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Abstract

The random cluster model on a general infinite graph with bounded de-
gree wired at infinity is considered and a “ghost vertex” method is intro-
duced in order to explicitly construct random cluster measures satisfying the
Dobrushin-Lanford-Ruelle condition for ¢ > 1. It is proved that on a regular
nonamenable graph there is a gg such that for ¢ > qg there is a phase transition
for an entire interval of values of p, whereas on a quasi-transitive amenable
graph there is a phase transition for at most a countable number of values of
p. In particular, a transitive graph is nonamenable if and only if there is a
phase transition for an entire interval of p-values for large enough ¢. It is also
observed that these results have a Potts model interpretation. In particular
a transitive graph is nonamenable if and only if the g-state Potts model on
that graph has the property that for ¢ large enough there is an entire interval
of temperatures for which the free Gibbs state is not a convex combination of

the ¢ Gibbs states obtained from one-spin boundary conditions.

It is also proved that on the regular tree, T,, with ¢ > 1 and p close
enough to 1, there is unique random cluster measure despite the presence of

more than one infinite cluster. This partly proves Conjecture 1.9 of [11].
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1 Introduction

The purpose of this paper is two-fold; to introduce a technique that overcomes the
difficulties involved in explicitly constructiong random cluster measures on a general
infinite graph with bounded degree and to give a characterization of nonamenability
for transitive graphs in terms of a phase transition for the random cluster model.
Let us begin by introducing the necessary graph theoretical concepts. First of all
however, let us state that all infinite graphs named G in this paper are assumed to be
connected and to have bounded degree. (However the graph H introduced in Section
2 by adding a ghost vertex will not satisfy these assumptions.) An infinite graph,
G = (V, E), is said to be quasi-transitive if there is a finite set, A = {vy,...,vx}, of
vertices such that for each u € V there is a graph automorphism taking u to v; for
some v; € A. (In other words, G is quasi-transitive if the automorphism group of G
acting on V has finitely many orbits.) If the set A can be taken to be a singleton
set, then G is said to be transitive. The graph G is called regular if all vertices have

the same degree.

DEFINITION 1.1 Let G = (V, E) be an infinite graph. The Cheeger constant for G,
k(G), is given by

. 10sW|
w(G) = WeVl,TlVfl;Koo W |

where OpW is the edge boundary of W, i.e. the set of edges connecting W to V\W.
If k(G) = 0, then G is said to be amenable and in case k(G) > 0, G is said to be

nonamenable.

Remark. The definition of the Cheeger constant is usually given in terms of
the vertex boundary 0W rather than the edge boundary, but the present definition

will turn out to be more convenient for our purposes.

The first connection between probability theory and amenability of groups was
obtained by Kesten (see [15] and [16]) where he proved that if one takes a finite sym-
metric generating set for a finitely generated group, then the group is nonamenable
if and only if the return probabilities for simple random walk on the resulting Cay-
ley graph decay exponentially (or equivalently the spectral radius for the resulting

Markov operator on L has spectral radius strictly less than one). This result was
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extended in [7] to any graph of bounded degree where it was shown that the return
probabilities for simple random walk on the graph decay exponentially if and only
if the graph is nonamenable.

Recently, another connection between amenability of groups and probability the-
ory has been obtained. In [2], it is shown that a group is amenable if and only if for
all @ < 1, there is a G-invariant site percolation on one (all) of its Cayley graphs
such that the probability of a site being on is larger than « but for which there are no
infinite components. (This result was motivated by an earlier result for regular trees
in [10]). See [2] for details and where the above is stated in a more general setting.
A conjecture concerning percolation on groups is that a group is nonamenable if and
only if for one (all) of its Cayley graphs, there is a nontrivial interval of parameters p
such that i.i.d. percolation with parameter p yields infinitely many infinite clusters.
See [3] for details and a more general conjecture (Conjecture 6) as well as [12] for a
related result.

The paper [23] proves a multiple phase transition in the Ising model on some
hyperbolic graphs in that for high temperatures there is a unique Gibbs state and
for low temperatures the free Gibbs state is a convex combination of the plus and
minus states, whereas for an interval of intermediate temperatures the free measure
is not a convex combination of the plus and minus states. It will be a consequence
of our results that the latter phenomenon occurs for the g-state Potts model on a
transitive graph for large enough ¢ if and only if the graph is nonamenable.

In [14] a characterization of nonamenability in terms of a phase transition for
the Ising model with a strictly positive external field is given, namely that a quasi-
transitive graph is nonamenable if and only if such a phase transition occurs at low
enough (but nonzero) temperatures. In particular this result is valid for all Cayley
graphs of groups.

The main result of the present paper is, together with the construction of wired
infinity random cluster measures on a general graph G, the following relation be-
tween amenability and phase transition in the wired infinity random cluster model.
A wired infinity random cluster measure is defined in the usual Dobrushin-Lanford-
Ruelle spirit in such a way that all infinite clusters are considered as one, i.e. con-
nected to each other at infinity. (The idea of regarding all infinite clusters as one was

introduced by Haggstrom in [11] where the random cluster model on a homogeneous



4 JOHAN JONASSON

tree is considered.) The precise definition will be given in Section 2, Definition 2.2.
In Section 2 we also introduce the promised method for finding such measures on a

general infinite graph.

THEOREM 1.2 Let G = (V, E) be an infinite graph.

(a) If G is nonamenable and regular with degree d, then there exists a qo < 00
such that for ¢ > qo and p/(1 — p) € [¢?/(4t#/2) g?/(4=K/2)] the wired infinity
random cluster model on E erhibits a phase transition, i.e. there exrists more

than one wired infinity random cluster measure on {0,1}F.

(b) If G is amenable and quasi-transitive, then for all g € [1,00) there is a unique
wired infinity random cluster measure on {0,1}¥ for all but at most countably

many values of p.

In particular, if G is transitive then G is nonamenable if and only if the conclusion

in (a) holds.

The proof of Theorem 1.2 is given in Sections 3.1. and 3.2. For part (a) we will use
a Peierls type of argument and for (b) we translate the convexity and differentability
of pressure argument of [14, Theorem 1.5(b)]. Part (b) is well known for G = Z¢
and this case is proved in [8] where the technique of which our proof is an extension
is used. A special case of (a) is proved in [11], namely when G is the homogeneous
tree, T,,.

In Section 3.3 we prove the following theorem which partially proves [11, Con-
jecture 1.9]. The result is relevant here since it negatively answers a question that
arises naturally in the light of Theorem 1.2(a), namely if the presence of more than
one infinite cluster necessarily entails a phase transition for the wired infinity ran-
dom cluster model. (However one has to be careful with what to mean with the

term “phase transition” here. See the remark after Lemma 4.3.)

THEOREM 1.3 Let G = (V, E) = T, the regular tree with degree n + 1. Let ¢ > 1
and set p' = p(p+ (1 — p)g)~t. Then for all p such that
1— n—l/(n—l)

/
p > 1 — p—"n/(n-1)

there is a unique random cluster measure with parameters p and q.
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Grimmett [8] proves an analogous result for G = Z<.

In Section 4 we translate Theorem 1.2 into the above mentioned Potts model
result.

Before moving on into Section 2, let us introduce the concept of stochastic mono-
tonicity. If y and v are two measures defined on the same partially ordered measur-
able space A, such that [, fdu < [, fdv for all increasing measurable functions f,

then we say that p is stochastically dominated by v, and we write p <4 v.

2 The random cluster model on a general graph

The random cluster model was first introduced in the 70’s by Fortuin and Kasteleyn
(see [6]) as a tool to handle Ising and Potts models on Z¢. The definition of a
random cluster measure on a finite graph is the following. (As usual an edge with

n(e) = 1 is said to be open and an edge with n(e) = 0 is said to be closed.)

DEFINITION 2.1 Let G = (V, E) be a finite graph. For p € [0,1] and ¢ > 0, the

q

random cluster measure u' on {0,1}¥ is given by

1 e —nie
pe' (n) = ZP,q(H p" )(1 -p)' " ))qk(n) (1)
G

ecE

for allm € {0,1}. Here Z§* is the normalizing constant ¥ o 1y# (eer " (1 —
p) NG and k(n) is the number of connected components in the open subgraph

of G given by n

In case G is infinite this definition does not work but it can be generalized by
taking so called thermodynamic limits. Fix a finite set S C E, p € [0,1], ¢ > 0 and
a configuration ¢ € {0, 1}#\% on the edges off S and define the free infinity random
cluster measure on S with boundary condition & by

1 € —nle
1;,’%(77) — @(H pn( )(1 _p)l n( ))ql(n,ﬁ) (2)
3 eceS

where Ug{ is the proper normalizing constant and (7, §) is the number of connected
components in the configuaration given by n on S and £ on E'\ S that intersect
V(S) ={v € V : Je € S such that e is incident to v}. Define also the wired infinity
random cluster measure on S with boundary condition & by

1 —ne
ufé’fé(n) _ W(H pn(e)(l _ p)l n( ))qk(n,i) (3)
Zs¢ s
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where Z¢{ is the normalizing constant and k(,§) is the number of finite connected
components in the configuaration given by n on S and £ on E \ S that intersect
V(S). The definition of infinite volume (free infinity /wired infinity) random cluster
measures is now that the conditional probabilities are to satisfy (2)/(3). Here X
and Y are {0,1}F-valued random variables with distribution ¢ and u respectively

and P is the underlying probability measure.

DEFINITION 2.2 Let G = (V, E) be an infinite graph. A probability measure, ¢, on

{0,1}¥ is said to be a free infinity random cluster measure with parameters p and q
if
P(X(S) =nlX(E\S) =¢) = ¢5¢(n) (4)

for all finite S C E, alln € {0,1}° and ¢-a.e. £ € {0,1,}°\S. Similarly a probability
measure, p1, on {0,1}F is said to be a wired infinity random cluster measure with

parameters p and q if

P(Y(S) =n[Y(E\ S) = §) = pisg(n) (5)

for all finite S C E, all n € {0,1}° and p-a.e. € € {0,1,}°\5,

This definition is analogous to the usual Dobrushin-Lanford-Ruelle definition
of an infinite volume Gibbs measure. Free infinity random cluster measures are
random cluster measures in the sense of Grimmett [8] (where the case G = Z¢ is
considered). They are obtained by regarding all infinite clusters as separate. Wired
infinity random cluster measures on the other hand, are obtained by regarding all
infinite clusters as one, i.e. as wired at infinity. These measures were introduced by
Héggstrom [11] for G = T, the homogeneous tree.

Let us now for a while consider the case when G is quasi-transitive and amenable.
Free infinity random cluster measures are then known to exist for ¢ > 1. We refer
to [8] for details on Z¢. In [8] the following explicit construction of free infinity
random cluster measures (on Z¢, but it works for any quasi-transitive amenable
graph) is given. Let Sp, So, ... be finite subsets of E such that S, 1 E and define the
probability measures ¢q,, and ¢1, on {0,1}* by first assigning all edges off S, the
value 0 and 1 respectively and then assigning values to the edges of S,, according to

(2) with £ = 0 and & = 1 respectively. (We suppress the superscripts p and ¢ here
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in order not to burden the notation and regard them as understood.) By standard
monotonicity arguments based on Holley’s Theorem (see e.g. [19]) ¢o.1 <4 P02 <a ---
and @11 >4 @12 >4 - .- so that the weak limits (w.r.t. the weak topology on {0, 1}¥)
¢o and ¢; exist. By monotonicity these limits are independent of the particular
sequence {S,} and ¢g <4 ¢ <, ¢ for any free infinity random cluster measure ¢
with the same parameters. A consequence of the latter fact is that the question of
phase transition in the free infinity model boils down to the question of whether
¢o = ¢ or not. A phase transition is known to take place on Z? for large ¢ when
p = pc(q), the critical value for percolation, (see [8]) but not for more than at most
a countable number of values of p.

To prove that ¢y and ¢, are indeed free infinity random cluster measures in the
sense of Definition 2.2 is an exercise in using the definitions of conditional probability
and weak convergence. A crucial fact, proved in [8], for that argument is that @g¢(n)
regarded as a function of £ is continuous at ¢;-a.e. £, 7 = 0,1. For ¢ > 1 monotonicity
arguments imply that ¢; is automorphism invariant, so the Burton-Keane Theorem
(see [4]) applies to show that ¢;-a.e. & contains at most one infinite cluster and
from this continuity follows. (The Burton-Keane Theorem was originally stated for
G = Z% but extends easily to all quasi-transitive amenable graphs.)

A completely analogous construction yields wired infinity random cluster mea-
sures g0 and p; having the corresponding properties. (The notation pg is used in
order to save pg for a third measure appearing below.) Moreover, the Burton-Keane
Theorem implies that an automorphism invariant measure is a free infinity random
cluster measure if and only if it is also a wired infinity random cluster measure.
In particular ¢; = p; and ¢y = pgg so that there is a phase transition in the free
infinity model if and only if there is a phase transition in the wired infinity model
for the same parameters.

Let us now turn back to the general situation. In this case there might be a
positive probability for having more than one infinite cluster. This is known to
be the case for e.g. i.i.d. percolation on T,, a fact which follows from a simple
branching process argument, and on T, X Z. For the latter statement see [9] where
it is shown that for an interval of edge densities there are infinitely many infinite
clusters whereas for high edge densities there is a unique infinite cluster. It has

been conjectured that for any nonamenable graph there is an entire interval of edge
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densities for which more than one infinite cluster appears. Possible nonuniqueness
of infinite clusters causes some new problems. First of all it is clear that in this case
the free infinity model and the wired infinity model disagree and we have to decide
on what model to use. There is no way of telling which model is the “correct” one,
but in [11] it is observed that on T, the free infinity approach necessarily yields
product measure with density p(p+ (1 —p)g) ! for all values of p and ¢ (and thereby
uniqueness of random cluster measures) whereas it is proved that the wired infinity
approach gives a much richer behavior. In particular it is shown that for ¢ > 2 there
is a phase transition for an entire interval of p-values. Since we intend to characterize
nonamenability in terms of a phase transition for the random cluster model we are
therefore forced to stick to the wired infinity model in this paper. Therefore we will
henceforth use the convention that a random cluster measure is understood to be a
wired infinity random cluster measure.

A second problem with nonuniqueness of infinite clusters is that the continuity of
pse(n) in € fails. (This happens also if we use the free infinity model.) In our wired
infinity world pge(n) is upper semicontinuous and it can be shown that when we
repeat the constructions of g and p; above for a general graph, then y; is a random
cluster measure. This might be false, however, for ugy. (For the free infinity model
bs,¢(n) is lower semicontinuous and ¢y is a free infinity random cluster measure but
¢1 might fail to be. Thus, in order to be consistent we should perhaps have used
the notation ¢q; instead of ¢;.)

We will now introduce a method of explicitly constructing wired infinity random
cluster measures in the sense of Definition 2.2 that correspond to po and pq in
the amenable case, i.e. two random cluster measures obtained as weak limits of
certain measures with free and wired boundary conditions respectively such that
their definitions do not depend on the particular sequence {S,}. The idea is to
introduce an imaginary extra vertex, vy incident to all vertices of V. We will call v
a “ghost vertex”. This term was introduced by Aizenman and Barsky in their proof
of exponential decay of the radius distribution for the cluster containing the origin in
subcritical i.i.d. bond percolation on Z¢. (See [1].) We thus consider the new graph
H = (V,E) where V = VU {v} and E = EU Ey where Ey = {(v,v);v € V}.
(For each S C E we write S = S U S) in the same way.) We define a new three-

parameter class of measures on {0,1}”. The {0,1}"-valued random variable, X,
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below is understood to have distribution v.

DEFINITION 2.3 We say that a probability measure, v, on {0,1}F is a (random

cluster) ghost-measure with parameters v € [0,1], p € [0,1] and ¢ > 0 if, for all
finite S C E, alln € {0,1}" and v-a.e. £ € {0,1}7\

P(X(S) =n|X(E\S) = &) = vie(n) (6)
where
Vo) = g (I] 770 (1 = )= (I 7)1 = p)'7) 09 (7
S,6  e€So eeS

where k(n, &) is the number of finite connected components that intersect V(S).

In words, a ghost-measure is nothing but a random cluster measure on the edges of
H but with different “p-values” for different edges depending on whether they are
in E or in Fj.

Let us now mimik the standard construction of random cluster measures on
quasi-transitive amenable graphs above. Let S, 1 E and set S, = S, U Sp,0, Where
Sno is the set of edges going from vy to one of the vertices of V(S,). Fix r > 0 (this
is essential) and define the measures v ,, n = 1,2, ..., according to (6) with S = S,
and § = 0 and define 17, analogously with £ = 1. It is clear that v, i =0, 1, have
conditional probabilities according to (6) for S C S,. By standard monotonicity

arguments we have for ¢ > 1 that v, <gvg, <4 ... and vj; >4 V75 >4 ... so that

the weak limits 1/ exist and are independent of the sequence {S,}.

LEMMA 2.4 Let ¢ > 1 and r > 0. The projections of v} onto {0,1}0 ¢ = 0,1,

L and are

stochastically dominates product measure with density r(r + (1 — r)q)~
stochastically dominated by product measure with density r. If ¢ < 1 the situation

the reverse result holds.

Proof. 1t follows from standard arguments that the result holds for the projec-
tion of v}, onto {0,1}° for any finite Sy such that Sy C Sy, so the result follows

from weak convergence. O

LEMMA 2.5 Let r > 0. If X" is a random variable with distribution v}, 1 = 0,1,

then X" a.s. has a unique infinite cluster.
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Proof. By Lemma 2.4 any infinite cluster is a.s. connected to vy and thus a.s.
connected to any other infinite cluster. O

Now the next lemma follows on copying the proof of Lemma 3.4 of [8].
LEMMA 2.6 Let r > 0. For any finite S C E and any n € {0,1}5, Vg (n) is

continuous at vl -a.e. £ € {0,1}F\5

PROPOSITION 2.7 Letq > 1 andr > 0. The measures vy and v are random cluster

ghost-measures with parameters r, p and q.

Proof. Let X be distributed according to § and let X;, Xy, ... be distributed
according to vy 1,1 o, - - - Tespectively, all defined on the same probability space with

the underlying probability measure P. For a cylinder set B € B({0, I}E\S ), we have
P{X(S)=n}n{X(E\S)eB}) = /BP(X(S’) =X (E\ S) = )y (d€)

— lim P({X,(5) = n} N {X.(E\ ) € B})

= lim [ POXA(3) = 0l Xa(E\ 3) = €)05,,(d¢)
= lim [ v )i, (de) = [ v (mvs(ae)

where the last inequality follows from Lemma 2.6 and the definition of weak con-
vergence. Since the class of cylinder sets is closed under finite intersections and

generate B({0,1}7\5), this proves that P(X(S) = n|X(E\ S) = ¢) = Vg ¢(n) for

vg-a.e. £ as desired. The proof for 1] is analogous. O

Remark. For ¢ < 1 the monotonicity of the sequences {1],} fails so it is not
clear that the limits exist. However, the compactness of the family of probability
measures on {0,1}* implies the existence of subsequential weak limits. For these

limits the proof of Proposition 2.7 goes through unchanged.

In the next step, where we assume throughout that ¢ > 1, we let » | 0 and
obtain the weak limits v; = lim, 7], 2 = 0,1. The existence of these limits follows
from the fact that v} is stochastically decreasing in r, a fact which in turn follows
from a standard application of Holley’s Theorem. We claim that the projections
onto {0,1}F of these two measures are random cluster measures. For the proof of
that, the following lemma is convenient. (This is just Lemma 2.4 of [11] where this

is stated for G = T, but the proof is valid on any graph.)
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LEMMA 2.8 Let i be a probability measure on {0,1}¥ and let X be a {0, 1}”-valued
random variable with distribution p. If, for all e € E and p-a.e. £ € {0,1}7\e,

P(X(e)=1|X(E\e)=&) =plc. (&) +plp+ (1 —p)g) " Lce(€)

where C, is the set of configurations, &', in {0,1}F where the end vertices of e are
either connected in & or in two different infinite connected components of £, then

W 1S a random cluster measure with parameters p and q.

THEOREM 2.9 Let, for i = 0,1, u; be the projection onto {0,1}¥ of v;. Then pg

and py are random cluster measures with parameters p and q.

Proof.  As in Proposition 2.7 we do the proof for pg. The proof for p is
analogous.

Let r, | 0 and let X1, Xs,... be distributed according to vy, 1%, . . . respectively
and let X be distributed according to vy. Fix an edge e = (u,v) € E. Let C, be as
in Lemma 2.8, let C, be the set of configurations, &' € {0, I}E\e, such that u and v
are either connected in &’ or in two different infinite connected components of ¢ and
set, for n = 1,2,..., C{™ to be the set of configurations in {0, 1}5\e such that v and
v are either connected by a path of open edges in S, or both connected to E \ S,.
Note that C(™ | C, and that since X (Ep) = 0 a.s. we have for any set B € {0,1}7\¢
that P(X(E \e) € C.,N B x {0,1}*) = P(X(E \ e) € C.N B).

Now fix any cylinder set B € B({0,1}*\¢) and set p' = p(p + (1 — p)g)~'. Then

[ P(X(e) = 1X(E\ e) = u(de) = PUX(e) = 1} N {X(E \ ¢) € B})

= lim P({X.(e) = 1} N {Xa(E \ ¢) € B})

n—oQ

= lim P(Xu(e) = 1Xn(E\ €) = & Xn(Eo) = &)vg" (d(€,£))

n—oQ BX{O,l}EO

= lim (pP(Xo(E \ €) € C. N B x {0,1}%)

n—oo

+p'P(X,(E \ e) € CcN B x {0,1}%))

by weak convergence and Proposition 2.7. Since standard monotonicity arguments
imply that P(X,(E \ e) € C.N B x {0,1}¥°) is decreasing in n and we also have

that C(™ decreases in m we have

lim P(X,(E\e) € C.N B x {0,1}")

n—0o0
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= lim lim P(X,(E\e) € C™ n B x {0,1}F°)

n—oC m—0o0

= lim lim P(X,(E \e) € C/™ N B x {0,1}")

mM—00 N—r0Q

= lim P(X(E\e) e C™NBx{0,1}")=P(X(E\e) € C.NB)

m— o0

by weak convergence, as C{™ is a cylinder set, and the above. Thus
[ P(X(e) = 11X(B\ ) = )wo(de)
=pP(X(E\e) € C.NB)+p'P(X(E\e) € CSNB)
= [ (ple.(€) + P Ie: (€) mo(dg)

ie. P(X(e) = 1| X(E\e) =&) = plc. (&) + ' 1ce(§) vo-a.e. and the result follows

from Lemma 2.8. O

Remark. We do not need the ghost vertex for the construction of y. Set 7,
to be v{, with r = 0. Then v = inf, inf, /], = inf, inf, /], = inf, y?’n. Now let
pi1,n be the projection onto {0,1}* of 7, and it follows that p1 = infy, p1,,. On the
other hand, if we let uo, be the projection of 1/8,,1, then pgp := limy,_,o o, does
not always equal jp; we are not allowed to reverse the order of a supremum and an

infimum.

3 Proofs of Theorem 1.2 and Theorem 1.3

3.1 Phase transition in the nonamenable case

The time has come to prove Theorem 1.2(a) which said that if G is nonamenable
and regular, then for ¢ large enough there is an entire interval of values of p for
which there is more than one random cluster measure. We start with two lemmas.
The first one is due to Kesten [17] and the second one is an immediate consequence

of the definition of the Cheeger constant.

LEMMA 3.1 Let G = (V, E) be an infinite graph with mazimum degree d and fix
an arbitrary edge eg € E. For m = 1,2,..., let Cy(eo) be the family of connected

subsets of E of size m containing ey. Then

ICm(e0)| < (e(2d+ 1))™.
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LEMMA 3.2 Let G = (V,E) be a reqular graph with degree d. For a finite set,
W CV, let E_(W) be the set of edges with both end vertices in W and let E (W) =
E (W)U O0gW be the set of edges with at least one end vertex in W. Then

ELW)| _d-x
<
Wl =2

and

ExW)| § d+k
wi -2

Proof of Theorem 1.2(a). We will eventually specify how large a ¢ to choose but
from now on we assume that p/(1 — p) € [¢?/(@+5/2) ¢?/(d=k/2)],

Let X be a random variable with distribution pg, let X" have distribution v
and X be distributed according to vg, and let P be the underlying probability
measure. We start by proving that for any p > 0 we may pick ¢ so large that for
any edge, eg, we have P(X(ey) = 1) < p. Pick the sequence {S,} such that S, T F
and eg € S; and pick v << kA 1. Set r = /2 and fix n so large that

|P(X;(e0) = 1) = P(X"(eo) = 1)| < p/2.

Observe that
We=13=U U {Xecdc)
m=1 CeCp(eo)

where A¢ is the set of configurations where the connected component of open edges
that eq is found in (disregarding possible edges to vy) is exactly C. Let B be the
set of configurations where no more than v|V(C)| of the edges connecting V(C)
to vy are open and let Do = Ag N Be. By Lemma 2.4 and Markov’s inequality
we have that P(X] € A¢) < 2P(X! € D¢). Now, for C C S, let us compare
the probabilities for {X] € D¢} and {X"(C U 0gV(C)) = 0} N {X! € B¢}. For
any outcome in the latter event compared with the corresponding outcome in the
former (i.e. the outcome which agrees on the edges connecting V(C) to vy) we lose
(p/(1 — p)) Z-VNl = (p/(1 — p))“! from loosing open edges but we win at least

¢V from winning more clusters. Therefore

' P(X! € D¢)
P(X](eo) S2Z Z P{Xr(CUdRV(C)}N{X: € Bc}) =0)

m=1 CeCp,

s (p/(1— p))‘c'
<2 ) 4 VO]
m=1 Cecm(eo)
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<9 i": 3 (p/(1—p))™
Com

() /(&)

<23 (g2/(d=/2=20=7)(d=s) ym

by Lemma 3.2 and Lemma 3.1 and since the exponent of ¢ is less than 1 we can pick
g large enough to make sure that this expression is less than p/2. Thus P(X(eg) =
1) < P(X"(eg) = 1) < p as desired.

Note that as an immediate consequence of the above result, ug(ey > 00) < 2dp.
Here {ey <> 0o} is the event that at least one of the end vertices of ey is connected
to infinity by a path of open edges. Now in order to prove phase transition we
prove that ui(ey > oo) > 2dp for small enough p. We do so by proving that
p1n(eo <> OV (S,) > 1/2), say, for all n. (Recall the remark after Theorem 2.9.)

Let Y,, be distributed according to p;, and let W denote the random subset of
vertices that are not connected to 9V (S,,) in the Y,,-configuration. We want to prove
that P(ep € E-(W)) < 1/2. Given W = W, Y, (E_(W)) is distributed according
to fo,m_(w), i-e. the measure on {0,1}¥-(") with free boundary condition, see the
remark after Theorem 2.9. (Note that the event {W = W} is measurable with
respect to the o-algebra generated by {Y,(e) : e € E\ E_(W)}.) This measure
is dominated by the projection of vfp () for any r > 0. Therefore, if E_(WW)
contains eg, the conditional probability that Y, (ey) = 1 is at most p by the above
result. Thus, by Markov’s inequality, P(W = W) < 2P({W = W} N B) where B is
the event that at most 2p|E_(W)| of the edges of E_(WV) are open.

Let us now compare the outcomes, 7, of {WW = W }NB with the outcomes 77 where
we flip the values of all the edges of E (W), i.e. fi(e) = n(e) for e € S, \ E, (W) and
n(e) =1 —n(e) for e € EL(W). Changing 7 to 7 gives us at least (1 — 4p)|E, (W)
more open edges and we lose no more than |[W| clusters. (Remember that all vertices

outside S,, are regarded as connected to each other.) Thus

) o ¢
P(Yo=1) = (p/(1 —p))t- 0wz

gW!

< @ < (@) = o



THE RANDOM CLUSTER MODEL ON A GENERAL GRAPH 15

by Lemma 3.2. Due to the algebraic fact that «;/3; < ¢, = 1,...,k implies that
(ZF L a0)/ (2K 8) < ¢ we get that POW = W) < 2a"W! for all W such that
ep € E_(W). Since the exponent of ¢ above is less than 1 for p small enough we can
by picking q large make a arbitrarily small. By using Lemma 3.1 and rewriting the

event {eg € E_(W)} in the same spirit as above we get
Pleg e E_(W)) < > (e(2d + 1)a)™ < 1/2
m=1
for sufficiently small a. The proof is complete. O

Remark. The above proof can be generalized slightly. If all but at most finitely
many of the vertices have degree d, then Lemma 3.2 essentially holds for all but
finitely many sets W. Therefore the first part can be carried out for all but at
most finitely many edges e so it is clear that this will not cause anything more than
technical problems. Thus Theorem 1.2(a) holds for e.g. an n-ary tree with a proper

root or for the kind of hyperbolic graphs considered in [23].

3.2 No phase transition in the amenable case

We will generalize the the proofs of [14, Section 3.2] and [8, Section 4] which are in
turn extensions of methods originally introduced in [18] and [21]. Since the present
proof does not contain anything new, the presentation will be kept compact.

Let G be any amenable graph with maximum degree d. Let {S,} be a sequence
of subsets of E such that S, 1 FE and |0gV (S,)|/|Sn| — 0. Consider the measures
pr = limy, o pt1, and poo = limy, o0 po,, Where iy, and pg,, are defined as in the
remark after Theorem 2.9. As noted there p, , is a random cluster measure and if
uniqueness of the (possible) infinite cluster is in force, then so is ugy. In any case
oo <gq b <g4 iy for all random cluster measures pu.

Recall the normalizing constant Zg’, of (3), i.e.

z8, = > (II PO (1 — p)ime)) k&)
n€{0,1}5n €€Sn
where k(n,£) is the number of finite connected components that intersect V' (S,).
Let a(n) denote the set of open edges of 7 and set

Ysp,fg = (1— p)fISn\ Zg;({g — Z gF 8 grla(n)] (8)
n€{0,1}5n
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where ™ = log(p/(1 — p)). Let
fo(n.m.q) = [Su| ' log Y&, (9)

Now fix ¢ and fix a 7 and consider the sequence {f°(n,7,q)}. By inspection of (9)
there is a K = K (g, q) such that f°(n,,q) € [0, K] for every n and 7 € [0, 7. By
compactness there exists a sequence {n;} such that lim; ., f°(n;, 7, q) exists for all
rational 7 € [0, o).

Now for fixed n and m we have

0

S0 (n,7,q) = 1Su ™ poa(lan) 0 Sul) (10)

and

aa—;fo(naﬂ-:q) = |Sn‘71(ﬂ0,n(‘a:(77) N Sn‘2) — (MO,n(|a(77) N Sn|))2) > 0.

Thus f°(n,m,q) is convex in 7 for each n and it follows from e.g. [5,Theorem
V1.3.3(a)] that lim;_,, f%(n;, 7, q) exists for all 7 € [0, 7] and is convex in . Denote
this limit f(m, ¢). This limit function may depend on {S,} and {n;} and also on the
fact that we have been working with free boundary conditions. However if {£,} is an
arbitrary sequence of boundary conditions, then |k(n,&,) — k(n,0)| < |0V (S,)| and
so |fé(n,m, q) — fO(n,m, q)| < (logq)|0V (S,)|/|Sn| — 0. Hence lim,_,o f&i (ng, 7, q)
equals f(m,q) for any sequence of boundary conditions.

Being convex implies that f(m,q) is differentiable for all but at most countably
many values of 7. Now fix such a 7. By Lemma IV.6.3 in [5] and the above we have
that

0 0
Eni (1.
awf (ni,m,q) = aﬂf(WaQ)

for any boundary conditions. Applying this to (10) and the analogous equation for

wired boundary condition and taking the difference yields

i |, [~ 1, (a(0) 1 S5, ]) — o, (1a(n) N S, ])) = 0

for all but countably many values of p such that 7 € [0, 7]. However since 7y was

arbitrary we have established the following result.
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PROPOSITION 3.3 Let G = (V, E) be an amenable graph with uniformly bounded
degree and fiz ¢ > 1. Then for any sequence {S,} of finite subsets of E such that
Sn T E and |0gV (Sy)|/|Sn| — 0, there is a subsequence, {n;}, such that

Bin |, [~ 1, (a(n) 1 S5, ]) — o, (1a(n) 1 S5, ])) = 0

for all but at most countably many values of p.

Proof of Theorem 1.2(b). Let {S,} be as in Proposition 3.3 and fix p and ¢ > 1.
Write V = Vi U. ..UV} where the V}’s are the orbits of the automorphism group of G
acting on V. By [2, Proposition 3.6] there are strictly positive constants, aq, ..., o
such that |V (S,) NV;|/|Sn| = o, for j = 1,...,k. Now write E = E; U...U E|
where the F,,’s are the orbits of the automorphism group of G acting on E. (We
have | < dk.) Since |0V (S,)|/|Sn] — 0 we have that |S, N E,,|/|Sa| — Bm for
m =1,...,1 where 3, > 8 := min; «;/d for all m.

Now if pgo # 1, then there is an m such that ui(n(e) = 1) —poo(n(e) =1) :=€ >
0 for all e € E,,. (The measures pgo and p; are automorphism invariant.) However

if this is the case then by stochastic monotonicity
[Sul " an(la(m) N Sal) > [Sul ™ 1 (Ja(n) N Sal)
> |85l poo(la(n) N Snl) + Be > S| ton(la(n) N Sul) + Be

which contradicts Proposition 3.3 for all but at most countably many values of p.
Theorem 1.2(b) follows (and since G is amenable and quasi-transitive, the Burton-
Keane uniqueness Theorem is valid and what we have proved is in fact equivalent

to Theorem 1.2(b).) O

3.3 Proof of Theorem 1.3

We do the proof for G = Ty; it extends in a straightforward way to T,,, n > 3.

For arbitrary p and ¢ > 1, fix any random cluster measure, u with those parame-
ters. We claim that if u(n(e) = 1) = pu1(n(e) = 1) for every e € E, then u = py. This
is the case since by Strassen’s Theorem (see e.g. [20]) we can define random variables
X and X; on a common probability space with underlying probability measure P

in such a way that X has distribution p, X; has distribution p; and X < X; a.s.
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However by assumption P(X(e) # Xi(e)) = P(Xi(e) = 1) — P(X(e) = 1) = 0 for
every e so by countable additivity X = X; a.s.

Now fix ¢ > 1 and an edge e = (u,v) and let T, and T, be the left and right
subtrees, i.e. the trees descending from u and v respectively. In order to prove that
u(n(e) = 1) > pi(n(e) = 1) for large enough p, we shall prove that for large p, e
will with probability 1 be completely surrounded by some finite set W of vertices of
which all are connected to infinity via open edges. (Formally we define the statement
“e is completely surrounded by W” as meaning that every path from e to infinity
intersects WW. Note that our claim is stronger than just saying that e is completely
surrounded by open edges which is the case as soon as the closed edges do not
percolate.) Let us call such a set a wiring set if in addition no vertex of W is a
descendant of any other vertex in W. Here we say that w’ is a descendant of w
and that w is an ascendant of w' if every path from u to w' goes through w. If in
addition w is adjacent to w' then we say that w is the mother of w’ and that w' is a
daughter of w'. Then, knowing that a wiring set exists, the conditional distribution
of X inside it will stochastically dominate the projection of ;.

Let us first extend X to a random variable on {0,1}V“"* by declaring a vertex
w to be open if there is a path of open edges from w to infinity through the set of
descendants of w. If w is not declared open then we call it closed. Second, let Y be
another {0,1}"“#-valued random variable (defined on the same probability space)
by first letting Y (E) be an i.i.d. percolation with edge density p’ = p(p+ (1 —p)q)~"
and then declaring vertices to be open or closed in the same way as we did for
X (V). Since X(F) >4 Y(F) it follows that X >; Y. Next, fix p such that p’ =
(1 —27Y/C=D)/(1 — 2%/2=D) = 2/3. Then basic branching process theory tells us

that P(Y (w) = 0) is given by the smallest solution of the equation
s=(2s/3+1/3)?

ie. P(Y(w) = 0) = 1/4. We now ask ourselves: Can there be a path from e to
infinity using only vertices, w, with Y (w) = 0? If we can answer this question
with a no, that would also imply that the same question for the X (V')-configuration
is answered negatively and thereby establish the existence of a wiring set for the
X (E)-configuration. The answer is not obvious, however, because of the strong

dependence between the Y (w)’s. We shall make use of the fact that the distribution
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of the statuses of the descendants of a vertex w given the statuses of w and all
other vertices just depends on Y (w). For a fixed w, let w, and w, denote the two

daughters of w. Then, for z,,z, € {0,1},

P(Y(wy) = 24, Y (W) = 2|V (w) = 0)

P(Y(wa) = 24, Y (wp) = zp, Y (w) = 0)

P(Y (w) = 0)
(BB (U o2 e
- i = (1/2)7(1/2)

i.e. the conditional distribution of (Y (w,),Y (wp)) given Y (w) = 0 is product mea-
sure with density 1/2.

Now let us try to find a path from w to infinity through the left tree, 7,,, through
only Y-closed vertices using the follwing search algorithm. First order the vertices,
{w1, ws, ...} in such a way that w; = u, we and w3 are the daughters of u, wy, ..., w;
are the granddaughters of u, etc. Start the search by checking the value of Y (w,).
Then, at each step, we check the next vertex in the ordering for which we have
not already found an ascendant, w, with Y(w) = 1. If at some step there is no
such vertex, then the search terminates and in this case we know that there is no
path from u to infinity through 7T, using only Y-closed vertices. If in addition an
analogous search for the same kind of path through 7, also terminates, then we have
established the existence of a wiring set. However from the above it follows that for
each new vertex w we check, the conditional probability that Y (w) = 0 given what
we have seen so far is at most 1/2. This means that given the order {wy,, wy,, ...}

in wich we happen to check the vertices, we always have

(Y(wk1)7 Y(’ka), < ) >d (Z(wk1)7 Z(wk2): - )

where the Z,,’s are iid. with Pr(Z(w, =0) =1 - Pr(Z(wg) = 1) = 1/2, k =
1,2,.... Since the Z(wy)’s correspond to applying the same search algorithm to
search for an infinite cluster of open vertices in an i.i.d. site percolation with density
1/2, it follows from an application of Strassen’s Theorem that the search algorithm
will terminate a.s. for T, as well as T,. (The critical value for percolation on T, is
well known to be 1/n with no percolation at the critical value.) Since X (E) >, Y (FE)
another application of Strassen’s Theorem entails that e will a.s. be surrounded by

a wiring set in the X (E)-configuration as desired.
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Now fix € > 0 and let Sy 1 E and fix k£ so large that the probability that we
can find a wiring set, W, that surrounds e, in the X (FE)-configuration such that
W C S, is at least 1 — €. Let W be the random set of vertices defined as the
outmost wiring set inside Sk, i.e. the unique wiring set in which all vertices, w, are
either in V' (Sk) or connected to OV (Sk) by a path of closed vertices. The event

{W = W} is measurable with respect to the o-algebra generated by
{X(w') : w'" descendant of w for some w € W}.

Therefore, with W = W U {wq : wy ascendant to w for some w € W}, the distribu-
tion of X(E_(W)) given W = W is yy p_qy) which stochastically dominates p1.
Since W is degenerate with probability at most €, we have

Hlnle) = 1) = P(X(e) =1) 2 3 P(X(0) = 1IW =W)POV = W)

> (L= €eup(n(e) =1) = (1 = e)ua(n(e) = 1)

proving that pu(n(e) = 1) = pi(n(e) = 1) and since e was arbitrary it follows that
pu = py for p' = 2/3. That the result also holds for all p such that p’ > 2/3 now

easily follows from monotonicity arguments. O

4 A consequence for the Potts model

We assume that the reader is familiar with the Potts model, but in order to intro-
duce our notation, let us give a formal definition. The parameter 3, the inverse

temperature, is a positive real number and ¢ is a positive integer.

DEFINITION 4.1 Let A be a probability measure on {1,...,q}", let Y be a random
variable distributed according to A and let P be the underlying probability measure.

We say that X is a Gibbs measure for the q-state Potts model with inverse temperature

B if, for every finite W CV, every w € {1,...,q}" and A-a.e. ' € {1,...,¢}V\V,

PY(W) = wY (V\ W) = ) = Z%e—mw (11)

where Z{?V,w is a normalizing constant and D(w) = 3, wewuow u~o Hw(u)£w(@)} > the

number of pairs of adjacent vertices with different spins.
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Gibbs measures for the Potts model are constructed in the same way as random
cluster measures. Let W,, 1+ V and let, for £ = 1,...,q, Ay, be the measure given
by first setting w(v) = k for all v € V \ W,, and then assigning spins to v € W,
according to (11) with W = W, and v’ = k. By monotonicity properties the limits
Ak = lim,_, o g, exist and since the interactions of the Potts model are only local
(which is not the case for the random cluster model) it is straightforward to verify
that the \;’s indeed satisfy Definition 4.1. This also goes for the free measure, A¢,
which is obtained as the limit lim,_,, Af, where A, is just the Potts measure on
the finite graph (W,, E_(W,))), i.e. the vertices off W,, do not have any influence.
(It is not obvious that the limit exists through the whole sequence, {W,}, but this
existence is a consequence of Lemma 4.2(b) below and the monotonicity of {1 }.)

There is a close correspondence between the Potts model and the random cluster
model. It is captured by the following well known lemma, which was first proved
by Swendsen and Wang [22]. Here p = 1 — e 2% and fon and py, are the pro-
jections onto {0,1}" of vy, and v7, as in Section 2 with S, = E_(W,). Recall
that lim,_,o pt1,, = w1 but that about lim,_, 0, Which we denote pgo, we only
know that it is dominated by pg. (It might, as for G = T,, with large p, be strictly

stochastically smaller.)

LEMMA 4.2 (a) Construct a {0,1}°"-valued random variable, X, by

(i) picking Y according to \jn,

(i1) letting X (e) = 1 with probability p if the end vertices of e have the same
spin in Y, and with probability 0 otherwise, independently for different
edges.

If j € {1,...,q}, then X is distributed according to (the projection of) pn
and if j = f, then X is distributed according to (the projection of) g p-

(b) Construct a {1,...,q}"""-valued random variable, Y, by

(i) picking X according to pi;p,

(i1) letting all vertices that are part of the same connected component of X
get the same spin, uniformly chosen from {1,...,q}, independently for
different connected components. (Remember here that infinite clusters

are regarded as connected at infinity.)
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Ifi =0, then'Y is distributed according to (the projection of) Asn and if i =1,
then Y is distributed according to (the projection of ) >3_; Ax/q.

One well known consequence of Lemma 4.2 is that the Potts model exhibits a
phase transition if and only if iy percolates. Another consequence which is more

interesting from our point of view is the following:
LEMMA 4.3 The measures Ay and Y} _, A\r/q are equal if and only if pgo = 1.

Proof. The case ¢ = 1 is trivial so assume throughout the proof that ¢ > 2.
Assume first that pgo # p1. Then there is an edge, e = (u, v), such that p;(n(e) =
1) — poo(n(e) = 1) = ¢ > 0. Since o, <q poo and py, >4 1 for all n we have
that p1,(n(e) = 1) — pon(n(e) = 1) > ¢ for all n. However since p;,(n(e) = 1) =
Phin(Ce) + PP+ (1= p)a) " pin(C) for i = 0,1 it follows that y11,(Ce) — po,n(Ce) >
¢ > 0 for all n for some ¢ and so for some ¢’ > 0 p1,(u <> V) — pp(u < v) >’
for all n. Here the set {u <> v} is the set of configurations for which u is connected
to v by an open path or where v and v are in different infinite clusters and C, is as
in Lemma 2.8. By Lemma 4.2(b) A\, (w(u) = w(v)) — App(w(u) = w()) > " >0
for all n so by weak convergence \y(w(u) = w(v)) — Ap(w(u) = w(v)) > . Thus
Ar # EZ:1 Ak/q.

On the other hand, if gy = 1, then the probability for having more than one
infinite cluster must be 0. The reason for this is that if this is not the case then
for any edge e there is a positive probability that if e is open then it connects two
otherwise different infinite clusters. However, by conditioning on the configuration
off e and using the definitions of gy and p; this would imply that pe(n(e) = 1) <
u1(n(e) = 1), a contradiction. The uniqueness of a possible infinite cluster implies
that pgo(u <> v) = lim, o0 flon(u > v) and p(u <> v) = lim,_ oo fl1n(u <> V).
(The uniqueness of the possible infinite cluster is crucial for the first one of these

equalities.) Therefore

n—0o0

(2 M) (@) = 0(v)) = Tim An(() = (b))
= 1/q+ (g = 1)/a) Jim g0 6 v) = 1/g + (g — 1)/a) Jim_pioa(s 65 v)

= Ar(w(u) = w(v))
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for all u and v. Since all one dimensional events trivially have the same Y»7_, \x/q-
and Aj-probabilities, this implies that the same goes for all two dimensional events.
In the same manner it can be shown that all finite dimensional events have the same

37 . \i/g- and A-probabilities, i.e. the two measures are equal. O
k=1 f

Remark. The proof of the above lemma gives a simple argument that if G,
p and q are such that there is a positive u;-probability for having more than one
infinite cluster, then pgg # 1. However this does not imply a phase transition for
the random cluster model in our sense for such cases as the argument fails to prove
that po # p1. On the contrary Theorem 1.3 gives examples of such situations where

there is no phase transition.

Since gy <4 po an immediate consequence of Lemma 4.3 and Theorem 1.2 is

the promised result:

THEOREM 4.4 Let G = (V, E) be an infinite graph.

(a) If G is nonamenable and regular with degree d, then there is a qo such that for

q> qo and e¥ — 1 € [¢?/(4+:12) 2/d=K/D)] e have Nf # S_1 M\e/q-

(b) If G is amenable and quasi-transitive, then Ay = Y[ _; A, for all but at most

contably many values of 3.
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