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Abstract

We consider ordinary independent percolation on the integer lat-
tice, and construct consistent estimators for most of the important
quantities associated to this model. We also present some simulation

results.

1 Introduction

In this paper, we consider ordinary independent bond percolation which is

defined as follows. We begin with the hypercubic lattice with vertex set Z¢
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and edge set containing all pairs z,y € Z% with

d
D |wi — il = 1.
i=1

Let 0 < p <1 and call an edge e open with probability p and closed with
probability 1 — p independently of the states of all other edges. Considering
the random graph containing the vertex set Z¢ and the open edges, the
connected components of this (random) graph are called clusters and we
write C for the cluster containing the origin and more generally C(z) for the
cluster containing the z. One is interested in the percolation probability 6(p)
which is defined to be the probability that C' is infinite when the parameter
p is used. The critical probability p. is defined as p. = inf{p : 8(p) > 0}. It
is an interesting fact that p. € (0,1) whenever d > 2. When the parameter
p is used, we will denote probabilities by P, and expectations by E,. See [2]
for an excellent treatment of this subject.

The purpose of this paper is the following. Suppose we observe a real-
ization of the ordinary bond percolation model on the d-dimensional integer
lattice restricted to the box B(n) = [—n, n]%, where we shall assume through-
out that d > 2. We want to estimate a number of important percolation
quantities in such a way that the estimates converge almost surely to the
appropriate quantity when the box size tends to infinity. Of course we do
not have information about the underlying retention parameter p, though of
course it would be easy to estimate p consistently. In particular we do not
know a priori whether or not the process is subcritical (p < p.), supercritical
(p > pe), or critical (p = p.). In [2], a result of this type is obtained for
a particular quantity although this result is not couched in the language of

consistent estimators. We briefly describe this here. Let x(p) be E,[1/|C]|]



(note |C| (the cardinality of C) is always at least 1). The function k crops
up frequently in calculations, see [2] for references. Given a realization in
B(n), we let K, denote the number of open clusters in B(n) when all edges
which have at least one end point outside B(n) are removed. The following

result (which is of the type we consider in this paper) is contained in [2].
Theorem 1.1: For all p € [0,1], K,,/|B(n)| — &(p) P, a.s.

We will need a few more definitions. We say that the set A is connected to
the set B if there is a path along open bonds from some vertex in A to some
vertex in B. We write ‘—’ to denote ‘is connected to’. We shall call two
boxes interior-disjoint if they have only boundary vertices in common.
Two vertices are said to be neighbors if their Euclidean distance is equal to
one. The boundary of a box B is defined to be the set of all vertices in B
which have at least one vertex outside B as a neighbor, and is denoted 0B.
Note that for two interior-disjoint boxes B and B’ and two vertices v € B
and v’ € B', the events {v — 0B} and {v' — 9B’} are independent.

We make one final convention. Throughout this paper, all the quantities
that arise will depend on the dimension d. Since we are really only interested
in how these quantities depend on p, we will ignore the dependence on d in

the notation throughout the paper.

2 Estimating the percolation probability

In this section, we want to find a consistent estimator for the percola-
tion probability €(p). The first approach is to ‘partition’ the observed box
into interior-disjoint smaller sub-boxes and count how many centers of the

smaller boxes are connected to the boundary of their individual box. The



advantage of this approach is that different events are independent, which
makes the analysis simple. The disadvantage is that we do not seem to make
optimal use of all the available statistical information.

The second approach is to consider a box of ‘medium size’ in the observed
box and count how many vertices in this medium sized box are connected to
the boundary of the observed box. This approach seems to make better use
of all available information but, not surprisingly, it will be harder to show
that the corresponding estimator is consistent.

We begin with an estimator based on the first approach. Consider the
box B(n?) and divide this box into n? interior-disjoint translates of B(n).
We define 6,,2 to be the fraction of centerpoints v of the smaller boxes (trans-
lates of B(n)) which are connected to the boundary v+ dB(n) of its respec-

tive box. For all n? < k < (n+ 1), we define 6, = 0,,2.
Theorem 2.1: For all p € [0, 1], we have that 6, — 0(p) P, a.s.

Proof: As indicated above, the independence structure of the estimator
makes the analysis elementary. Fix p € [0,1], € > 0 and an integer n. We

write

Pp(0p2 <0(p) —€¢) < Pp(0n2 < Pp(0— 0B(n)) —¢)
< BB — B0 - 0B() > )
Var 9~ 2 1
s eI; < nde2’

It follows from this, using the Borel-Cantelli lemma, that liminf,_,
6,, > 0(p) P, as.
For the other direction, it suffices to show that for all ¢ > 0 and for all k

we have lim sup,,_,o, 0,2 < P,(0 = 0B(k))+¢, Py a.s., since limy_,o, P,(0 —
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0B(k)) = 6(p). To do this, let £ < n and énQ,k be the fraction of centers
v of the small boxes which are connected to v + 0B(k) when we partition
B(n?) into n¢ interior-disjoint translates of B(n) as before.

We now write

P62 > Py(0 = 0B(k)) +€) < Py(fnzy > By(0 — OB(K)) +¢)

< Bp(|n2s — Pp(0 — 0B(k))| > ¢)
Varpéng,k 1
and the conclusion follows as before. O

Next we present an estimator based on the second approach. The proof of
convergence is more involved and makes use of deep results in percolation
theory. However, we shall see in the last section that this estimator performs
much better than the previous one.

Denote by C,, the number of vertices in B(n) which are connected to

0B(2n). We define fs,, and é2n+1 to be Cp,/(2n + 1)4.
Theorem 2.2: For all p € [0,1], we have that 6,, — 6(p) P, a.s.

Proof: We distinguish three cases, and show that convergence takes place
in all three situations.

CASE 1, p < p.. It is well known (combine [2] and [3]) that for p < p,, there
exists v, > 0 such that P,(0 — 0B(n)) < exp(—7y,n). Denote by E, the
event that C,, > 1. Then

Py(B,) < > P,(v— 0B(2n))
vEB(n)
< > Py(v—>v+0B(n)) = (2n+1)'P,(0 — 0B(n))
vEB(n)
(2n + 1)d exp(—np).

IN



Hence Y, Py(E,) < oo and by Borel-Cantelli this implies that P, a.s., for
all n large enough, we have 6, = 0.
CASE 2, p > p.. It is well known (combine [2] and [3]) that for p > p, there

exist constants A(p) < oo and g, > 0 such that
P,(0 = 8B(n),|C| < 00) < A(p)n? exp(—nay).

Denote by F, the event that there is a vertex in B(n) connected to 0B(2n)

but not to infinity. Using a similar computation as in Case 1 we find that
P,(F,) < A(p)n®(2n + 1)% exp(—nop)-

Hence it follows that P,(F), i.0.) = 0. This means that if we define 8, to be
the fraction of vertices in B(n) which belong to an infinite cluster (which
is known to be unique, see [2]), then P, a.s. we have that for n sufficiently
large,

6, = 0,,.

(Of course, 6, is not observable but that does not matter.) Now the ergodic
theorem implies that 8,, converges P, a.s. to 6(p), and so we are done.
CASE 3, p = p.. This case is slightly more interesting. We shall need the
fact that 6(p) is continuous from the right (see [2]). First of all, observe that
0, < én where 0, is as in Case 2. Hence P, as.
O(pc) = lim 0, < lim iolgfén < lirrln_igp 0,,.

(The first equality follows from the ergodic theorem applied to P, .) Let
€ > 0 and let u be any probability measure on X x X which is a coupling

of P,, and P, .. satisfying

p{(n,n') :n(z) <n'(z) Yz € 29} = 1.



Let 6] be the map from X x X to the reals given by 0L(n,7') = 6,(n).
Similarly, let 0?1 be the map from X x X to the reals given by 0?1(77,77’ ) =
0n(7'). It follows that p a.s. 61(n,7') < 62(n,n'). Since the distribution
of n' under p is P, 4., Case 2 above (with p = p. + €) implies that for
poae (n,1), lim, éz(n,n') = O(p. + €). Therefore for p a.e. (n,7'),
limsup,, , 0 (n,7') < O(p. + €). Since the distribution of 7 under u is

P,., we obtain the fact that for P, a.e. 7, limsup,_,, 0,(n) < 8(p; + €).

~

Taking the limit as € goes to zero and using the right-continuity of 6(p) now
completes the proof. O

In the last section of this paper, we shall present some simulation results
based on both estimators. It turns out (not surprisingly) that the second

estimator behaves better than the first.

3 Estimating the indicator function I

Even though we know how to estimate 6, it is not obvious (since Ifg-y is
not a continuous function of #) that it is in fact possible to estimate I(gs0)
consistently. Rather than boxes B(n) and B(2n) as in the previous section,
we consider here boxes B(n) and B(n + n™). We define (3, nn to be 1 if
there is a vertex in B(n) which is connected to B(n + n"), and defined to
be 0 otherwise. For k satisfying n+n" < k < (n+1)+ (n+1)"!, we define
Br to be By

Theorem 3.1: For all p € [0,1]\p., we have 3n = Ijgpy>0y for all large n
P, a.s. If either (i) 6(p.) > 0 or (ii) O(p.) = 0 and there exists p,C € (0, c0)
such that P, (0 — 8B(n)) < Cn~Y/? for all n, then we have 3, = Lig(pe)>0

for all large n, P,, a.s.



While it is not even known that at least one of (i) and (ii) above necessarily
holds, it is a widely accepted fact that (ii) should hold. This has in fact

been proved for d sufficiently high (see [2]).

Proof: CASE 1, p < p.. It is easy to adapt the arguments of the second
approach in the previous section to also show that for p < p. we have
Py(Bn =11i0.) =0.

CASE 2, 6(p) > 0 (i-e., p > p. or p = p. together with (i)). In this case, it is
completely obvious that we have that Pp(ﬁAn = 0 i.0.) = 0. (This is because
if 6(p) > 0, then some vertex percolates P, a.s.)

CASE 3, p = p. and (ii) holds. By a computation similar to the proof of

Theorem 2.2, we obtain
Pp.(Bn =1) < C(2n+1)%n /",

Borel-Cantelli as before now completes the proof. O

There is an analogue to the easy first approach for a consistent estimator
for 6(p), though things are a little more complicated here. To explain this,
suppose that our estimator is based on k(n) interior-disjoint translates of
B(n). As a first try, one might use the estimator which is equal to 1 if
there is at least one centervertex v of these boxes which is connected to
v+0B(n), and 0 otherwise. This would be the analogue of f,, in the previous
section. However, this approach does not work as can be seen as follows.
For p > p., the probability that there is no such centervertex is equal to
(1—Py(0 — 0B(n)))k™ < (1—0(p))*™. Our estimator can then be shown
to be consistent if 3°,,(1 — 6(p))*¥™ < oo, using Borel-Cantelli as usual.
Note that 1 — (p) can in principle be as close to 1 as desired, so in fact the

requirement for the sequence k(n) is that Y, ¢#(™) < oo for all ¢ < 1. On



the other hand, under assumption (ii) above, the probability at p. that the
estimator is equal to 1 is bounded from above by k(n)n~'/# so in order to
apply Borel-Cantelli we need to require that 3, k(n)n~1/# < co. These two
requirements are incompatible, because the first requirement implies that
k(n) tends to infinity, which is incompatible with the second requirement
if p were to take the value 2, for instance. On the other hand, in high
dimensions, p is believed to be equal to 1/2. If this is the case, it is easy
to see that if we take k(n) = n'/? then both requirements above are in fact
satisfied.

However, there is an estimator based on interior-disjoint translates of
B(n) which does work. Consider the box B(n?) containing n? interior-
disjoint translates of B(n). Let 8,2 be 1 if at least a fraction 1/logn of
the centervertices of the translates of B(n) are connected to their boundary,

and 0 otherwise. Intermediate values of Bn are defined as usual.

Theorem 3.2: The statements in Theorem 3.1 remain true if we replace

Bn by By, throughout.

Proof: Suppose first that (p) > 0 and write r, for 1/logn. Let, for all
n, Y, be a random variable with a binomial distribution with parameters
n and 6(p). We can write, using the fact that P,(0 — 8B(n)) > 0(p) and

Markov’s inequality,

P, (8,2 =0) P(Y;, < rpn?)

IN

eT“"dE(e_Y“)

IN

¢ {e=10(p) + 1 — 6(p)}""

= (e"e(p)™,

for some constant ¢(p) < 1. Using the fact that lim,_, . 7, = 0, it is easy to



see that this is summable over n. Hence it follows from the Borel-Cantelli
lemma that P,(8,> = 0 i.0.) = 0, as desired.

For p < p., it is easy to see that P,,(an = 11i.0.) = 0, using the expo-
nential decay of the radius distribution as before.

Finally, suppose p = p. and (ii) in Theorem 3.1 holds. Let, for all

n sufficiently large, Z, be a random variable with a binomial distribution

with parameters n? and Cn=/?. We write

PP(BTL2 = 1) < P(Zn > Tnnd)
S e—rnndE(eZn)

= {e™(1+Cn P(e—1))}".

Using 14+ Cn~"/?(e — 1) < exp(Cn~/?(e — 1)), it is not hard to show that

this is again summable over n and the conclusion follows as before. |

4 Estimating the expected cluster size

A third quantity of interest is the expected cluster size x(p) := E,(|C|). It is
well known (see again [2]) that x(p) = oo for p > p. and that x(p) < oo for
p < pc- To estimate x(p) we shall again use boxes B(n) and B(n+n"). Let
Xn+nn be the average over the vertices in B(n) of the size of the cluster of
that vertex when all edges outside B(n + n™) are removed. For k satisfying

n+n"<k<(n+1)+ (n+1)"", we define Xx, to be Xpninn.

Theorem 4.1: For all p € [0,1]\p., we have that x, — x(p) P, a.s. If
either (i) 8(p.) > 0 or (ii) O(p.) = 0 and there exists p, C € (0,00) such that
P, (0 = 8B(n)) < Cn~'/? for all n, then we have X, — X(pc) Pp, a.s.

10



Proof: CASE 1, p < p.. Using the same Borel-Cantelli argument as before,
we see that after a random time, no vertex of B(n) will be connected to the
boundary of B(n + n™) and then the estimator is exactly the average over
the vertices in B(n) of the size of its respective cluster in the whole space.
Then consistency follows immediately from the ergodic theorem.

CASE 2, 6(p) > 0 (i.e., p > p. or p = p. together with (i)). As already
noted in the previous section, there is P, a.s. some vertex which percolates
which means that for n large enough, there will be at least one vertex in
B(n) which is connected to the boundary of B(n + n™). The cluster of this
vertex inside the bigger box necessarily has size at least n”, so the average
over all vertices of B(n) is at least (2n+1)~9n™ which tends to infinity when
n — 00.

CASE 3, p = p. and (ii) holds. In this case, the probability that there
is a vertex in B(n) connected to the boundary of B(n 4+ n") is at most
C(2n + 1)%n /7. Hence for n large enough there will be no such vertices

a.s. and the result follows from the ergodic theorem as in Case 1 above. O

Some readers might be bothered by the fact that x, never takes the value
oo even though x(p) can be infinity. It is easy to adapt the above estimator
to achieve this: define X,4n» to be infinity if there is at least one vertex
inside B(n) which is connected to 9B(n + n"). We are no longer concerned
with finding consistent estimators which are analogous to the first approach

used for estimating 6(p).
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5 Estimating limits

Consider the following general setup: Let F,, be the o-field generated by
all edges which have at least one end point in B(n — 1), and let A,, be a
sequence of events such that A,, € F, for all n. For example, we can take A,
to be the event {0 — 0B(n)}. Let a > 0. We are interested in estimating

n—00 n% ’

whenever this limit exists. This is not always known to be the case, and
therefore in order to make the results as general as possible, we have chosen
the following formulation for our next result. While this may appear overly

general or abstract, the applications following it will justify this formulation.

Theorem 5.1: Let A, be a sequence of events such that A, € F, for alln.
Suppose that there exists S C [0,1] and b, € (0,1) such that for all p € S,
P,(Ap) > by for all n large enough (possibly depending on p). Let o > 0
and let k(n) be the smallest number of the form m® for some integer m such

that

S — —C}
k(n)bn(exp(n®=) —1)2  k(n)by(1 — exp(—na=1))2 = \2/

Let D,, be the fraction of the interior-disjoint translates of B(n) in the box
B(k(n)"/%n) where the appropriate translate of the event A, occurs. Then

for allp € S,
—log D, log P,(Ay)
07 + (o]
n n

—0, P, as.

Proof: We write g, = P,(A,). (Note that ¢, depends on p but we won’t

12



make this dependence explicit in the notation.) We then have for all p € S,

—logD, 1
P,,(‘ 0g Dy loggn

n% n%

> %) — P, (|10g(Dn/qn)| > n®Y)

= Pp(Dn > gnexp(n®")) + Py(Dy < gnexp(—n®))

S P;D(|Dn - Qn| Z qn(ena_l - 1)) + Pp(|Dn - QH| 2 QH(l - e_na—l))
< an(1—qp) n an(1 —qn)
= Fm)@expne) 12 | kn)qa (1 — exp(—ne )2
1 1
+

k(n)bn(exp(n® 1) — 1) k(n)bn(1 — exp(—n®1))?’

where the last inequality is true for n large enough. It follows that
B, (|7 e R 1) < (3)
n

n n
and the result follows form the Borel-Cantelli lemma. O

We shall now give a number of applications of Theorem 5.1. It is well known
(see e.g. [2]) that there exists a unique map ¢ : [0,1] — [0, c0] and positive

constants p and o such that
pn' ~lemeP) < P,(0 —» 0B(n)) < ond=leme(P),

Note that it follows that ¢(p) can be identified as

o(p) = Tim —log P, (0 — 8B(n)).

n—oo n

It is well known (see [2], Theorem 5.14) that ¢ is continuous and non-

increasing on (0, 1], strictly decreasing and positive on (0,p.) and satisfies
¢(pc) = 0 and limy, 0 (p) = ococ.

Corollary 5.2: Let k(n) be the smallest integer of the form m® for some

integer m such that

nn

fte 2 e = (3)

13



Let A, be the event {0 — 0B(n)}. Let D, be the fraction of the k(n)
interior-disjoint translates of B(n) in B(k(n)Y/%n) where the appropriate
translate of Ay, occurs. Then for all p € [0,1]. we have

—log D,

N P, a.s.
" (), Ppas

Proof: Let S = (0,1], b, = ()" and @ = 1. Note that for all p € S,
P,(Ay) > p™ > by, for n sufficiently large. Using the fact that

—log P, (Ap)

- — ¢(p),

for all p € [0, 1], it follows from Theorem 5.1 that for all p € (0, 1],

—log D,

N P, a.s.
" e(p), Ppas

Since ¢(0) = oo, this also holds Py a.s. O

Another quantity of interest is

o(p) = lim —log P,(0 — 0B(n),|C| < oo).

n—00 n

(It is shown in [2] that this limit exists for all p.) At first sight it seems that
o(p) might be harder to estimate than ¢(p) because the events involved
require information of the configuration in the whole space and therefore

are not F, measurable. But o(p) can also be identified as

—log P,(diam(C) = n)

o) = i, T
— lim = log Py(diam(C) =n — 1)’
n—00 n

where diam(C) is the side length of the smallest box which contains C. (See

[2] for a discussion of these matters.) The last equality in the displayed
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equation is included to make sure that the event involved is F,, measurable

so that we can apply Theorem 5.1.

Corollary 5.3: Let k(n) be defined as in Corollary 5.2, and let A,, be the
event {diam(C) = n — 1}. Let D,, be defined as in Corollary 5.2 (with the
new events A, ). Then for all p € [0,1] we have

—log D,

— P, a.s.
B2 o), By as

Proof: This time we choose S = (0,1), b, = ()" and @ = 1. We then
have that for all p € S, Py(diam(C) = n — 1) > p" (1 — p)2(rd=—n+1) > p,
for n sufficiently large. Now Theorem 5.1, together with the fact that for all

p € (0,1),

—log Py(diam(C) =n —1
i 108 »(diam(C) =n — 1) _ o(p),
n—00 n
implies that the required convergence takes place P, a.s., for all p € (0, 1).

Since o(0) = o(1) = oo, this is also the case for p =0 and p = 1. a

Finally, we discuss limits which involve the events {|C| = n}. Note that this
event is F, measurable since the origin always belongs to C. It is known

that

n—00 n

exists for all p € [0,1] and satisfies {(p) = 0 for p > p. and &(p) > 0 for
p < pe- In order to obtain a nontrivial limit in the supercritical phase, one

has to use a different scaling. It is conjectured that

—log P,(|C| = n)
d(p) = lim_ n(g—l)/d

15



exists for all p and is positive and finite for all p > p.. (Of course d§(p) is

equal to oo whenever p < p,.)

Corollary 5.4: Let k(n) be the smallest number of the form m? for some
integer m such that

nﬂ

+ L < (1>n
k(n)(exp(n=1/4) —1)2 * k(n)(1 — exp(—n~—1/4))2 2

Let A,, denote the event {|C| = n} and define D,, as in Corollary 5.2. Then
for all p € [0,1] we have

—log D,

. —&(p), Ppas.

and
—log D, log Py(Ay)
nld-1)/d nld-1)/d

—0, P, as.

In particular, if §(p) exists, we have for all p € [0,1],

—log D,

W - 5(p)a Pp a.s.

Proof: The proof is similar to the proof of the preceding corollaries and
is therefore omitted. (Note that the choice of k(n) is not optimal for the

estimation of &(p).) |

6 Simulations

In this last section we present some simulation results. It turns out that
the programming is a little easier with site percolation rather than with

bond percolation. In site percolation, we declare the wvertices of Z% open

16



and closed with probabilities p and 1 — p rather than the edges. The cluster
C of the origin is now defined as the set of vertices which can be reached
from the origin by walking along open vertices only. Working with site
percolation has some (unimportant) consequences for the way we define our
estimators. For instance, in our definition of 6, we used the fact that n?
interior-disjoint translates of B(n) fit exactly in B(n?). For site percolation,
interior-disjointness is not enough to guarentee that the different subboxes
behave independently; the subboxes need to be completely disjoint. Our
simulations are for d = 2. We used B(126) in which 121 disjoint translates
of B(11) fit exactly. The medium size box needed for 6196 is just B(63).
The critical probability for two-dimensional independent site percola-
tion is not known rigorously, though it has been proved that it is contained
in [0.556,2/3]; see [1] and [4]. Experiments indicate that the value is ap-
proximately 0.593. We tested the behavior of the estimators 6, and 6,, for
p = 0.5, p = 0.55 and p = 0.8. Since 0.5 and 0.55 are both subcritical,
we know that 6(p) is equal to zero for these cases. Therefore, testing these
values gives us some information about the quality of the estimators. We
did 100 experiments and computed the sample mean of the estimators, and

also the sample variance. Here are our results:

D mean of 0,, | variance of 6, | mean of én variance of én
0.50 0.173 1.0-1073 0.000 0
0.55 0.357 2.1-1073 0.007 2.3-107*
0.80 0.797 1.8-103 0.798 4.3-10°°

It seems that the convergence of 0, is particularly slow, and it is clear

17



from this table that 6, performs much better.

A standard technique to improve an estimator is to use the theorem of
Rao-Blackwell. We now apply this technique to O, Suppose we are faced
with a realization in the box B(n), that is, with 0 — 1 random variables
X,, z € B(n), where X, = 1 iff the vertex z is open. The number of open
vertices Y in the box B(n) is a sufficient statistic for p, and therefore also

for 0(p). The theorem of Rao-Blackwell now tells us that

has a smaller variance than 6,. We would like to use h(Y) as an estima-
tor for A(p), but we cannot compute this conditional expectation. However,
given Y, to estimate h(Y) we can repeat the experiment k times, each time
conditioned on the number of open vertices to be Y. (Note that conditioned
on the number of open vertices to be y, a realization with the correct con-
ditional distribution can be obtained by distributing these y open vertices
uniformly over the box.) The average value of 0y, corresponding to these k
new experiments is of course an estimate of h(Y’) and therefore can be used
as our new estimator for 6(p).

We can try to get an idea of the numerical improvement provided by this
procedure. We did this for 6,, with p = 0.80. First, we did 25 independent
experiments, each time recording the number of open vertices. Denote these
numbers by Y;, ¢ = 1,...,25. We then performed, for each 7, 30 further
experiments conditioned on the number of open points to be Y;. This led,
for each i, to an estimate of §(p). Finally, we computed the sample mean
and variance of these 25 estimates. The sample mean turned out to be 0.798

and the sample variance 6.7 - 10~7. The variance has to be compared with
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the variance of 6, in a sample of size 25. (The table above is with sample
size 100.) This turns out to be 4.1-1075. The Rao-Blackwell method gives

an improvement by roughly a factor 10.
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