol, Theor.2.4]; see
also Sec.2.3 there. Here we give the formulation for the particular case we need for
our purposes in the present paper. We specially wish to stress here that in [RozSol]
we do not need the continuity assumption, appearing in the formulation below.
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Proposition 4. Let A and B be nonnegative self-adjoint operators in Lo(R?).

Suppose that the semigroup etB s positivity preserving and can be represented as
an integral operator with the continuous kernel Qg (t;x,y), such that

sup Qg (t;r,7) < Kt~ a>1, K < cc. (7)
TERC

Suppose also that the semigroup e~tA is dominated by e~ *B. Then for any nonneg-
ative V € Lo(R?) the operator A —V is well defined as the form-sum, its negative
spectrum is discrete, and

N_(A-V)<C(a)K | V%x.
Rd

Now we are in a position to prove Theorem 2.

Proof of Theorem 2. The equality (6) shows that for B = (—A)? the relation (7) is
satisfied with o = 2%. For d > 3, the value # = 1 is admissible and we obtain from
Proposition 4 the inequality (4) for any 6 € (0, 1]. For d = 2, the value § = 1 is not
allowed by (6), (7), and we get the same inequality only for 6 < 1:

No(AP — V) gc;*(e)/ Vids, 0<6<1,d=2 (8)
R2

U
Since A% < (A + I)?, inequality (8) implies

No((Aa+ 1) — V) < 0(9)/ Vide, 0<0<1,d=2 )
R?

Theorem 1 will be derived from (9), but this requires some more preparations.

4. Proof of Theorem 1. It is convenient to reduce the problem to singu-
lar numbers estimates for a certain compact operator. This reduction is based
upon the Birman — Schwinger principle. Below we give one of its many equivalent
formulations (for the simplest case), see [B1], or an exposition in [BSol].

Proposition 5. Let X be a positive definite self-adjoint operator in a Hilbert space,

and C be a nonnegative self-adjoint operator, form-bounded with respect to X. Then

the following two assertions are equivalent.

1 . The operator CTK™ s compact.

2 . For all t > 0 the operator KX — t€C is well defined as the form-sum and its
negative spectrum 1is finite.



Moreover, for all t > 0
No(K —t€) = n(t~ /2,03 3). (10)

Here n(s; T) stands for the singular numbers distrubution function of a compact
operator T; further, singular numbers are defined as square roots of the eigenvalues
of the self-adjoint operator 77, see [GoKr].

Now, let the electric potential V' > 0 be a function in L,(R?), 7 > 1. The
estimate (9) applies with # = r—!. Substituting s~V for V, we obtain

No((Aa +1)f —s71V) < 0(9)3_’"/ V'dex, 6 =r1. (11)
R2

Apply Proposition 5 to X = (A, + I1)? and € = V. Then CZX ™% turns into the
operator

Tagy = V?(Aa+1I)"%.
Combining (10) and (11), we get n(s; Tag,v) < C(0)s™*" [, V"dz or, equivalently,

1
$n(Tapy) S OUNNTEVIE Goye  O=77"

It is important that Cy(r) does not depend on the magnetic field a.
In particular, the last estimate holds for V replaced by Vg := V1g, where 1¢ is
the characteristic function of Q):

_8 1 —
Sn(Ta,G,Vq) S Cl(r)n 2 ||V||LT(Q)’ 0=r 1- (12)

We need a similar inequality for the operator in Lo(Q)

[V

Tep.Qv =V3 (Agq+1)72,

with g = a | Q. To establish it, consider the field g’ and the extension operator I,
constructed in Sec.2. Write down the Rayleigh quotients for the squares of singular
numbers of the operators Ty 9 v, and Tg g q,v- They are, respectively,

Vi ul?dz Viul?dz
ZRz(u):%, uEHl(R2) and ZQ(U)ZIQ%, uEHl(Q).
||u||Hg,79(R2) ||’u’||Hg,9(Q)
By Lemma 3,

Zg(u) < C(I')2 Zg2(Tw), ue HY(Q).
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According to the variational principle, this implies

50(Tgo.0.v) < CO)su(Tgove) < Can 5IVIZ o O=r""  (13)

The second inequality in (13) follows from (12); the constant Cs(r) = C(I')C1(r)
is the same for all unit squares Q € R?.

Represent Ty 1 g,y as

1—06

TgrQv=Tgpov(Ago+1)" 7. (14)

The second factor on the right-hand side can be treated as Tg 16 0,1,.- Thus, the
estimate (12) applies to it (with 1 — € instead of ), giving

1—-6

sn (Mg + D7) <G, =r@r -1 (15)
Now, apply to the product (14) Fan’s inequality, see e.g. [GoKr, Cor.I1.2.2]:

Sky+ks—1(T1T2) < 8k, (T1) 8k, (T2)-

For n odd, setting here ki = ko = 2%, we derive from (13) and (15):

sn(Tg,1,Q,v) < Ca(r)Ca(r)In 2 V|7 o)

Evidently, this inequality extends to all n € N (with a bigger constant factor).
Returning to the distribution functions, we get

n(5;Tg,1.0.v) < C(r)s VI, @) (16)
Now, for a € L, the estimate (3) easily follows from (16). Indeed, one has

Zp>(u,8) = Y Zg,(1,a[Qn), 8n=2a Qn.

neZz?2
Therefore, by the Birman—-Schwinger principle and “Neumann bracketing”,

N 1(Aa=V)=No(Aa+1-V) =n(L;Tarv) < Y n(1;Tga1,0uv),  (17)
nez?

and we arrive at (3) applying (16) to each term of the last sum.

It remains to get rid of the assumption a € L. Given an arbitrary a € Lo joc,
we can approximate it in Lo 1o by a sequence {aj} of bounded magnetic potentials.
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The corresponding magnetic Schrodinger operators converge in the strong resolvent
sense; this result is basically due to Simon [S2], who proved it for positive potentials
(in our notation, for V' < 0). In [MRoz, Prop.2.5] the result was extended to the
general case. This convergence and independence of the coefficient C,. in (3) of a,
guarantee that the estimate extends to any a € L joc-

5. Eigenvalue asymptotics. For d > 3 the Weyl type asymptotic formula for
N_y(Aa+U — qV) as ¢ = oo was justified in [Ral] and [BRal, assuming V' € Ly,
a € Lgoc and under certain conditions on the “background potential” U. Granted
this, the abstract scheme developed in [B2] produces the asymptotic formula for
eigenvalues of A, + U — ¢V in the gaps of the spectrum of A, + U. Having the
estimate (3) and following the reasoning in [BRa] (see also [BPu]), we can now
obtain similar results for the two-dimensional case rather easily. We start with the
asymptotics of the number of negative eigenvalues.

Denote by L*log(1 + L) the Orlicz class of functions f for which |f|* log(1 +
|f‘) € Ll,loc-

Theorem 6. Let d =2, V € Llog(l + L), and S,(V}) < oo for some r > 1.
Suppose also that U > 0 and |a|®> + U € Llog(1 + L)ioc- Then for any v > 0

im TN (A + U~ qV) = (4m) /R Vida. (18)

Proof. Our argument is rather standard, see e.g. [BBor| or [BRa]. For this reason,
we only outline the main steps. Since U > 0, (3) implies N_,(Aa + U — ¢V) <
CqS;(V4). In the usual way this estimate reduces the task of justifying the asymp-
totics to the case of bounded non-negative potential V', compactly supported in
some square (. Due to the variational principle (Dirichlet — Neumann bracketing),
this problem, in its turn, reduces to the study of the spectrum of two operators,
generated by the quadratic form IQ V|u|?dz in the spaces H'(Q) and H°(Q),

equipped with the metric form
Auglu + [ UluPdo -+ [ Jufds =
Q Q

/(|Vu|2+'y|u|2)dm—|—22/ aj%(aaju)dH/(\a\2+U)\u|2da;. (19)
Q —~Jq Q

The last term on the right-hand side of (19) is compact with respect to the first
one, since |a|2 + U € Llog(1 + L)(Q) (see, e.g., [Sol]). Relative compactness of
the middle term follows from this via the inequality 2|ab| < ea® + e~ 1b2. Since
relatively compact perturbations of the metric in the Hilbert space do not affect
the leading term in asymptotics, one can leave on the right-hand side of (19) only
the first term, and we are in the well-studied non-magnetic situation. [
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In order to include more general background potentials and consider eigenvalues
in gaps, we need some more estimates.
By ¥, we denote the class of compact operators 7 satisfying the s-numbers

estimate ||, := sup n%Sn(‘T) < o0. The separable subclass ¥) C X, consists of

operators with s,(7) = o(n_%).

Lemma 7. Under the assumptions of Theorem 6, let V > 0. Then, for v > 0,
Ty =Vi(Aa+U+7)"2 €5y, (20)
Ty =V3:(Aat+U+9)texd (21)

Proof. Taking into account (10), we can rewrite (3) as [V2 (Aa +7) "2 |2 < CS.(V).
Since U > 0, this yields |T1|s < CS,(V), thus establishing (20). Next, note that
Sy(V) < oo implies V' € L;. We will derive from this that the operator T belongs
to the Hilbert — Schmidt class G5, which is a subset of Eg.

Indeed, it follows from the semigroup domination that (A, + U + )~! is an
integral operator with the kernel, dominated by that of (—A + )~1. The latter
is K(v2(z —y)), where the Bessel — McDonald kernel K (z) belongs to Lo(R?). It
follows that V()2 K (y2 (z — y)) is square integrable over R? x R?, and the above
domination implies that To € &,. [

Let F' be one more term in the background potential and A be a real regular point
for the operator B, = A, + U + F, defined as the form-sum. For a non-negative
potential V' and ¢ > 0 we denote by Ny(¢; B, V) the number of eigenvalues of the
operator B, — tV crossing the observation point A as ¢ grows from 0 to q.

Theorem 8. Let the assumptions of Theorem 6 hold, V > 0 and multiplication by
|F'| be form-bounded with respect to A + U, with zero relative bound. Then

lim ¢Ny(q;Ba, V) = (4n) 71 / Vdz. (22)
g—+o00 R2

Proof. Our argument repeats almost identically the reasoning in [B2] or [BPu].
By Theorem 1.2 in [B2], estimates (20), (21) imply that the leading term in the
asymptotics of Nx(¢; Ba, V) does not change if we withdraw the term F in the
background potential and replace the observation point A by any real regular point
o of the operator Ay + U. If we take p = —y < 0, the quantity N, (¢, Aa + U, V)
becomes N_, (Aa + U — ¢V), and it remains to refer to Theorem 6. [

One can give sufficient analytical conditions on F' guaranteeing the above form-
boundedness. For example, it suffices to require that | 0 |F|"dz < C for for some
r > 1 and any unit square Q.
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Remark. Following [Sa], one can relax the condition V' > 0 in Theorem 8.

6. A generalisation: the case of v = (. In this final section we find conditions
under which the results of the previous parts, especially the large coupling constant
asymptotics from Theorem 6, can be extended to the case v = 0. As in [BL], the
conditions here are somewhat more restrictive than the ones for v > 0.

We start with negative spectrum estimates for the operators

Aa + h(z)|z|72 -V, (23)

Ao+ h(@)(1+|2*)7 -V (24)

with a slowly varying bounded function A(z) > 0. In contrast to the original
operator A, — V, for these operators the quantity Ny can be effectively estimated.
For h = const, the estimate we give extends a result for the non-magnetic case
obtained in [BL]. To describe the estimate, consider the family of annuli Q; = {z €
R? : /7! < |z| < e}, j € Z and the disk Q° = {z € R? : |z| < 1}. Given a

number r > 1, we denote
[ sl s
Q

J

3=

S (f) :Z<

JET

sen=([ Iflrdﬂ?)% > ( f o+ \:v|2)(’"‘1)|f\rdm>

3>0

S

In what follows, M stands for sup h on R2.

Theorem 9. (a) Let a € Ly 10c(R?), V € L1 10¢(R2 \ {0}), and S,(h~'V}) < oo
for some r > 1. Suppose that for some K > 0 the ratio h(x)/h(y) is not greater
than K when both x and y are in the same domain Q;, j € Z. Then the operator
(23) is well defined as form-sum, its negative spectrum is finite, and

Ny (Aa + h(z)|z|72 = V) < KCi(r, M) S, (R V). (25)

(b) Let a € Lajoc(R?), V € L110c(R?), and S°(h~'V,) < oo for some r > 1.
Suppose that for some K, the ratio h(x)/h(y) is not greater than K when both x
and y are in the same domain Q;, j > 0 or in Q°. Then the operator (24) is well
defined as the form-sum, its negative spectrum is finite, and

h(z)
14 |z|?

No (Aa + - V) < KCy(r, M)Se(h~1V). (26)
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The constant factors 6172(7", M) do not depend on a or on'V.

For a = 0 and h = const, that is for the operator —A + c|z|=2 — V , this is
essentially the result of Lemma 3.3 in [BL].

We begin with a technical remark. The usage of the circular annuli €2; is not
compulsory: one can start from an arbitrary bounded convex neighborhood X of
the point 0 and any number ¢ > 1. Such X and ¢ being given, define the sets

X;=¢"X \ ¢ 'X and the norm
[ 1aPe 0 prda
X

J

S =

st<f>=z(

JEL

(with S° modified in the same way). A simple geometric reasoning shows that all
the norms of this type, corresponding to different choices of X and ¢, are mutually
equivalent. For technical reasons, we make use of these norms, with X being the
square {max(|z1|, |z2|) < 1} and with ¢ = 2: this makes it possible to employ the
estimate (16) directly.

Proof of Theorem 9. Both parts are proved in a similar way. Consider the part (a).
For definiteness, we suppose M < 1. We follow the same line as in Theorem 1. It
suffices to handle the case V > 0 and a € L,. Consider the operator

|-

Tav :=V? (Aa + h(z)|z]|2)”

I

We shall give an appropriate estimate of its singular numbers, then the desired
result will follow by (10).

Along with fa,v, consider a family {fj,a,V} of operators, acting in the spaces
Ly(X;). To define them, consider positive definite quadratic forms

Ajalu] = / (\&vlu — ialu\2 + |0z, u — ia2u|2 + h(x)|x\_2\u|2) dx (27)
j

with the domains H'(X;). Each A;, is closed in Ly(X;). Denote by A;, the
corresponding self-adjoint positive-definite operator in Ly(X;), and set

Tjayv=ViA;2
As in (17), one has
No(Aa + h(@) |22 ul = V) = n(1;Tay) < > n(1;Tjay). (28)
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Denote by l;j the minimal value of h in Yj. Consider the term with j =
first. Replacing in (27) (for j = 1) the term h(z)|z|~2|u|? by |u|?, we obtain a new
quadratic form, say Aj. Due to the assumption M < 1, one has A, 5[u] > %A;[u]

Further, X; splits into the union of 12 unit squares, say @1,...,Q12. By the
variational principle all this, together with the inequality (16) and an analog of
(17), leads to the estimate

1
2

12 7 2
= ha -
n(S;TLa,V) < kz::ln s <§> s Ta,0,,v | < C s72h7 12 ||V||L (Qr)

<C'(r)K 2Z|Ih Viz.@uw

r

< KC"(r)s™2 (/X |x\2(r_1)(h_1V)rdx) . (29)

Finally, taking into account that the constant C”(r) is independent of the magnetic
field , we derive from (29) a similar estimate for n(s; T j.a,v) With any j € Z using
scaling. Now, the theorem follows from (28). The proof of part (b) goes exactly in
the same way, we only have to consider the square X separately. [l

Consider now the operator A — V without the additional terms present in (23),
(24). We suppose the magnetic potential to be nontrivial: the equation Vo =
iap has no nontrivial solutions in H (R?). In other words, this means that the
magnetic potential can not be gauged away.

Proposition 10. Let the magnetic potential a € L?log(1l + L)ioc be nontrivial.
Then

No(Aa = V) < C(r,a)S7(hg'Vy),  ho(z) = (log(e + |z))) 7> (30)

The constant factor in (30) may depend on a but does not depend on V.
Proof. We make use of the following Hardy-type inequality:

/|Vu| dx + / lu(z)|*dz > / (| )‘2| (z)|*dx, (31)

o<1

which should be considered as essentially known. It can be easily derived from the
inequality (2.19) of [B1], for example.
It follows from domination (see, e.g., [S3]) that for any u € Dom(A,) one has

Aats, u) L, / |V |ul|?d. (32)



This yields

A+ [ fu@)doz e [

|lz|<1 R2

ho(x) 2
1 o lu(z)|?dz,  uwe€ Quad(da).  (33)

Indeed, for u € Dom(A,) (33) follows from (32) and the inequality (31), applied
to the function |u| instead of uw. Then it extends to the whole of Quad(Aa,) by
continuity.

We apply now Corollary 9.1 in [W]. According to this result, for nontrivial a the
forms A, |u] and Aafu|+ flwl <1 |u|?dz are equivalent on Hy,, (however the coefficients
in the inequalities in this equivalence may depend on the magnetic field). Thus (33)
implies

ho(x)
al+|x|?

Aufu] > C (Aa[u] + /R |u(1:)|2d:c) .

Therefore,

ho(ﬂ?) -1
a < a -
i”O(A V ) “0 <JL + 1+ |$‘2 C V

and it remains to apply (26). O

Remark. The result in [W] was established only for a € Loi.1oc. However,
what actually is used in the proof is the fact that the form Aa[u] + ||ul|? is locally
equivalent to the norm in H!, and this, as one can see from (19), takes place for
a € L2log(1+ L)ioc.

Now the asymptotics in the large coupling constant arises automatically. One
only has to repeat word by word the reasoning in Theorem 6.

Theorem 11. Under conditions of Theorem 6, let the magnetic potential be non-
trivial and S2(hg'Vy) < co. Then

lim ¢ ' Ny (Aa +U —qV) = (4%)_1/ Vidz.
q—0 R2
Note that for trivial magnetic potentials the problem reduces by gauging to the

non-magnetic case, studied in [BL].
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