ESTIMATES OF SOLUTIONS OF THE H? AND BMOA
CORONA PROBLEM

MATS ANDERSSON & HASSE CARLSSON*

ABSTRACT. We prove new sharper estimates of solutions to the
HP-corona problem in strictly pseudoconvex domains, in particular
we show that the constant is independent of the number of genera-
tors. We also obtain sharper estimates for solutions to the BMOA
corona problem. The proofs also lead to new results about the Tay-
lor spectrum of analytic Toeplitz operators on H? and BMOA.

1. INTRODUCTION AND BACKGROUND

In this paper we obtain new sharper estimates of solutions of the
HP-corona problem and the BM O A-corona problem in strictly pseudo-
convex domains in C*, and furthermore we make an extension to each
level of the Koszul complex of the generators. The new estimates con-
sist in a sharper control of the dependence of §, and independence of
the number of generators. To explain the generalization we first discuss
this type of division problems in the frame of spectral analysis.

Let D be a bounded domain in C* with C? boundary and let A¢ de-
note elements of degree ¢ of the exterior algebra of the basis ey, ... , en.
Then a function (or a form) f in D with values in A¢ looks like

f = Z'erIa

1|=¢

where e; = e, N...Ney, (we use N instead of A in order not to confuse
with the exterior multiplication in D) and the prime means that the
summation is performed over increasing multiindices I of length ¢. The
pointwise norm of f is

(1.1) 2= 1Al

1=t
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The Hardy space HP(A?) consists of holomorphic Af-valued functions
f such that

£ | z» zlimsup/ |f|Pdo < oo,
e—0

oD,
where D, = {p < —e¢} for some defining function p of D. If g1,..., g
are bounded holomorphic functions, then, for each fixed w € C™, the

mapping
(1.2) Suw_g: HP(ATY) — HP(AY)

*

is defined as interior multiplication with } T"(w; — g;)e}, where € is
the dual basis of e;. Since 0,4 0 d,y—g = 0 we have a complex

(1.3) 0« HP(A®)  HP(AY) «= ... HP(A™) 0.

The next to leftmost arrow is just the mapping (H?)™ — HP? defined
by

(1.4) (g, - ) > (W) — g5)u;.

The Taylor spectrum o (g, H?) of the (commuting set of) multiplication
operators g; on HP” is defined as the set of w € C™ such that (1.3) is
not exact. The right spectrum o,(g, H?) is the set of w such that
(1.3) is not exact at the next to leftmost point, i.e., such that (1.4) is
not surjective. It is a consequence of the open mapping theorem that
o,(g, H?) and o(g, H?) are closed sets. Obviously (1.4) is not surjective
if w € g(D), and therefore we have the inclusions

(1.5) g9(D) C o,(g,H?) C o(g, H?).

Suppose that u = Y uje; € H*®(A') satisfies d,_yu = 1. Then
the mapping U: HP(AY) — HP(A**!) defined by f — u N f satisfies
dw—gU + Uby—_g = 1 and hence (1.3) is exact. In particular it follows
that (g, H?) is contained in any Stein compact K that contains g(D).
In fact, if w is outside such a compact, then we can find ¢, € O(K)
such that > ¢(£)(& — w;) = 1 and therefore §,,_yu = 1 if u; = ¢;(g).

The corona problem is equivalent to the question whether the inclu-
sions in (1.5) are equalities if p = co. This is true, for instance, in all
finitely connected domains in the plane. In higher dimensions there
are counterexamples in some smoothly bounded weakly pseudoconvex
domains, see [22] and [13], but the question is still unsettled in strictly
pseudoconvex domains, even in the ball.

In this language the H2-corona problem, introduced in [3], amounts
to decide whether g(D) = o,(g, H?), and it was proved that this is in
fact true when D is the ball in C*. The proof relies on the L2-technique
to handle division problems (or more precisely, to prove existence of
holomorphic sections to certain holomorphic vector bundles) due to
Skoda [24], but modified in order to obtain boundary estimates. The
same arguments work for a wide class of weakly pseudoconvex domains,
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[4], and by introducing certain weight factors we obtained the analogous
result for all p < 2, [5], and also a good control of the dependence of
the distance 0 from w to g(D). By an appropriate normalization we
can always assume that w = 0 and that

(1.6) 0<d5<|gl<1.

Theorem 1.1 ([3][4][5]). Let D be a bounded pseudoconver domain in
C" that admits a C? plurisubharmonic defining function, and suppose
that g1,...,9m € H*® satisfy (1.6). Then to each ¢ € H?, 0 < p < 2,
there are u; € H? such that ) gju; = ¢ and ||u||g» < Cjsl|@||a», where
Cs; < Clog(1/68)/6**", r = min(n,m — 1), and C is independent of m
and p.

It is also proved in [5] that this result implies the corona theorem
when n = 1, with the same dependence of §. This estimate for the
corona solution is the best known and due to Uchiyama, see [18] for a
discussion.

The interpretation of this kind of division results as statements about
the Taylor spectrum, was pointed out by Eschmeier and Putinar [12],
and R. Wolff [30] proved the following result for p = 2.

Theorem 1.2. Assume that D C C" has a C? plurisubharmonic defin-

ing function. If g1,... ,gm € H*®, then o(g, H?) = g(D) for all p < 2.

The proof uses the fact that the H2-corona problem can be solved
not only for m tuples g but for matrices g of constant rank, see [4].
This is also true for p < 2, following [5], and therefore Wolff’s result
can be generalized to any p < 2.

Probably it is possible to adapt the ideas of Sibony and Fornaess—
Sibony, [22] and [13], to obtain counterexamples to Theorem 1.1 when
p > 2. However, in the strictly pseudoconvex case the HP-corona the-
orem is true for any p < oco. This was proved by Amar, [1], (for two
generators) in the ball, and in general strictly pseudoconvex domains
in [8] and [9]. However, in these papers there is no (good) control of
the dependence of §. The proofs in [1] and [8] use the Koszul complex,
whereas the proof in [9] uses explicit holomorphic division formulas.
However, in all three papers some an analog of Wolff’s approach to the
corona problem is involved, and the starting point is the trivial point-
wise minimal solution 1) = g/|g|* to the division problem. In contrast,
some years earlier Varopoulos [29] proved, in analogy to Carleson’s
original proof of the corona theorem, that one can make a delicate
choice of a smooth solution v to g1 = 1 such that 0v is a Carleson
measure. This was used to prove that one could find a holomorphic
solution u in H*® - BMO to gu =1 (at least for+ two generators). Us-
ing the same smooth solution %) it is possible to prove the HP-corona
theorem for two generators just relying on results for 0 which follow
from straightforward (i.e. non-Wolff) estimates of well-known integral
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formulas. However, as far as we know, this approach yields no infor-
mation of the dependence of §.

2. NEW RESULTS
The following theorem is one of our main results in this paper.

Theorem 2.1. Let D be a strictly pseudoconvex domain in C* with C?
boundary, assume that gi,... ,g9m € H*® satisfy (1.6) and let p < oo.
For any ¢ € H? there are u; € HP such that Y gju; = ¢ and ||u||gr <
Cs||¢|| ze, where Cs < C(log(1/68))/2/6"+" if r = min(n,m — 1) #
1, and Cs < Clog(1/6)/6* if r = min(n,m — 1) = 1, where C is
independent of m (but unfortunately depends on p).

If p = oo the proof yields a solution u in H*° - BMO. In the proof of
Theorem 2.1 we also start with the trivial pointwise minimal solution
and use the Koszul complex. What is new here is the sharper depen-
dence of 6 and the independence of m. The latter is obtained by just
being careful in the estimates and the organization of the Koszul com-
plex, whereas for the estimate of the dependence of § we use a recently
found Carleson estimate for the complex Monge—Ampere operator, [7].
The crucial point is Proposition 5.2, which restricted to one variable is
the observation made by Uchiyama (see [18]) that the Carleson norm
of (—p)|g'?/|g|* in the disk is an absolute constant times log(1/6) /5>
(provided 6 < |g| < 1), whereas the standard, less subtle estimate gives
the constant 1/§*. The proof of Theorem 2.1 gives the following more
general result.

Theorem 2.2. Let D be a strictly pseudoconvex domain in C* with C3
boundary, assume that g1, ... ,gm € H® satisfy (1.6) and let 1 < p <
oc. For any ¢ € HP(A®) such that 5,6 = 0 there is a u € HP(A*!) such
that S;u = ¢ and ||ul|a» < Csl|@||ur, where Cs < C(log(1/8))7/2/51F
if r = min(n,m — 1 —¢) # 1, and Cs < Clog(1/8)/6? if r = 1, where
C 1s independent of m.

Corollary 2.3. Let D be a strictly pseudoconver domain in C* with
C? boundary and assume that g1, . .. , gm € H®. Then o(g, H?) = g(D)
for all p < oco.

The case when r = 0, i.e. £ = m—1, is trivial, since then the solution
u is pointwise unique, and therefore the constant is just 1/4.

Remark 1. From Theorems 2.1 and 2.2 one can obtain the correspond-

ing results for the Bergman spaces A?(D) = L?(D) N O(D) instead of
H?. Given D = {p < 0} C C", let D = {(z,w) € C™%; p(z) + |w|? <
0}. Then AP can be identified with the subspace of HP(D), consist-
ing of functions that are independent of the variable w. Moreover,
D is strictly pseudoconvex if D is. If g; € H>®(D) satisty (1.6),

¢ € AP(D,A%) and 6,6 = 0, then ¢ € H”(ﬁ,Az), and therefore it
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follows from Theorem 2.2 that there is a 4, € H?(D, A*") such that

dgu = ¢ in D. If u is the mean values of all rotations in the w variable
of @, then u € AP(D,A*™") and still d,u = ¢. Therefore we also have

that o(g, A?) = g(D) for p < oco. O

In [20] Ortega and Fabrega prove the analogous statement of Theo-
rem 2.1 for BMOA instead of H? in the ball, provided that the gen-
erators g; are multiplicators on BMOA. In [19] they also consider
some analogous results for Besov spaces. We give a proof here of the
BMOA result, including the A? case, and provide an estimate of the
constant. Using the fact that the same solution operator K works in
both Theorem 4.1 and Theorem 4.2 we avoid a certain difficulty from
[20]. An essential part of their work consists in generalizing the char-
acterization of the multiplicators on BMOA, due to Stegenga [25], to
the multivariable case. In order to obtain the independence of m we
need a vector-valued variant of this characterization that we include in
Section 6.

Theorem 2.4. Let D be a strictly pseudoconver domain in C* with
C? boundary and let g1, ... , gm be multiplicators on BMOA with mul-
tiplicator norm < 1 and |g| > 8. Then for any ¢ € BMOA(A?) with
640 = 0 there is a u € BMOA(AY) such that §;u = ¢ and ||u||aroa <
Csl|ollBaroa, where Cs < C(log(1/8))/2/8%*", r = min(n,m — £ — 1),
and C' is independent of m.

Corollary 2.5. If g1, ..., g, are multiplicators on BMOA, then
o(9, BMOA) = g(D).

Remark 2. There are analogues of the above division theorems when
¢ is a matrix instead of just one row, see 3] and [4] for the case p = 2.
The same method works for p < 2. It is possible to obtain the matrix
case in strictly pseudoconvex domain for all p < oo by the Koszul
complex as in this paper but we omit that discussion here. O

3. SOLUTION OF DIVISION PROBLEMS, THE SETUP
If f and h are A*-valued forms then

fﬂh:ZfI/\hKelﬂeK.

I,K

Let v = Y7 v;e; be a smooth section to A! such that 6,7 = 1. Then
f = vN f defines a linear mapping C°(D, AF) — C°(D, A*!) and
since d, is an antiderivation it follows that &,(y N f) = f if 6,f = 0.
Let K = K,: C7%; — C7° be operators such that 0K f = f if 0f =0,
g > 0, and extend them to A‘-valued forms in the natural way. Then

we have the following formula.
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Theorem 3.1. If ¢ is holomorphic with values in A* such that §,¢ = 0
and

(3.1) u=>Y (-1D*G,K)yn(d7)n¢
k=0
=7N¢— (GK)yNoyNé+--+ (1) (5,K)"yN (97)" N ¢,
where r = min(n,m — £ — 1), then u is holomorphic and é,u = ¢.

The idea to reduce division problems to systems of d-equations by
means of the Kozul complex is due to Hérmander [16]. In our for-
mulation we use that our solution operator K is defined for any, not
necessarily O-closed, form. However, the solution u only depends on
the action of K on 0-closed forms.

Sketch of proof. Since d, is an anti-derivation, d,7 = 1 and 04 = 0, it
is clear that d,u = ¢. Since I — 0K vanishes on the kernel of 9, there
is an operator H such that 0K + H0 = I. Inductively one can verify
that

O(6K)F = (—1)k+! ((6H)k’1(5 — ((5H)k5) .

Therefore,
Ou=">» " —((6H)*'6 — (§H)*0)yn (d7)* N =0.
[

The proofs of our theorems amount to obtain LP(0D)-estimates and
BM O-estimates of each term in the sum (3.1) when ¢ is in H? and
BMOA, respectively. To this end let v = > g;/|g| e; and put wy =
7N (07)*. We first (in Lemma 5.1) prove the pointwise estimate |wy, N
¢| < C|wg| |¢|, where C' is independent of m. From this it is easy to
see that the term corresponding to k¥ = 0 is in LP(0D). If k > 2 we
prove in Proposition 5.2 that (—p) % |wy| is a Carleson measure, with
a sharp bound (in terms of §) of its Carleson norm. Then by repeated
use of Theorem 4.1, a non-Wolff estimate of the solution operator K,
it follows that these terms are in L?(9D). It is harder to estimate the
term corresponding to £ = 1 and we need to prove that both |w;|* and
|v/—pLw, | are Carleson measures for a smooth (1, 0)-vector field L, see
Theorem 5.3. Then by a Wolff-type estimate of K, Theorem 4.2, the
term with £ = 1 is in LP(0D) as well. In Section 6 we consider the
modifications needed to prove the BMOA result.

4. ESTIMATES FOR THE 0-EQUATION

In the rest of this paper D = {p < 0} is a strictly pseudoconvex
domain in C" and p is a strictly plurisubharmonic defining function.
For practical reasons we assume that 0D and p are C'®°; with small
modifications everything works equally well if p is just C®.
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It is well known that the J-operator behaves differently in the com-
plex tangential and normal directions near the boundary of a strictly
pseudoconvex domain. This fact is reflected in the usual estimates of
solutions to the d-equation and therefore it is natural to measure forms
with respect to a metric that takes this difference into account, such as

Q = (—p)iddlog(1/—p).
If fis a (0, ¢g)-form we have that

(41) 7P = S (ol + 130 A 113,

where | | denotes the norm induced by the metric form 3 = (i/2)30p,
which is equivalent to the Euclidean metric since p is strictly plurisub-
harmonic, and B = —p + |dp|s and hence ~ 1. Since Q, ~ 3,/(—p),
we have

(4'2) |f|2ﬁn ~ cq(—p)f A f/\ Qn—q ;
for (g,0)-forms f.

Remark 3. In the ball Q is just —p(¢) = 1 — [(]? times the Bergman
metric; the reason for the factor —p is that otherwise we would have a
power of pin (4.1) that depends on the degree of f, and this would make
the formulation of the estimates below more involved. In particular,
on the boundary, |f|?> ~ |0p A f|%, which is the natural norm for the
complex tangential boundary values f|, of f. O

Let d(p, q) be the Koranyi distance between points on 0D and B =
B.(p) = {¢ € 0D; d(¢,p) < r} the corresponding ball. The tent
Q-(p) over B,.(p) is Q,(p) = {# € D; d(#,p) + d(¢) < r} where
d(z) = d(z,0D) and 2’ is the projection of z on 0D (defined in some
appropriate way). A positive measure dy on D is a Carleson measure

if )
sup—/d,u:C
B |B| Jq

is finite. The constant C' is the Carleson norm of y. It is well known,
[17], that du is a Carleson measure with norm ~ C' if and only if

(4.3) /D 6Pdp < Cllg|l, & € HP.

We let W%, 0 < a < 1, denote the interpolation spaces between the
space of Carleson measures W' and the space of finite measures W in
D. If 0 < a < 1, then the measure f is in W if and only if f = adr,
where dr € W', a € LP(dr) and 1/p =1 — a, see [2]. In view of (4.3),
if p € H? and dr € W, then ¢dr € W< and

(4.4) lpdr||lwe < ||¢]|me||dT|w: where a =1—1/p.

If f is a section to A’ then | f||y: means the Carleson norm of the
function |f|.



A section f to Afin L?

loc

ssio = sup - [ 17 = Fofdo+ [ 1o

is finite, where the supremum is taken over all Koryanyi balls on 0D,
and fp is the mean value of f over B. For holomorphic f, the square
of this norm is equivalent to

/ FPdo + 1| 10FPllw.
oD

with constants that do not depend on m. This is well-known in the
scalar valued case, see e.g. [8], and the proof extends verbatimly to the
vector valued case. The space H!'(A?) is defined by atoms a, where a
is an atom if either @ = 1 or it is a section to Af that is supported in a
Koranyi ball B, (p) with [a =0 and

B, (p) / a?<1.

The usual proof of the duality of H! and BMO extends to this vector
valued case and H! is naturally identified with the closed subspace of
all C R-functions in H!.

Let C° (D, A%) denote the space of Af-valued (0, ¢) forms in D that
are smooth up to the boundary.

(3D) is in BMO(AY) if

Theorem 4.1. Let 7 > —1 and 0 < a < 1. There is an operator
K: C$ (D, A" — Coe(D, A",

such that 0K f = f if 0f = 0, and which satisfies the estimates

(4.5) I(=p)" K fllwe S I(=p) 2 fllw

for any (not necessarily 0 closed) f. Moreover, in the limit case T = —1
we have the following estimate, 1 < p < %, for the complex tangential
boundary values of K, f,

(4.6) 1K | zoony S 1 (=p) " fllwe,
ifl/p=1—-1/a for a <1 and a =1 corresponds to the BMO-norm.

The constants in < are independent of m.

Various cases of this theorem have been proved in [15], [23], [28] and
[2]. The proof of all but the x = BMO-estimate only depends on the

estimate )
(=) MAL (I
K —
| f | ~J |U C Z 7. 1/2 ( ) )

where r is some large number lv(C, z)\ ~ d(¢) + d(z) + d(¢',2") and
o(¢, z) islike d(¢', 2')+|d(¢) —d(2)|[++/d({) + d(2)c((, ), where (¢, 2)
is the distance between (’ and z in the complex tangentlal directions.
The BMOQO case also requires a certain smoothness property of the
kernel, see e.g. (the proof of) Theorem 4 in [10]. We can for instance
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choose K as the operator K, in [10], with « large enough, and extend
it to Cg° (D, A!) in the obvious way. These operators also satisfies the
following Wolff type estimate of the boundary values of K f. It can be
formulated in terms of the W%-norms, but for simplicity we state its
dual formulation that fits our needs here. Let £ denote a fixed smooth
(1,0)-vector field on D.

Theorem 4.2. Let w be a Hom(A*, A“*1)-valued (0,1)-form such that
the Carleson norm of |w|? (Jw| denotes the pointwise operator norm,) is
bounded by C? and the Carleson norm of \/—p|Lw| is bounded by C.
Then there is an operator K such that OKf = f if 0f = 0, and for
Af-valued holomorphic ¢ we have

| Kwd||Leopy < C'Cl|¢||ae, 1 < p < o0,

and

|Kwéllsro < C'Cllo || e,
where C' just depends on the domain D (and L).

This is the vector-valued version of the estimate for K discussed in
§8 in [9], and it follows from the fact that

| s ¢>\ < OOl 8],
oD

L, (K8.2] < CC Wl

and

R ¢>‘ < OOl |6
oD

These estimates, in turn are obtained as in [9] by means of the 71-
theorem for Carleson measures of Christ and Journé, see [11].

5. PROOF OF THEOREM 2.1

We first consider pointwise estimates of each form yN (97)¥N¢ where
v =Y_.7;/|glej. The definition (1.1) extends to A*-valued form as soon
as we have chosen a metric for scalar valued forms. We then have

Lemma 5.1. For A*-valued forms we have
(5.1) |f N[ < CIflAl,

where C is independent of m (but depends on the degrees of f and h).
Ifg=>" gje;, where g; are functions, then

(5-2) |0gh] < |gl[h].
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Proof. If f and h have degrees p and ¢, respectively, then

faoh= > ( Z’ﬂ:ffhj)e

|L|=p+q \IUJ=L

and hence )

fnnf= )"
|L|=p+q
For each fixed L there is only a finite number of terms (in fact (p +

q)!/pq!) within the modulus signs, and hence we can estimate |f N h|?
by a constant times

Z Z |fi OV hy? < Z |fr N hyl? < CLFPIR.

|L|=p+q IVJ=L

> fihy

IUJ=L

For the second statement, we can make a change of basis e; and nor-
malize, and therefore assume that ¢ = e (at some fixed point in D).
Now,

2
= hs? < |BP.

J31

|‘5gh|2 =

Z'hJeJ\l

J31

O

Besides the O-estimates, the key stone in the proof of Theorem 2.1
is the following result.

Proposition 5.2. If r > 2 then

r—2 = 1 1462
63 [eaTin@r],, <opn (el )
Moreover,
1+ 62
(5.4) 1189 /1g[*lw+ < 05 log —5—

It should be noted that it is the sharp estimate of the Carleson norm
n (5.3) that is essential. Since |||0g/*[lw: < ||g]|%«, and moreover
|0g] < C/\/—p, it is immediate in view of (5.1) that (5.3) holds for
some constant. Restricted to n = 1, (5.3) is exactly the key point in
Uchiyama’s sharp estimate for solutions to the corona theorem, cf. the
remark preceding Theorem 2.2. The proof of Proposition 5.2 is based
on the following result from [7], (with Q = —pw).

Theorem 5.3. Let uq,...,u, be positive plurisubharmonic functions
in D (andr >1). Then
(5.5) dr = (—p)'ddui A ... A ddup N Qp_y

is a Carleson measure with norm < ¢, supu; ...sup u,, where c,, =
e(r — Dn!l/(n —r)!.



Proof of Proposition 5.2. We first establish the inequality

59 @ Pl < O (0 5T )

for r > 1. A direct computation gives that

2 2 _ 2 2 - aA .12
S 09, A dy; = l9[*i00|g1* — idlg|” A Blgl* _ i00]g*

6 - 4
; 91 9]

Now,

9>+ 62 _ (lg|* +6%)i90|g|* — i0|g|* A O|g[?
62 (lg)* + 62)?
52 624i00|g|?
> 2 __idd|g > =00
2 Top+e7 00 2 g

(5.7) 00 log

11

Here we have used that i9|g|> A 9|g|> = ig- g A g - Og < |g|?i00]g|?,
which is an inequality for positive forms; applying each side to (v, )
where v is any (1,0) vector it follows by Schwarz’ inequality. How-
ever, it also follows from the computation above since log(|g|? + §?) is
plurisubharmonic and hence the second term in (5.7) has to be positive

for any 6. Thus we have

24 52

Al = q|” +

(58) E 187j N 8% S 52 188 log %
J

Note that

1(07)"]? = (r!)? 21\3%1 A A0y, P

[T|=r
Therefore, in view of (4.2), we have
(=)™ (00" [*Bn
~ (=p)" ) ] i0%, A O, A NidFi, A OV, Ay

|T|=r

< rli(=p) (Z i07y; A 57]-) AQn_y
J
4yt o o2+
< 5o ( ) ( dd®1 T /\ Qnr,

and the Carleson norm of the right hand side is bounded by

47! 1+ 62 "
s (bg( 5 ))

according to Theorem 5.3. Thus we have proved (5.6).
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It is now easy to deduce (5.3). By Lemma 5.1 we have that
k;Z —
(5.9) |(=p) Ty (07)"]
k=2 - - 1 o= ~ 51
S (=p) 2 hllorllEem* 1 < 5 ((—p)’“ “I(0y)* 1l2a+|37\25>-

From (5.6) it follows that the Carleson norm of the right hand side of
(5.9) is bounded by

1 a 1462 ’H+L1 1+ 62
5 52k71 Og 52 a52 Og 52 )

Choosing
_ 1462\ *?
a =62 <log 5 )
we get the desired result. The inequality (5.4) is a consequence of the
preceding arguments. O

Proof of Theorem 2.1. As usual, we may assume that the generators g
as well as ¢ are holomorphic in a neighborhood of D, and it is enough
to obtain the & priori estimate

(5.10) |lul| oy < Csl|B|| 2w,

where u is given by (3.1). We estimate each term separately. The term
corresponding to k = 0 is trivial in view of (5.1). Next consider the
terms wy N ¢ corresponding to k > 2. Recall that wy = v N (0y)F and
let

1 1462\ "2
(511) Cg,k = CW <10g 52 ) .

In view of (5.3), (5.1) and (4.4), the W®norm of (—p)*¥/?"lw, N ¢
is bounded by Cjsy times ||¢||g». By k£ — 1 applications of (4.5) and
(5.2), we obtain (—p)Y/2(6,K)¥twy N ¢ € W and finally by (4.6),
(6,K)fwr N ¢ € LP(OD), with the norm bounded by C.

Thus it remains to estimate the term for £ = 1, which is the crucial
one in the sense that one must use the Wolff type estimate in Theo-
rem 4.2. A simple computation, holding in mind that /—p|Lg| < |0yg],
reveals that

1 |9g/? dg|?
(5.12) wi]? < 1199 and /—p|Lwi| < || ﬁz‘; :
9

~ 62 gt

In view of (5.4), therefore the Carleson norm of |w:|? is < C? and the
Carleson norm of \/—p|Lw:| is < C, if C = § ?log(1/§). From Theo-
rem 4.2 we now get the estimate < C||¢||z» of the term corresponding
to k = 1. Thus Theorem 2.1 is proved. O
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6. MULTIPLIERS ON BMOA AND PROOF OF THEOREM 2.4

As before D is a smoothly bounded strictly pseudoconvex domain. If
V and W are vector spaces and g is a holomorphic Hom(V, W)-valued
function, then g is a multiplier for BMOA if it maps BMOA(V) —
BMOA(W) boundedly. The main result in this section is the charac-
terization of such multipliers, see |25] and [20], adapted to our vector-
valued setting. This result states that the multipliers on BMOA are
the bounded analytic functions such that

2
sup |log — | — [ lg—g
B 1B} |B| /& 7

is finite. We also need an equivalent Carleson-type condition for the
measure |Jg|. This is contained in Theorem 6.2 below. Its statement
and proof are similar to classical results for BM O A that we first recall.

Theorem 6.1. Let b be a vector valued holomorphic function. Then
the following conditions are equivalent:

1

(6.1) 16l 2 < C and sng/BV)— bel? < C2%

b)) = b(x)]* _ e
6.2 bllgz < C and su dz”/ — = < (C”.
02 Wl = Cond spd@” f P =

1
(6.3) 1b]| 72 < C and sup—/ 0b)? < C2.
B |BlJg
|0b|” 2

6.4 bllg < C and d2)" | ————= < C~.
64 bl <C and supd(e [ P <

Moreover, the various constants C' are equivalent up to constants that
only depend on D.

Of course (6.1) is just a restatement of the fact that b € BMOA and
|1bl| Bamro ~ C. Also recall that B denotes the Koranyi balls on 9D and
(@ are the corresponding tent over B.

The important part of this theorem is the equivalence between (6.1)
and (6.3), that was discussed in Section 4. The equivalence between
(6.1) and (6.2) as well as that between (6.3) and (6.4) follow from
simple size estimates of |v|; see [14], Theorem 1.2 and Lemma 3.3 in
Chapter 6 for details in the classical case. Since we may choose v(z, ()
to be holomorphic in ¢, that (6.3) implies (6.4) also follows immediately
from (4.3) and the simple estimate

do(¢) 1
(6.5) /6 e S a0
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Theorem 6.2. If g is a holomorphic function with values in
Hom(V, W), then the following conditions are equivalent:

(6.6) g is a multiplier on BMOA with norm C.
2
(6.7) llg|| = < C and sup <log L) L/ lg—gB* < C°.
B B 1B} Bl Jg -
(6.8)
1y 900 —9(2)” _
g oogCandsup<lo —) dz”/ o, < O
ol e\ a) M e
69)  lglla= < C and s <10g1>21/|8|2<02
: 9|z < C and sup — | = g|” < C*.
f B 1B/ Bl Jq
|89|2 2
6.10 ~ < C and | .
©10) lolla- <0 and sup (10g 1) ey [ Ao

Moreover, the constants C are equivalent up to constants that only
depend on D.

The kernel d"/|v|*" can be replaced with d®/|v|"™® for any o > 0.
Our choice o = n is just because in the ball —p(2)"/|v|*" is precisely
the Poisson—Szeg6 kernel.

For the proof we recall that

(6:11) [ 102~ [ 1002 + 160
aD D
if ¢ is holomorphic. We also need
Lemma 6.3. Ifb € BMOA, then |b(z)| < ||b||ao log(1/d(2)).

Sketch of proof. Since b is holomorphic we have a representation

b d
o= [ MO0
oD U(Ca Z)n
where a is smooth. Since v((, z) is approximately antiholomorphic in
¢ it follows from the polarization of (6.11) that

ob dvl”
ars [ 2 [ 8L  vor

B (6.3) and (4.3), the first factor is ||b]|,0 times [, [v|™"do that
by (6.5) is bounded by log(1/d(z)). Since |0v|*> < d(¢), by a variant of
(6 5) the second factor is < log(1/d(2)) as well. O
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Sketch of proof of Theorem 6.2. As in Theorem 6.1 the equivalences
between (6.7) and (6.8) and between (6.9) and (6.10) are easy.

To prove that (6.6) implies (6.8), let f,(¢) = log(1/v(#,¢)). Then
. is holomorphic, and it is easy to check that || |0f,|*||lw: <1 so that
| f:llBro S 1. Also

l9(2)cfc(2)]
19(Q)] < \Scrzplflelg IO

where ¢ runs over vectors in V', since it is equality for z = (. Now
f2(2) ~log1/d(z), and therefore Lemma 6.3 implies that

9(O)] < sup llgefcllsmo < Csup |lcfellsao S C-

le|=1 |e/=1
To complete the proof of (6.8) note that
(g =9 f(2)* <lgf — g(2)f(2)]* + 1g(f — f(2))
<lgf = g()f () +C*|f = fF(2) -
Since gf as well as f are in BMOA, we get, in view of (6.2), that

supd(2)" /w /() (g = 9(2)I” < Clf o

|,U|2n

Taking f = cf, for various |c| = 1 one gets the estimate (6.8).
To see that (6.8) implies (6.10), write

00=0(lo-9)) - (o - 90
Then,

s (Gee@) |+ ) (/o)

The first integral is estimated by (6.11) and since || [01log(1/v)|?||w1 is
finite, (4.3) implies that the second integral is bounded by

/BD
as desired.

Finally we prove that (6.10) implies (6.6). Let b € BMOA(V) with
16| o < 1. We will confirm that gb is in BMOA(W) by verifying
(6.4). Now

2

g— g()

g—9()
Un

2
D ‘U‘ "
|<9g (b—b(2))[? 109 b(2)]? |g0b|?
+d(2) [ ZE2E2 g .
e A T AT [ e
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In the first integral we use that || [0g%|lw1 < [|9]|% < C* and (4.3),
to obtain the bound

oD ‘U|"

By Lemma 6.3, the second integral in (6.12) is bounded by

1\? |0g|?
1 - n VIl <« 2
<°g d<z>) () /D|v|2n ~C

The estimate of the third integral in (6.12) is immediate. Thus gb is in
BMOA(W). 0

Remark 4. To prove Theorem 2.4, we also need that (6.7) implies (6.6)
also for not necessarily holomorphic functions, i.e. if ||g||z~ < C and

1\ 1
sup log—) —/|g—gB|2S02,
B ( \B|) |B| /g

then g is a multiplier on BMO.
To prove this, note that gf — g fs = g(f — fB) + fB(9 — gB). Hence

2< 2
1 [ las =antol < i [1ats = P+ 137 [ 10t = gm)

The first term is clearly bounded by ||g||%«|f||%a0- To estimate the
second term we use the well-known estimate |fg| < log1/|B| || f|lzmo,
to obtain

1 log? B
51 [ 1500 =90 S U ssco—r5 ™ [ la=anf* < €21 Fsueo

as desired.
]

Proof of Theorem 2.4. Again we have to estimate each term in the sum
(3.1), assuming that ¢ € BMOA(AY). In what follows we assume that

|8l Baro < 1.
To estimate the term corresponding to £ = 0, we claim that

1\ 1 1
6.13 log—) —/ v—8|* < =.
(613) ( 1Bl |B| B‘ TR

To prove this we may replace vg with any constants cg. If we choose
cg = gg/|gs|?, we have

9 98| , |98 9B )
99 99 99 9Bg 989 9BYB

and (6.13) follows. By Remark 4 this implies that ||y N ¢| < 672
To estimate the term with £ = 1, note that

10g%|¢]” = Z Zlagg\ B Z Z 10(g;61)* + 19;*10¢1 %) |

7| < - < 53l gl
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which we for short can write as |0g||¢| < |g]|0¢| + |0(gp)|. If 7 =
|0¢| + |0(g9¢)|, then by our assumptions the Carleson norm of 7> < 1.
If w=~vyN0yN ¢, then

lwl < gl *l0¢] + lg| *|0(g¢)] < 0] 7,

and hence || |w|?|lw: < 678, Furthermore, using that \/—p|Lg| < |9g|
and the corresponding inequality for ¢, we have
1 19g|

V=plLw| < 1917"109/10(g9)| + |g]~*|0gl|0¢| < EAPE
Using |ab| < ala|? + |b]?/a with a = §/+/log(1/d), we obtain by (5.4)

that
IvV=plLw|lwr < 6 °y/log(1/6).
In view of Theorem 4.2 we find that the term for k¥ = 1 has BMO

norm < §734/log(1/6).

Finally we consider a term where £ > 2. We then have to estimate
the Carleson norm of I = (—p)%h N (07)*¥ N ¢|. We have

B2 = ol m b 1
IS (=p) % [0 Hw| < a(=p)*2[(87) " + ol
Taking o = §F~4 (log(l/é))_% we obtain, using (5.6) and || |w|?||w <
675, that [[I|lyr < Csg, with Csy from (5.11). By repeated use of
Theorem 4.1 we get the BMO-estimate Csy, for the term k. This
proves Theorem 2.4. O
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