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Abstract

Let g be a complex simple Lie algebra with the root system A. We
prove that any classical double D(g) is graded by A. As a consequence
of this fact we obtain that D(g) = g ® A, where A is a unital com-
muative associative algebra of dimension 2. Therefore we have two
possibilities for A: nilpotent and semisimple. The first case leads to
solutions of CYBE and the second case leads to solutions of mCYBE.
We yield an explicit description of Lie bialgebra structures on g in
both cases.



1 Introduction

Let g be a simple Lie algebra over C and let g* be its dual vector space.
Suppose g* has also a fixed Lie algebra structure. Let ¢ : ¢* ® ¢* — g* be
defined by the rule: ¢(¢; ® l3) = [¢1,l5]. Then ¢* : ¢ — g ® g satisfies the
following conditions:

1) Imp* CgAg

2) Per (p* ® 1) o ¢*(a) = 0 for any a € g, where Per (a @ b® ¢) =
a®b®c+c®a®@b+b® c® a (co-Jacobi identity).

Let {e;} be a basis of g and {e’} be its dual basis of g*. Let ¢}, and £
be the corresponding structure constants. The follwoing result was proved
in [D]:

Theorem 1.1. The following conditions are equivalent:
e eii i e o o o
1) Crsl = wafga - ch'r sw - cfxsfga + cfxs rw

2) The map ¢*: g — g®g is a 1-cocycle (g acts on g ® g by means of the
adjoint representation).

3) There is a Lie algebra structure on the vector space g ® g* inducing the
given Lie algebra structures on g and g*, which is such that the bilinear
for Q on g ® g* defined by the formula

Qz1 + b1, 22 + lo) = l1(x2) + Co(21)

1s tnvariant with respect to the adjoint representation of g ® g*. More-
over, such Lie algebra structure on g @ g* is unique if it exists. O

The Lie algebra structure on g g* satisfying the condition 3) of Theorem
1 is called the classical double of g and is denoted by D(g). Here we note
that D(g) is not generally speaking unique for given g because there are many
different Lie algebra structures on ¢g* and some of them satisfy the conditions
of Theorem 1.

In the case of simple Lie algebras ¢* : ¢ — g ® ¢ is a co-boundary and
hence is given by the formula ¢*(a) = [r,a® 1 + 1 ® a| for some 7 € g ® g.
It was proved in [D] that r can be chosen skew-symmetric and satisfying the



following condition: [r12, 713 + [r12 723] 4 [r13 r%] is an invariant element of
g ® g ® g. On the other hand, since g is simple, there is just one, up to a
scalar factor, invariant tensor in ¢ ® g ® g; namely, a - ¢;jxl; ® I; ® Ij, where
{I;} is an orthonormal basis of g with respect to the Killing form, c;;; are
the structure constants in this basis and a € C.

In the case a # 0, all these tensors r € g ® g were found in [BD]. The
aim of this paper is to refine the results of [BD] concerning the case a = 0
using a different method. We will not solve the equation

[7“12, 7“13] + [7,12’ 7“23] + [7“13, 7,23] =a- Cz’in ® Ij ® Ilc

as it was done in [BD].

Instead of this, we find D(g), using the classification theory for Lie alge-
bras graded by finite root systems ([BM, BZ]) and then we are looking for
decompositions of D(g) into the direct sum of g and g*. It should be noted
that the case @ = 0 can be treated, using rational solutions of the classical
YBE ([S1, S2, S3]). On the other hand, the author finds it worthy to describe
a new method, which enables one to treat both cases simultaneously.

2 Preliminary results

Let A be a finite irreducible reduced root system and I' be the integer lattice
generated by A. The following definition was introduced in [BM].

Definition 2.1. A Lie algebra is graded by A if
(i) L=>" ¢, Ly, where L, # (0) if and only if v € AU {0};

(ii) the split simple Lie algebra g whose root system is A, a subalgebra of L
and relative to some split Cartan subalgebra H of g, we have L, D g,.

(iii) for all A € H the operator adh acts diagonally on L, with eigenvalue
v(h);

(iv) L is generated by its nonzero root spaces L., where v € A.

The following lemma was communicated to the author by E. Zelmanov:

Lemma 2.2. Let A be the root system of g. Then D(g) is graded by A.



Proof. Since g C D(yg), D(g) = >_ L, where v € H* and [h,{;] = y(h)¢,
for any ¢, € L,. Assume that there exists v ¢ A U {0} such that L, # 0.
Let 2, € L,. The invariancy of the bilinear form @ on D(g) (see Theorem
1) implies that Q(z.,g) = 0. Then z., € g by the construction of (). Hence
v € A.

It remains to show that D(g) satisfies (iv). We have D(g) = Lo+ ca L,
and H C Ly. Clearly, the restriction Q) of () to Ly is non-degenerate and
Q:1(H,H) = 0. Let us show that H = H* with respect to Q;. Indeed,
if we have z € H+ C Ly, then Q(x,L,) = 0 and hence Q(z,g,) = 0 for
v # 0. Therefore Q(x,g9) = 0 which implies that € g and furtheremore,
regnNLly="H.

We see that H is a Lagrangian subspace of Ly with respect to );. Clearly,
we can choose another Lagrangian subspace V' C Lj such that V & H = L.

It is sufficient to prove that V is contained in the vector space generated
by nonzero root spaces L. since H clearly has this property. For any simple
root o € A there exists v, € V such that Q1(ve, h) = a(h). Since {v,} is a
basis in V', we have to prove that any v, is contained in the space generated
by nonzero L.

To do this, we pick up any e, € go C Ly and z € L_,, such that Q(eq,c) =
1. Clearly, [eq, z] € Ly. Then Q1([eq,z], h) = Q([h, ea], ) = a(h) and hence
Q1([eq, T] — Vg, h) = 0 for any h € H. Since H = H* with respect to Q;, we
obtain that [es, 2] — v, € H.

This observation completes the proof. O

Now resutls from [BM, BZ] imply that there exists a commutative as-
sociative unital algebra A over C such that D(g) = ¢ ® A. In our case
dim ¢ A = 2 and we have up to an isomorphism just two possibilities:

Clz] Cla]

1) A=—; 2) A=
(%) (T~ a?)
Moreover, [Proposition 2.2 BZ] implies that ¢ C g+ ¢* = D(g) X g® A
is embedded as g ® 1.
Now let us recall that ¢ ® A has a non-degenerate symmetric invariant

form Q. Then, it follows that Q(¢ ® 1,9 ® 1) = 0.

Proposition 2.3. 1) Q(z2®Z,y® Z) =0 for any z,y € g. Here 7 is the
image of z i A.



2) Q(z®1,y®I) = K(z,y) - A, where K is the Killing form on g, and
A € Cis a fixed number.

Proof. 1) Let us prove, for instance, that Q(e, ®Z,y®7Z) = 0 for e, € gq.
We have [h®@ 1,6, ® ] = a(h)e, @ T = [h ® T, e, R 1].

Then
1
Qe QT, YR T) = m@([hm,ea@l],y@f) =
LQ([y@:ﬁ,h@z):z],ea®1) =0

a(h)

since 2 = 0 or 0,25. The case Q(h, ® T,y ® T) can be treated in the
same way if we set hy = [€q, €_a]-

2) Put
Qlea ®T,e_,®1)

ta(T) = K(ea,€ o)

Here eq € go. Let Nyg € C satisfy [eq, 5] = Nag€arp. If eqip # 0,
then N,g # 0 and

-\ Q([ea X, €s ® 1]: €_a—p ® ]-) .
ot = T R femenleas)

_Qea®Te o®1)
= Klen e ) = t4(Z)

since Ng _o-p # 0 if Nog # 0. Therefore ,(z) does not depend on c.
Let t,(Z) = A. Similarly, one can show that

Q(ha ® T,ha ®1)

=
K (ha, ha)

4a(Z) =

The proof is complete.



3 CaseA:g—g]

~—

In this case we see that g® A = g+ g7 (Z> =0) and Q can be given by the
following formula:

Qa +bZ,c+dz) = K(a,d) + K(b, c).
The problem is to define all subalgebras W satisfying the following conditions:

1) geW=gQ A

2) W = W+ with respect to Q.
Example 3.1. W = gz. In this case, ¢* = 0 (see Introduction).

Theorem 3.2. Let W C g + g7 satisfy Conditions (1) and (2). Then W =
{a+ f(a)T +a'Z : a € L,at € L'}. Here L C g is a subalgebra, Lt its
orthogonal complement with respect to the Killing form, f : L — L* = g/L*
is an isomorphism of vector spaces and a 1-cocycle of L with values in L*
(L* is L-module with respect to the co-adjoint action).

Proof. Let  : g + gt — g be the canonical projection. Then L = 7 (w) is
a subalgebra of ¢g. Clearly, W C L + gz. Then W = W+ > (L + gz)* =
L* - %; moreover, we see that W = W mod (L' - 7) becomes a Lagrangian
subalgebra of (L+g¢z)/(L*-z) = L+ L*-7 satisfying the following conditions:

Im W = L under the canonical projection L + L* -7 — L (%)
W&L=L+L"-z (because g® W = g + g7). (xx)

The condition (*) implies that W = {{+ f({)Z : £ € L} with a homomor-
phism f : L — L* which should be a 1-cocycle.
The condition (xx) implies that Ker f = 0. The theorem is proved. [

Corollary 3.3. Any subalgebra W C g + ¢Z, satisfying the conditions (1),
(2), is uniquely defined by the following data:

1) subalgebra L C g;

2) non-degenerae 2-cocycle B on g.



Proof. L was defined in theorem 3.2. Then B(a, b) is defined by the following
formula: B(a,b) = f(a)(b) = K(f(a),b). One can easily check that B is a
2-cocycle since f € Z'(L,L*). 0O

Remark 3.4. A Lie algebra L is called quasi-Frobenius if there exists a
non-degenerate 2-cocycle on it. Such subalgebras were studied in [S2, E].

Remark 3.5. Let Ad(g) the Lie group generated by {exp(ada) : a € g}.
Clearly, Ad(g) C Ad(g + g%). By the way, g + ¢gZ has a simple matrix
realization: let g C sf(n), then any element a+bZ € g+¢gZ can be represented
a b
0 a

It is easily seen that if W C g + ¢ satisfies the conditions (1), (2), then
Ad(z)(W) satisfies these conditions too.

by the fololowing 2n X 2n matrix

Definition. We say that two bialgebra structures are gauge equivalent if
there exists X € Ad(g) such that the corresponding W, and W, are related
by Wi = Ad(X)(W5,).

Our aim is to find conditions when (L, B) and (L;, By) define equiva-
lent bialgebra structures. Without loss of generality, we can assume that
Ad(X)(L,) = L. We define N(L) = {X € Adg : Ad(X)(L) = L} and
Ad(L) = {X =exp(ada) : a € L} C N(L).

Lemma 3.6. Let (L, B) defines W C g + g7 satisfying the conditions (1),
(2). Let T € N(L). Then Ad(T)(W) is defined by the pair (L, Ad*(T)(B)),
where Ad*(T)(B)(a,b) = B(Ad(T1)(a), Ad(T~1)(b)).

Proof. Straightforward computations. O

Proposition 3.7. Let the pairs (L, B;) and (L, By) define two bialgebra
structures on g and B; — B, is a co-boundary. Then the corresponding
structures are gauge equivalent.

Proof. Let Bi(z,y) — Ba(z,y) = K(T,[z,y]) and let Wi,Wy C g + g% be
the corresponding subalgebras. Here T € L* = g/L*. One can check that
Wy = exp(ad(TZ))(Ws). Since g & W) = g & Wy = g + g7, [Lemma 4.2, S1]
implies that there exists X € Adg such that W, = Ad(X)W,. Therefore,
the corresponding bialgebra structures are gauge equivalent. 0



Taking into account that Ad(X) € Ad(g) constructed in the proof of
Proposition 3.7 preserves L (and hence is an element of N(L)), we get the
following

Corollary 3.8. A gauge equivalence class of bialgebra structures on g de-
fines a quasi-Frobenius algebra L C g (up to a conjugacy) and an orbit of
N(L) in H*(L,C). Any orbit of N(L) in H?*(L,C) corresponds to at most
one gauge equivalence class of bialgebra structures. O

Remark 3.9. It is well known that L acts trivially on H%(L, C) since for any
2-cocycle B and any ¢ € L we have: ad;B(z,y) = B([¢,z],y) + B(z, [¢{,y]) =
B(¢,[z,y]) is a coboundary. Therefore Ad(L) acts identically on H?(L,C).

We remind that a quasi-Frobenius algebra is called Frobenius if the cor-
responding 2-cocyle B is a co-boundary.

Lemma 3.10. Let L be a Frobenius, Lie algebra. Then in any class of
H?(L,C) there exists a non-degenerate representative.

Proof. If a bilinear form B is degenerate on L and B; is non-degenerate, then
B + A\Bj is non-degenerate for “big” . 0

Corollary 3.11. Let L be a Frobenius Lie subalgebra of g. Then the equiv-
alence classes of bialgebra structures on g corresponding to L are in a one-
to-oen correspondence with orbits of N(L) in H?(L,C). In particular, if
N(L) = Ad(L), then such equivalence classes of bialgebra structures are in
a one-to-one correspondence with H?(L,C). O

Closing this section, we would like to discuss the problem how to recon-
struct the corressponding solutions of the CYBE.

Let we have W = {{+ f({)Z + (% : £ € L} such that g®&W = g+ gz. If
we choose any basis {e;} in g and its dual basis {f’} in W (Q(e;, f7) = 87),
then 7 = Y e; ® f* € D(g)%? satisfies the CYBE and

r 42t :t:Zei@)ei:ﬁ—i—Zei:ﬁ@ei
where {e‘} is the basis of g, dual to {e;} with respect to the Killing form.

Let us consider (7 ® 7)(r) € ¢®?, where 7 : g + g — ¢ is the canonical
projection.



Theorem 3.12. (7®m)(r) is a skew-symmetric solution of the CYBE. If {a;}
and {0’} are dual bases of L with respect to the 2-cocycle B, (B(a;, V) = 67),
then (7 @ m)(r) = Y. V' ® a;.

Proof. The skew-symmetry of (7 ® 7)(r) is clear since (7 ® 7)(t) = 0.
Let us choose any basis {a;} of L, and let us extend it in an arbitrary
way to g. Let {c' + f(c")Z + ajL:E} be the dual basis of W with respect to Q.
L

Here a; is a basis of L*. So we have:

Q(as, ¢ + f(9)7) = K (az, f(F)) = 67,

On the other hand, it follows from the construction of B (Corollary 3.3) that
K(a;, f(¢)) = B(d,a;) = 6] and ¢ = —/. Hence, (n@7)(r) =Y. a; @’ =
S" b ® a;. The proof is complete. O

We note that this formula for solutions of the CYBE was obtained in [BFS].

Example 3.13. 1) Let E;; € g/(n) be matirx units. Consider the subalgebra
L of s¢(3) generated by E;j, where 1 < i < j <3, and h = Ey; + Ey — 2Es;3.
Then L is Frobenius with non-degenerate 2-coboundary Ej4([x,y]). Here
{E};1 <i<j <3, h*} is the dual basis of L*.

It was shown in [S2] that H?(L) = C. The corresponding non-trivial 2-
cocyle is h*AEY,. It can be checked that any 2-cocycle of the form Ef;([z, y])+
AR*AET,)(x,y) is non-degenerate. However, any two such cocycles with non-
zero A1, Ay lie in the same orbit of N(L). Hence, we have two non-equivalent
bialgebra structures on sf(3) both corresponding to the L.

2) Let us consider a subalgebra M of s¢(4) generated by E;;, 1 <i < j <4
and hy = By — Eyy, hy = Ey — Es3.

It was shown in [SK, GG]| that L is Frobenius with non-degenerate 2-
cocycle (Ef,+ E33)([z,y])). Again, in this case there exists another 2-cocycle
hi A by and all the cocycles of the form (Ef, + E35)([z, y]) + AT A h3)(z,y)
are non-degenerate. We again have two non-equivalent bialgebra structures
on sf(4) corresponding to A = 0 and A # 0. So, we see that a Frobenius
subalgebra does not define uniquely a bialgebra structure.



_ _C4
In this case we have A = Ce @ Cf and respectively g @ A = ge & gf, where
e =3+ and f =3 — z. It follows that in this case

Q(are + b1 f,aze + baf) = K(a,a2) — K(b1, by),

where K is the Killing form on g. Our aim is to describe all Lagrangian
subalgebras W C ¢ ® A = ge @ gf such that W @ g(e+ f) =g ® A.

Lemma 4.1. Let W C ge @ gf be a Lagrangian subspace with respect to
. Then there exist subspaces W; C g and W5 C g such that W; D WiLK,
where W, is the orthogonal complement to W; with respect to the Killing
form and an isometry F': Wi /Wit — W,/W,-. Here the metric structure on
W; /Wt is defined by K.

Proof. Let 7, be the canonical projections m; : ge & gf — ge, 73 : ge &
gf — gf. Let Wie = m (W) and Wy f = mo(W). Then W C Wie + gf and
Wte =W > (Wie+ gf)*@ = W e. The signs L, L g indicate the forms
with respect to which we consider the orthogonal complements. Clearly

dim g = dim W = dim W; + dim W;"¥ (*)

On the other hand, Ker 1y = W N ge D WlLKe and hence we see that
dim W > dim W, + dim W;"%. Similarly, dim W > dim W; + dim W3,

Taking into account (%), we conclude that dim W = dim W; + dim W;¥
and therefore dim Wy = dim W, dim (W /W) = dim (Wa/W;%). More-
over, we see that W;/W;"5 = W/(W;%e 4+ W, f) and W can be represented
in the form

W = {wie+wie+ F(w)f +wy f}.

Here w;" € W%, w, € Wi/Wi™ and F : Wi /Wi — W,/W; is an

isomorphism. Obviously, the Killing form K on g generates a non-degenerate
form on W;/ WfK , which we denote by K;. The fact that W is Lagrangian

with respect to () implies that

Kl(W1,W2) = K2(F(W1)aF(W2))-

10



Lemma 4.2. Assume that W C ge @ ¢gf is a Lagrangian subspace and
a subalgebra. Then the corresponding W; C ¢ are subalgebras and F' :
Wi /Wi — W,/W; is an isomorphism of Lie algebras, preserving the
forms on W;/ WiLK induced by the Killing form on g.

Proof. Clearly, ; (1 = 1,2) from Lemma 4.1 are Lie algebra homomorphisms.
Hence W; (i = 1,2) are subalgebras of g. Since I/ViLK are ideals of W, it is
easily seen that F : Wy /W% — W,/Wy ¥ is a Lie algebra isomorphism.
The lemma is proved. U

In the sequel, we will write W = {W;, W5, F'}. The following question
arises: How to describe all the subalgebras L C g such that L*% C L? Let I’
be the set of all simple roots of g, A be the set of all roots ¢ and A, be the
set of all positive roots. Let I'ty CT and Ay ={y € A:vy =3 1 Yo~}
Set Lr, =) qer, CHo + >, 9y, Where H, = [E,, E,].

The restriction of the Killing form K to H is non-degenerate and we
denote this restriction by K;. Then, clearly,

H = (Z CH,) ® (Z (CHa)J_m

acly acl'y

Morevoer, K restricted to (Zaerl
this restriction by Kj. Let us choose any £ C (3 cr,
L2 C L. The following result is known (see [BD]).

Theorem 4.3. Let L' = Lr, + N + £, where Ni = Y A9, (AT is
the set of all positive roots of g and A~ is the set of negative roots). Then
L+% C L and any subalgebra of g, which contains its orthogonal complement
with respect to the Killing form, can be transformed by a suitable inner
automorphism of ¢ to the form L' for some T'; C T and some L. g

CH,)**1 is non-degenerate and we denote
CH,)* %1 such that

Recalling that e + f = 1, we see that a Lagrangian subalgebra W C ge &
gf, which generates a bialgebra structure on g, should satisfy the following
condition W N g(e+ f) = {0}. Clearly, the latter is equivalent to W + g(e +
fl=ge®gf. Let X € Aut g.

Then X (e + f) € Aut (ge ® gf) and X (W) is a Lagrangian subalgebra
satisfying X (W)Ng(e+f) = {0}. We will call W and X (W) gauge equivalent.

Theorem 4.4. Let W = {W;, Ws, F'} generates a bialgebra structure on g.
Then W is gauge equivalent to W, = {LFJ, L*2, F\} for some £y, £, C H and
some subgraphs [';,I'y C I'; which are isomorphic.

11



Proof. Theorem 4.3 implies that without loss of generality we can assume
that W, = Lil. Let us consider the following decomposition of ge & ¢gf into
the following direct sum of Lagrangian subspaces: ge®gf = g(e+f)®g(e—f).
Let m_ : ge+gf — g(e— f) be the projection along g(e+ f). Then 7_(W) =
g(e — f) and this implies that Lil + Wy =g.

Extending Lil if it is necessary, we can assume that Lf& D H. Let
X € Adg be such that (Ad X)(W,) = L™ (it is possible by Theorem 4.3).
Clearly L' + L™ = g and it follows from [Lemma 4.2, S1] that there exists
X, € Ad (L) such that (Ad X,)(Wy) = L*. Then (Ad X;)(e + f) is the
required gauge equivalence. O

5 Examples of bialgebra structures

In this section we would like to describe the bialgebra structures found in
[BD].

Let T" be the set of simple roots of g. We say the following [BD] that a
triple (I'y, g, 7) with T'y,Ts C T and 7 : 'y — T'y is admissible if:

a) T is a bijection,

b) (r(e),7(8)) = (o, B),

c) for any o € Ty there exists k such that 7(a), 7%(a),... , 7 1(a) € Ty
but 7%(a) ¢ T;.

Here (a, () is the standard scalar product on H* induced by the Killing
form. The condition ¢) means that there does not exist a € I'; such that
" (a) = « for some k.

Obviously 7 : 'y — I'; induces isomorphisms Ay — Ay and Ly, — Lr,,
which we also denote by 7. Let {E,, Hy, o € A} be a basis of g such
that K(E,, E_,) = 1 and [E,, E_,] = H,. Then 7(E,) = E,4) and
7 (Hy) = Hy(q) for all o € A

Lemma 5.1. Let (I';, 'y, 7) be an admissible triple. Let Lr, be the semisim-
ple subalgebra of g generated by I'; (see Section 4). Then W, = {ze +
T(x)f :x € Lr,} C ged® gf is an isotropic subalgebra of ge @ ¢f such that
WrNgle+ f) ={0}.

Conversely, if 7 does not satisfy condition c), then W, N g(e + f) # {0}.

12



Proof. We prove, for instance, the second statement. Let 7 do not satisfy
c). Then there exists a cycle {a,7(c),...,7%(a) = a}. Consider P =
Eo+Era)---+ Erk-1q) € Lp,. Then 7(P) = P and W, Ng(e + f) contains
P(e+ f).

Conversely, if W, Ng(e+ f) > P(e+ f) for some P € Lr,, then 7(P) = P.
Writing P = . caHo + nyeAl b,E.,, it is easily seen that for some root
v € Ay we get a cycle: v, 7(7),...7%(y) = . Since v = Y acr, Ca - @, we find
that the triple {I';, 'y, 7} is not admissible. O

Lemma 5.2. Let V = V; ®c (C[z]/(1/4 — 2?)) = Vye + Vof be a vector
space and let V; have a non-degenerate symmetric bilinear form B. Let
Wi, Wy C Vi be subspaces such that B restricted to W; is non-degenerate
and let 6 : Vi — V5 be an isometry, i.e., B(6(a),0(b)) = B(a,b). Let also
Xo C V be a Lagrangian subspace with respect to B(ae + bf,ce +df) =
B(a,c) — B(b,d). Assume VN Xy = {0}, where Vy = {ae+6(a)f : a € Vi }.
If we choose any two vectors v; satisfying B(v;,v;) = 1 and B(V;,v;) = 0,
then we can extend 6 to an isometry 0 Vi ® Cvy — V5 @ Cuy in such a way
that V; = {ae + 0(a)f : a € Vi ® Cv; } C V does not intersect Xj.

Proof. Suppose {Vp @ C - (vie +v2f)} N Xo = {0}. Then we can extend 0
setting 0(v;) = vo. Otherwise, dim ({Vp@C(vie+vof)}NXy) = 1. Therefore,
there exists w € Vj such that w + vie + vo f € Xj.

We claim that then {V; & C- (vie — vof)} N Xy = {0}. Indeed,

B((wl + AMvie —vof), w4+ vie+ vy f) = )\B(vle, vie) — )\B(UQf, vof) = 2\

since B(wy, w) = 0 for all wy, w € Wy. Further, X, is Lagrangian with respect
to B and hence w; + A(vie — vof) ¢ X, for any w; € Vg and A € C\ {0}.

If A\ = 0, then w; ¢ X, since Vp N Xy = {0}. Finally, we see that
{Vy®C- (vie — vaf)} N Xy = {0}. Then we can set (vy) = —vs. O

Now, let {I';,I', 7} be an admissible triple. It follows from the previous two
lemmas that 7 : Lr, — L, can be extended to an isometry

7_'2L1"1+H—>L1"2+H

in such way that Vz Ng(e + f) = {0}. Observe that 7 (H) = H and if we
denote this restriction by 7 then id — 74 is invertible. If we set LE;’ =
Lr, + N1 + H then we have the following:

13



Corollary 5.3. Let {I';, 'y, 7} be an admissible triple. Then the Lagrangian
subalgebra W; = {Lljrl, L2, 7} yields a bialgebra structure on g. O

So, starting from an admissible triple we have constructed a bialgebra
structure on ¢g. Finally we would like to explain the construction of all other
bialgebra structures. To do this we have to remind how to obtain the solution
of the mCYBE, which corresponds to a given bialgebra structure.

Let W be a Lagrangian subalgebra satisfying the condition Wég(e+ f) =
geDgf. _

Let us choose dual bases {P;} for g(e + f) and {S*} for W. Then r =
> P ® Q" is a solution of mCYBE in D(g) and (m ® m) (r) = rw is a
solution of mCYBE in g. Here w1 : D(g) — ge is the canonical projection.

The next step is to find dual bases in case W = W-. For any v € A there
exists k() such that 7"(y) € A; for n < k(y) and 7*)(v) ¢ A;. Note that
k(y)=01if v ¢ A;. Then we can choose the following basis in W;:
(i) {Ere(y e + Episigy) f, v € AT}, here we set Epiii(,y = 01if 75(7) ¢ Ay
(ii) {E;-k-1(yy € + Er-k(y) f, v € A7}, where 77 : Ay — Ay is inverse to 7.
Here we set B, —k-1(,) = 0 if 77%(7) ¢ A,.
(iii) {H;e + T4(H;) f}, where {H;} is a basis of H and 7% : H — H was
constructed by means of Lemma 5.2.

Let us recall that id — T is invertible.

Lemma 5.4. The dual basis of g(e + f) consists of the following elements:
(1) {ElsczokEfTS(v) e+ )}

(ii) {=2i¢ E_r—s¢y) (e + f)}-

(iii) Further, if { H;} is an orthonormal basis of #, then {(id —7y)~" (H;) e +
Tn(id — 7)1 (H;) f} are elements of the basis of W; dual to {H; (e + f)}.

Proof. Just the last statement requires a proof. Let T; e+7 (T;) f be the dual
elements to H; (e+ f). It follows immediately that K (H;, T; — 7y (T})) = 6]
Therefore, T; — 7y (1;) = H; and the proof is complete. O

Corollary 5.5. The tensor
T = Zaeat Ba ® E_q + Xoent pso Broy) A E_y + 35 (id — 7))~ (H;) ® H;
satisfies mCYBE. Here 7y (H,) = 7(H,) = H;(o) for a € T'y. O

Let W, be another bialgebra structure corresponding to the same admissi-
ble triple. Analogously we construct the corresponding solution of mCYBE,
namely 7.
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One can easily prove that r, —rg is a skew-symmetric tensor from H; @H,,
where the subspace H; C H is defined by the following equation:
(¢ — 7())(h) =0 for any o € T'y.

Conversely, 7+ S is a solution of mCYBE for any skew-symmetric tensor
S € H; ® Hy and hence it defines a bialgebra structure on g.

Remark 5.1. We have constructed a family of Lie bialgebra structures on
g using a very simple isomorphism 7 : Ly, — Lp,. One might think that
using an inner automorphism Ad(F') of Ly, we can obtain a new bialgebra
structure. However it is not true. Let W = {L'*, L, Ad(F) o 7} satisfy the
condition W g(e+ f) = ge®gf. Then Ad (Id-e+F-f)(W;) = W. Further
W:-@gle+ f) = ge®gf and it follows from [Lemma 4.2, S1] that there exists
an inner automorphism Ad(X) € Ad(ge ® gf) such that Ad(X)(W;) = W
and Ad(X) preserves g(e + f). Therefore, the structers determined by W
and W; are gauge equivalent.

It follows from results of [BD] that any bialgebra structure on g is equiv-
alent to one of those described above.
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