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Regularity and Fredholm properties are established for elliptic uniformly
degenerate operators with variable indicial roots.

8§1. Introduction

A uniformly degenerate operator on a differentiable manifold with boundary is a linear
partial differential operator with smooth coefficients and the following type of degen-
eracy at the boundary. Near the boundary the operator is assumed to be of the form

Y ia(@y) (@0:) (20,

i+lal<m

where (z,y) = (z,y1,-..,yn) are local coordinates with z > 0 in the interior of the
manifold and £ = 0 on its boundary. The coefficients a; , are assumed to be complex
N x N-matrix valued and smooth up to the boundary. The operator is said to be elliptic
uniformly degenerate if it is elliptic in the usual sense in the interior of the manifold,
and the matrix
Z aj,a(O, y) §j77a
Jtlal=m

is invertible for all boundary points (0,y) and all (£,7) # 0. The indicial roots at a
boundary point (0,y) are defined as the roots 7 of the degree mN polynomial

det Z a;0(0,9) .
§=0

In §7 we verify that these definitions are independent of the choice of coordinates.

Examples of elliptic uniformly degenerate operators include the Laplacian (Exam-
ple 8.1), the Hodge Laplacians (Example 8.2), and the Dirac operator on conformally
compact asymptotically hyperbolic manifolds. Other examples include the lineariza-
tions of the Yamabe equation [ACF], the Einstein equations [GL], and the monopole



equations ([R] and joint work with R. Mazzeo in progress) on such manifolds. These
examples all have constant indicial roots. Schrédinger operators on asymptotically hy-
perbolic manifolds (Example 8.3 and joint work with R. Mazzeo in progress) provide
examples with variable indicial roots. Other global analysis problems on such manifolds

also lead to elliptic uniformly degenerate operators.

Partial differential operators with various types of boundary degeneracies have
been studied by several people using extensive microlocal machinery, such as R.B. Mel-
rose’ calculus of conormal distributions on manifolds with corners [Mel], [Me2], [Me3],
[Me4] and B.-W. Schulze’s calculus of pseudo-differential operators with operator-
valued symbols [Sch]. In this spirit, elliptic uniformly degenerate operators with con-
stant indicial roots have been studied by R. Mazzeo [MaMe|, [Mal], [Ma2] using the
calculus of conormal distributions on manifolds with corners. Various second order el-
liptic uniformly degenerate operators have been studied by other methods in [GL], [A],
and [R]. The results in [BCH] apply to uniformly degenerate operators only in rather

special cases.

In this paper we present a new approach, in the spirit of classical analysis, to elliptic
uniformly degenerate operators. Using this approach we extend Mazzeo’s regularity
and Fredholm results to elliptic uniformly degenerate operators with variable indicial
roots. Our main results are Theorems 6.2 and 6.4 (Sobolev estimates and regularity),
Corollary 6.6 (conormality), Theorems 6.7 and 6.8 and Remark 6.9 (polyhomogeneity),
Theorem 7.1 (semi-Fredholm properties) and Corollary 7.2 (Fredholm properties). The
techniques in this paper can be applied to elliptic partial differential operators with

other types of boundary degeneracies.

Acknowledgements. The author whishes to thank Rafe Mazzeo for numerous valu-
able discussions, and Magnus Fontes and Grigori Rozenblioum for comments on the

manuscript.



§2. Weighted Sobolev spaces

In this section we review some properties of weighted Sobolev spaces on upper half
space

@T-l:{(w,nyZOandyER” }-

The proofs of these are quite standard, and are left to the reader.

The space z’ H*(R"). For § € R and s a nonnegative integer, we define z° H* (R} ')
(R%+1) such that 27°(28, )7 (28,)* € LR, 27"~ dz dy)
for all j and « with j + |a| < s. This is a Hilbert space with norm

as the space of all u € H;

loc

(2.1) ||lu

R SN [ (S CE 0 L AT,
Jtlel<s

We define 20 H—*(R}*') as the space of all u € H 5(R**") such that there exist
vj 0 € LA(RYT 27"~ dz dy) with u = 2° Zj+|a|ss(x@z)j(way)avj,a. This is a Hilbert
space with norm

(2.2) IIUIIE,—SZ(in) Y lvia
Vi, a

2
e |L2(Ri+1,:c—"—1dxdy)
i <s

where we take infimum over all collections of functions v; , as above.

Let p be a smooth function Ry — [0, 1] with suppp C [1/2,4] and p =1 on [1,2].
We use the notation u,(z,y) = u(27#z,27#y). Let 6 € Rand s € Z. It follows from the
above definition that u € 2 H*(R}*") if and only if u € H (RT), pu,, € H*(R*+1)
for all 4 € Z, and

(2:3) S a4 [ e P (e ) dedn < .

p=—00

Here (pu,)(z,y) = p(z)u,(z,y). We take this to be our definition of 2 H*(R}*") for
d,s € R

We topologize ETJ with the relative topology as a subset of R**!. If U is an

open subset of @T-l, then we define the Fréchet space :v‘sHlsoc(U) as the space of all
u € HY (U) such that pu € 2 H*(R}) for all p € C,,(U). If K is a closed subset

loc comp

of ET_I, then we define the Hilbert space z° H§(K) as the space of all u € x‘SH“”(]RT'l)
such that suppu C K.



Lemma 2.1(a) For d,s € R,
(.Z“SHS (R:z_-}-l))* _ $—6H—3(R1+1)'

The pairing is given by the L2(]R1+1,x_”_1d$ dy) inner product.
(b) For §,s1,s2 € R with sy > s1,

" H® (R C o’ H* (R ).
(¢) For 61,02,51,82 € R and xg > 0 with 63 > 61 and sy > s1,

%2 H3? ([0, 0] x R™) C 2% H3 ([0, 0] x R™).

(d) For é1,92,81,82 € R with d2 > §; and s2 > s1, and K a closed subset of@T-l,
the inclusion
22 3 (K) — 2 H' (K)
18 a compact operator.
(e) Ifue®H*"Y(RY™) and the difference quotients

Ap pu(z,u) = (u(ac + hz,z + ky) — u(z, y))/(h2 + |k|2)1/2

are uniformly bounded in H*~Y(R*') as (h,k) — (0,0) € R™ !, then u €
O e (R,

(f) If U and V are open subsets of ETJ and f : U — V is a diffeomorphism,
then pull-back gives a bounded linear map

f* 2 Hiy (V) = o’ Hy ().

The space z®H%t(R®). For § € R and s,t nonnegative integers, we define
® H*'(R1*') as the space of all u € HjP'(R1H) such that #7%(20,)7 (z,)*0fu €
L2(RY* g7 Ydz dy) for all j,k,a, B with j + || + |B| < s and |8 < t. Thisis a
Hilbert space with norm

lalfoe = D o7 @) (@0,)* 0 ull s gnss 4 n-s 4y ay
Jtlal+|BI<s+t
1BI<t

This definition can be extended to § € R and s,t € Z as in the case of z° H* (]RT'I).
There are three cases to consider depending on the signs of s and #; the details are left
to the reader.



For § € R and s,t € Z, u € z° H*(R"*1) if and only if u € HEH(RYT!), and

loc

3 g / (14 €+ [n2) (1+€ + (1+49)nP)* |5 (€, m)I? d€ dn < oo

p=—oo n+1

We take this to be our definition of 2° H**(R}*) for 6,s,¢t € R.

If U is an open subset of @T-l, then we define the Fréchet space 2° H, s’t(U) as the

loc

space of all u € HH(U) such that pu € 2 H**(RYH) for all p € C2, (U). If K is a

comp

closed subset of ﬁT_l, then we define the Hilbert space z0 Hy*(K) as the space of all
u € z° H**(R}*") such that suppu C K.

Lemma 2.2(a) For d,s,t € R,
(x‘SHS’t(RT'l))* _ .'E_(SH_S’_t(R:L_J'-l).
The pairing is given by the LQ(RT'l,x_n_ldx dy) inner product.
(b) For 5,81,82,t1,t2 € R with sg +t3 > s1 +t1 and ta > tq,

.’E6H82’t2 (R”-ll-"‘l) g $5H81,t1 (R’I_}L_—l-l)

(C) For (51,(52,81,82,t1,t2 € R and z¢ > 0 with 65 > (51, 0o +ta > 01 + 14, and
82+t2251+t1,

s Hy " ([0, m0] x R*) C a® Hy " ([0, 0] x R*).

(d) For 61,02,81,82,t1,t2 € R and zy > 0 with 63 > 01, 6o + to > 61 + t1, and
So + 19 > s1 + 11 and K a compact subset of @T_l, the inclusion

2% Hy» % (K) — 2 Hy"' (K)

18 a compact operator.
(e) Ifu €z H*+L—Y(RYTY) and the difference quotients (u(z,y+h)—u(z,y))/|h|
are uniformly bounded in z° H>*"1(R'T!) as h — 0 € R*, then u € 20 HH(RLT).

(f) If U and V are open subsets of ET-I and f : U — V is a diffeomorphism,
then pull-back gives a bounded linear map

f* :x(sHS,t

loc

(V) = 20 HZHU).

loc

For s € R we define the Sobolev space H*(R) as usual. We define H*(Ry) as the
Hilbert space of all u such that uoexp € H*(R). If s is a nonnegative integer, then
u € H*(Ry) if and only if (rd/dr)iu € L2(Ry,r~1dr) for j < s.



Lemma 2.3. For any 0, s1,t1 € R and xg > 0 there exists ss,t> € R such that if
suppu C [0,z¢] X R™, then

weSHIN R S ue HY (R (R, )

Conwversely, for any §,s2,ta € R and any xo > 0 there exists s1,t1 € R such that if
suppu C [0,z¢] X R™, then

= Ht2 (Rn,$6+n/2H82 (R—F)) = = méHsl,tl (R1+1).

The space x®A(U). Let § € R and let U be an open subset of @T_l. Then we
define the Fréchet space z°A(U) as the space of all u € C®(U NR!) such that
£™(28,)7 0w € LY, (U, x~""1dz dy) for all j and a. This space is known as the space

of (weighted) conormal functions on U. We will need the following:

Lemma 2.4. Letd € R, g > 0 and Y be an open subset of R*. If u €
P AR4 xY) and suppu C [0,z0] X Y, then u € C®(Y,z0t"/2H>(R,.)). Conversely,
C®(Y,z0t2H®(Ry)) C 29A(R, x Y).

The space r®W?*(Ry). For § € R and s a nonnegative integer, we define r'W?*(R,)
as the space of all u € H (R;) such that r=°i(rd/dr)*u € L?>(Ry,r~'dr) for all
nonnegative integers j and k with j + &k < s. Then r°W?*(R,.) is a Hilbert space with

norm

(2.4) [alseyy = D Ir= 24 (rd/dr) | Fag, ra
Jj+k<s

We define r®W—%(R,.) as the space of all u € H_ ?(Ry) for which there exist v, ), €
L*(Ry,r~'dr) such that u = 37, . %%/ (rd/dr)*v;,. This is a Hilbert space with

norm

(2.5) [ullZs i —s e y) = gr_{) R I [
P i rk<s

where we take infimum over all collections of functions v; ; as above.



Let ¢ be a smooth function Ry — [0, 1] such that ¢y = 1 on (0, 1] and ¢y = 0 on
[2,00). Let poo =1 — . If s is a non-negative integer, then

{ r=0(rd/dr)*(pou) € L*(Ry.,r~'dr)
u€rWi(R,) & for k=0,...,s
r=05 =k (r d/dr)* (peou) € L2 (R, ,r~dr)

r=3(rd/dr)* (pou) € LRy, tdr)
& for k=0,...,s
=0 (d/dr)* (peou) € L2 (R4, 1dr)
(rd/dr)*(pou) € r°L*(Ry, 7~ dr)
=3 for k=0,...,s
(d/dr)*(pou) € (r)°~**/2L2(R, dr)

pou € r’H*(Ry.)
(2.6) &
Vool € <,r.>6—s+1/2Hs(R)
(pou) o exp € 7" H*(R)
(2.7) &
Pooll € <’I">6_8+1/2H5(R).

Similarly, the characterizations (2.6) and (2.7) of 7°W*(R,.) hold for negative integers
5. We take (2.6), or equivalently (2.7), to be our definition of r*W*(R,) for §,s € R.

The space r®W*(Ry) can also be characterized as follows. Let p be as before and
let u,(r) = u(27#r). Then u € r*W*(R,) if and only if u € H{ (Ry) and

(2.8) > a0 [ (147 ) ) P < oo,

pn=—00
Lemma 2.5(a) Ford,s € R,
("W (Ry.))" = r "W (Ry.).

The pairing is given by the L2(Ry,r~1dr) inner product.
(b) For (51,(52,81,82 € R with 65 > 61 and s9 — 09 > 81 — (51,

r2We(Ry) C rP W (Ry).

(¢) For 61,02,81,82 € R with §3 > 61 and ss — da > s1 — 1, the inclusion in (b)
18 a compact operator.



§3. An integral transform

We define an integral transform © as follows: u is a function on Rﬁ"'l, Ou is a function

on Ry x Ry x S*~1 and
(@’U,) (7'1, T2, w) = lr? ,r2—n/2 17’(7‘2/7'1 ) le)

where

n

ia,n) = (207 [ e,y dy.
Straightforward calculations show that
([ © (xam + Zyjayj)u = —r10,,0u
J

© Oy,u = irqw; Ou

O (0, —n/2)u = r20,,0u

O x0y,u = iryw; Ou

and
(3.2) O zu =7y ry Ou.

We also have

Ou(ry,re,w) = Ou(ry,re, —w)

and

Ouv(ry,r2,w) = Ou(re, r1, —w).
for v(z,y) = ™2 u(l/z, —y/z).

It follows from (3.1) that if

Lo= Y. aja(@d:) (2d,)

J+la|<m
is a uniformly degenerate operator with constant coefficients a; , then
(3.3) OLyu = B,Ou,
where

B, = Z j,0 (r20r, + n/2)j(irgw)a.

j+lal<m



A straightforward calculation using Plancherel’s theorem on R™ shows that

(34) © : L*(Ry 27" Mdady) — L*(Ry x Ry x S"~ ' e ey dry dro dw)
is a unitary operator. For §,s € R,

(3.5) O : H RM) — r°LA(Ry) @ riW*(Ry) ® L2(S™ 1)

is an invertible bounded operator. Here and in the following L?(R,) stands for
L?(Ry,r~1dr). For integral s, (3.5) follows from (2.1), (2.2), (2.4), (2.5), (3.1), (3.2),
and (3.4). For real s, (3.5) follows either by interpolation or by working directly with
the definition of © and (2.3) and (2.8).
Similarly, for J,s € R and t > 0,
36) 0 : HY (R — r’L*(Ry) @ yW*H(Ry) @ L(S™ )
' N %) T LA (R) @ r3W (R, ) © L2(S™Y)

and

0 : S MR — IRy @ rAW TR, ) © 17(57Y)

(37) —4 tr2 ) s 2/qgn—1
+ () LRy ) @ WP (Ry) @ L7(S™ )

are invertible bounded operators.

Representation theoretical background. The integral transform © can be under-
stood in terms of unitary representations of Lie groups. This will not be used in the
following, and the reader may skip the rest of §3 without loss of continuity. However,
the representation theory was the original motivation behind this paper and is some-
times useful as a guide when applying the techniques in this paper to other classes of
elliptic operators with boundary degeneracies.

Upper half space ]R’_f_“ has a Lie group structure with group operation
(z,9)(=",y') = (zz',y + 7).
The identity element is (1,0) and
(z,y)7" = (1/z, ~y/=).

The vector fields z9, and zd,; form a basis for the left-invariant vector fields on RT'I.
Thus the constant coefficient uniformly degenerate operators are the left-invariant par-
tial differential operators on the group RT'I.
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The group R’_f_“ is a semidirect product of the multiplicative group Ry and the
additive group R". It then follows from Mackey’s theorem, see [Si] §§6-7 or [F] Theo-
rem 6.42, that the irreducible unitary representations of the group R’_‘F‘H fall into two
families: one family of one-dimensional representations ]RT'I xC—C, (z,y).z =1 %2
parametrized by £ € R and one family of infinite-dimensional representations

R x L?(Ry) — L*(Ry)

3.8 )
(9 (0,9).1)(r) = =¥ (ar)

parametrized by w € S"71.

For any Lie group G, the two-sided regular representation of G is defined as the
unitary representation

G x G x L*(G,d)\) — L*(G,d)\)

((91,92)-u) (9) = Alg2) " *ul(g7 ' gg2)

of G x G. Here d\ and A denote the left-invariant Haar measure and the modular
function on G. In particular, the two-sided regular representation of Rﬁ“ is given by

Ry x Ry x LX(RYT, 7" Yo dy) — LX(REH, 27" da dy)

—-n

(@1, 91), (@2, 92))-0) (2, 9) = 25" Pu((27", —27 1) (2, ) (22, y2))

—n/2 , _1 —1 —1 1
=1zy Cu(r] zze, —x] Y1 2] Y+ L] 1Y)

A straightforward calculation shows that
(3.9) O ((z1,91), (2, y2))-u (11, 7o, w) = e~ W T W2T29Qu (111 o1y, W).

The identities (3.1) can be obtained by differentiating (3.9) with respect to z1, y1, Z2,
and yo respectively at (z1,y¥1) = (22,y2) = (1,0). In other words, (3.1) is the Lie
algebra version of the Lie group identity (3.9).

Comparing (3.8) and (3.9) we see, at least intuitively, that the transform © de-
composes the two-sided regular representation of ]RT'I into irreducible representations
of ]RT'I. This decomposition can be made precise using the notion of direct integrals
of fields of representations; see [F] §7.4. If we denote the representation (3.8) of ]RT'I
by H,, then (3.9) says that © is a unitary isomorphism between the two-sided regular
representation of RT'I and the representation |, ;?1,1 K, ® K, dw of ]RT'I X R’_f_"'l.

It is instructive to compare with the commutative group R™. The irreducible
unitary representations of R” form a single family of one-dimensional representations

R*xC—C
(3.10)

z.z =e Ty



11

parametrized by £ € R®. The regular representation of R” is the unitary representation

R" x L*(R") — L*(R")
(z.u)(y) = u(y — ).

The Fourier transform u + 4 on R™ gives a unitary operator L?(R"®) — L?(R™) such
that

(3.11) zau(g) = e 4a(E).

Comparing (3.10) and (3.11) we see that the Fourier transform decomposes the regular
representation of R™ into irreducible representations of R™. In fact, if we denote the
representation (3.10) of R™ by K¢, then (3.11) says that the Fourier transform is a uni-
tary isomorphism between the regular representation and the representation fﬂga" Ke d€
of R”. Due to this analogy between © and the Fourier transform on R”, the transform
© is considered the Fourier transform on the group ]RT'I. For an introduction to the
Fourier transform on general Lie groups, see [F] §7.5.

84. Elliptic Bessel operators

By (3.3), © transforms a constant coefficient uniformly degenerate operator

Li= Y aue,y)@d,) (@d,)"

J+lel<m

to a family

B,= Y. aja(rd/dr+n/2)(irw)®
j+lal<m

of ordinary differential operators parametrized by w € S®~!. These are of a type known
as Bessel operators. In this section we study the properties of such operators in detail.

A Bessel operator of order m is defined as an ordinary differential operator

B = Z b (rd/dr)irk
j+k<m

with b; ; constant complex N x N-matrices. The operator acts on functions R, — CN.
A Bessel operator B is said to be elliptic if the principal symbol

o&m) = > bk (@& n"

Jjt+k=m
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is invertible for all (¢,7) # 0 € R2. The indicial matrix of B is defined as
J() = bjo7.
§=0

This is an N x N matrix with entries that are polynomials of degree m in y. We define
the indicial roots of B as the roots of the degree mN polynomial det J (7).

Elliptic Bessel operators have been studied in [Mal] and [Ma2] §5 using the calculus
of totally characteristic partial differential operators [MeM], [Ma2] §4, [Me2], [Me4]. In
this section we review and give elementary proofs of relevant parts of these results. We
also derive an index formula for elliptic Bessel operators.

At r = 0 the equation Bu = 0 has a singularity of the first kind. It is easy to show
that the solutions of Bu = 0 have asymptotic series expansions in powers of r and log r
as 7 — 0; see [CL] Chapter 4. (At r = oo the equation Bu = 0 has a singularity of the
second kind. Thus, as was first shown by H. Poincaré [P], the solutions of Bu = 0 also
have asymptotic expansions as 7 — oo; see [CL] Chapter 5. Although these expansions
will not be used in the following, they still add some insight.)

We first prove two preliminary lemmas.

Lemma 4.1. Let P = Z;-nzo p;(d/dr)? where p; are complez N x N -matrices and
Pm 18 invertible. Let 0,s € R. If the matrices Z;-nzo p;(i€)? are invertible for all £ € R,
then the operator P : (r) H**™(R) — (r)SH*(R) is invertible.

Proof. The case § = 0 follows at once using the Fourier transform. In the case
§ # 0, the operator is unitarily equivalent to the operator (r)~°P(r)? : H**™(R) —
H*(R). Now (r)=°P(r)® = P + R where R is a differential operator of order m — 1
with coefficients that decay as (r)~! as r — 400. Here P is invertible. The operator R
is bounded H**™(R) — (r)"'H**(R), and thus compact H**™(R) — H*(R). Hence

P + R is Fredholm. g

Lemma 4.2. Let Q = Z?:o q;j(rd/dr)? where q; are compler N xN-matrices
and qp, is invertible.

Let 6,s € R. If the polynomial det Z;n:() g;¥’ does not have any root y with real
part §, then the operator Q : r* H*T™(Ry) — r H*(R,) is invertible.

Let 61,02,8 € R. If 61 < §2 and the polynomial det Z;-n:o g;vy’ does not have any
root v with real part in [01, 03], then the operator

Qo HA™ (R, ) + 1 HP™(Ry ) — r HO(Ry) + 702 HO (R
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18 invertible.

Proof. The shifted Mellin transform

Mjsu(€) = (2m)~1/2 /000 r= 91y (r) dr

gives a unitary operator r®W?*(Ry) — (£)~*L2(R). We have

(M5Qu)(€) = Y ¢;(6 +i€)” (Myu) (€)-

=0

The first part of the lemma, follows. In the second part, surjectivity follows from the
first part and injectivity follows by inspection. O

We now return to the Bessel operators.

Proposition 4.3. Let B be an elliptic Bessel operator of order m. Let 6, 31,82 €
R with 81 < s9. If u € r°W*+™(R,) and Bu € r®W*2(Ry), then u € r®W*+m(R,).
There exists ¢ > 0 such that

[ullpswsa+m () < c(1Bullrsw s @y + [ullrswe+m,))

for all w € rPW*2tm(R,).

Let Q be a compact topological space. Let {B,}ueq be a continuous family of
elliptic Bessel operators. Then the above estimate holds uniformly for all B,,.

Proof. We may assume that s; < s; + 1; the general case follows from this case
by iteration. It follows from (2.6) that wou € rOH*1+™(R,) and poBu € rOH*2(R,).
Hence

b, o(r d/dr)™ (pou) = (bm,O(T d/dr)™ — B)((pou) + [B, polu + @oBu € rOH*2 (R,.).

As B is elliptic, the matrix by, o is invertible. Hence (r d/dr)™(pou) € r°H*2(Ry). It
follows that

(4.1) wou € r° H2T™(R, ).
It also follows from (2.6) that

(4.2) Dol € <7‘)5_81_m+1/2H51+m(]R).
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Let By = Z;-nzo bjm—;(d/dr). Then B — r™B,, is a Bessel operator of order m —
1. Hence (B — r™By)u € r*W*+1(R,). Thus r"Byu € r°W?*2(R,), so Byu €
oWz (R, ). By (2.6), YooBoou € (r)0=*2=™+1/2[1%2(R). Hence

(4.3) Boo(0oot) = [Boo, Yoot + oo Boots € ()0 ~52=mF+1/2 52 (RR).,

As B is elliptic, the matrix ZT:O bjm—;(1€)? is invertible for all £ € R. It then follows

from Lemma 4.1 that the operators
Bo0 . <,r>6—32—m+1/2H32+m(R) N <,r)6—52—m+1/2H52 (R)

and
Boo . <,r>6—81—m+1/2H51+m(]R) N <,r)5—81—m+1/2H51 (R)

are invertible. It then follows from (4.2) and (4.3) that
(4.4) Poou € (r)0 o2 mTL/2 fraatm(R).

It follows from (2.6), (4.1), and (4.4) that v € P°W*2T™(R, ). By examining the above
argument step by step, we get the desired estimate of u in 7*W*2*™ (R, ) norm.

It is straightforward to reduce the case of a continuous family of Bessel operators

parametrized by a compact space to the case of a single Bessel operator. O

Corollary 4.4. Let B be an elliptic Bessel operator. Let d,s € R. If u €
W4 (Ry) and Bu = 0, then, for any j and k, du/dr? decays faster than r=* as

7 — 0Q.

Proof. Tt follows from Proposition 4.3 that u € r®W#*(R,.) for any s. O

Proposition 4.5. Let B be an elliptic Bessel operator of order m. Let 61,02,
$1,82 € R with 61 < 2. Assume that B does not have any indicial roots with real parts
in [01,02]. If u € r*W*+™(R,) and Bu € r2W*2(Ry), then u € ro2W*+m(R,).
There exists ¢ > 0 such that

||“||r52W52+m(R+) < C(||Bu||r52W52(R+) + [lullys W81+m(R+))

for allu € r2Wetm(R,).
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Proof. We may assume that d < §; + 1; the general case follows from this case
by iteration. By Proposition 4.3, we may assume that s; = s3. For simplicity we write
s for s1 and s,. It follows from (2.6) that

(4.5) @ou € O H*T™(R,),

and

woBu € T2 H*(Ry).
Now B — J(rd/dr) is r times a Bessel operator of order m — 1. Hence
(B — J(rd/dr))u € rO FIWHL(R,).
It then follows from (2.6) that (B — J(r d/dr))u € r* 1 H**+1(R, ). Hence

J(rd/dr)(pou) = [J(rd/dr), polu

(46) 02 78
+ @o(J(rd/dr) — B)u + poBu € 2 H*(R;.).

By Lemma 4.2 and the assumptions on the indicial roots of B, the operators
J(rd/dr) : T H*T™(Ry) — r? H*(R,.)
and
Trdfdr) : P HU (R, ) 4 1 HR,) - r H Ry 0% H (R)
are invertible. It then follows from (4.5) and (4.6) that
pou € T2 H*T™(Ry).

By (2.6),
Vool € <,r>61—s—m+1/2Hs+m(]R) C <7‘)62_5_m+1/2H8+m(R).

It then follows from (2.6) that that u € r®2W**™(R,). By examining the above
argument step by step, we get the desired estimate of u in 792 W*+™ (R, ) norm. g

The adjoint B* : r SW*(Ry) — r*W=*"™(R,) of B, see Lemma 2.5(a), is
given by

(4.7) B*= Y b yrf(—rd/dr).
Jj+k<m
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Corollary 4.6. Let B be an elliptic Bessel operator of order m. Let §,s € R. If
0 is not the real part of any indicial root of B, then the operator

B: r5W3+m(]R+) — T‘SWS(]R_,_)

is Fredholm.

Proof. Choose ¢§',s" € R such that ¢’ < 4, s'—¢' < s—6, and B does not have any
indicial roots with real parts in [¢’,d]. It then follows from Proposition 4.5 that

||’u’||’r“5W“’+m(R+) < c(||Bu||7'5WS(R+) + ||u||r5'W5'+m(R+))'

By Lemma 2.5(c), the inclusion roW*t™ (R, ) — % W*'+™(R, ) is compact. It follows
that B has finite-dimensional null space and closed range. Similarly, B* has finite-
dimensional null space and closed range. O

Corollary 4.7. Let B be an elliptic Bessel operator of order m.

The dimension of the null space of B : r®W*t™ (R, ) — rW?*(R,.) is independent
of s and is a decreasing function of §. Its discontinuities are located at real parts of the
indicial roots of B. For sufficiently large 6 the operator is injective.

The codimension of the closure of the range of B : r®W*T™(Ry) — r°W*(R,)
is independent of s and is an increasing function of 6. Its discontinuities are located
at real parts of the indicial roots of B. For sufficiently small § the operator has dense
range.

Proof. 1t follows from Proposition 4.3 the null space is independent of s. It
follows from Lemma 2.5(b) that the space ,cg 7’ W*(Ry) decreases with increasing
0. Hence the null space decreases with increasing §. It follows from Proposition 4.5
that the dimension has discontinuities only at real parts of indicial roots. That the null
space is trivial for § large enough follows by examining the asymptotic expansions of
the solutions of Bu = 0 as r — 0; see [CL] Chapter 4. The second part of the corollary
follows from the first part by duality. O

The following corollary also serves as the definition of §(B) and 6(B).

Corollary 4.8. Let B be an elliptic Bessel operator of order m.

There exists §(B) € R such that the operator B : rOW*+t™(Ry) — r*W*(R,.) is
injective for 6 > §(B) and not injective for 6 < 6(B). The number d(B) is the real part
of an indicial root of B.
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There exists §(B) € R such that the operator B : rPW*+t™ (R, ) — rOW*(R,) has
dense range for § < §(B) and does not have dense range for § > 6(B). The number
0(B) is the real part of an indicial root of B.

In particular,

(4.8)

Corollary 4.9. Let Q be a compact topological space. Let {B,},cq be a contin-
uous family of elliptic Bessel operators. Let d,s € R. Assume that § > 0(B,,) for all
w € Q and that 6 is not the real part of any indicial root of B, for any w € Q. Then
there exists ¢ > 0 such that

lull oy stmm,) < cllBoullowsw,)
for allw € Q and all u € PPW*+™(R,).

Proof. 1In the case of a single Bessel operator B, it follows from Corollaries 4.6
and 4.8 that B : r®W*+™(R,) — r°W#*(R,) is injective with closed range. This proves
the estimate for a single Bessel operator. It is straightforward to reduce the case of a
continuous family of Bessel operators parametrized by a compact space to the case of
a single Bessel operator. O

Proposition 4.10. Let B be an elliptic Bessel operator of order m. Let 6,s €
R. Assume that 6 is not the real part of any indicial root of B. Then the index of
B :r®Wstm(R,) — rOW?*(R,.) is equal to the number of indicial roots of B, i.e. roots
of the polynomial det Z;'n:o bjo’, with rgal part greater than 0 minus the number of
roots of the polynomial det E;-nzo bjm—;y’ with positive real part.

The roots are counted with multiplicities. Note that if B is elliptic, then the poly-
nomial det Z;-nzo bjm—;7’ does not have any roots with vanishing real part. It follows
from Proposition 4.10 that the index is a decreasing function of § with discontinuities
precisely at the real parts of the indicial roots.

Proof.  First we consider operators P = 77" p;(r)(d/dr)? on R where p; are
smooth complex N x N-matrix valued functions on R and det p,,(r) # 0 for all r € R.
We assume that there exist complex N x N-matrices p;-—L such that

pi(r) =p7 +O(r™Y)  asr - —oo
pi(r) = pj +O(|r|7Y) asr— +oo
(d/dr)kp;(r) = O(|r|~*1) as r — 0o for k>1
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and det p # 0.

Let ¢_ be a smooth function R — [0, 1] such that ¢_ =1 on (—o0,—1] and p_ =0
on [1,00). Let oy = 1—¢_. For §_,64,A_, A+ € R we define the Hilbert space
Hi x_y5.00,)(R) as the space of all u : R — CY such that p_u € €7 (r)*- H*(R)
and @ u € e®+7(r)*+ H*(R). We then have the following:

If 6_ is not the real part of any root of the polynomial det Z;nzopj_’yj and 64 1is
not the real part of any root of the polynomial det Z;n:() p;"yj, then the operator

. fFstm 8
P:HTR s 00)®) = H_ o500 ®)
is Fredholm. Its index is equal to the number of roots of det Z;.nzo pj_'yj with real part

greater than 0_ minus the number of roots of det Z;-nzo p;"yj with real part greater than
Oy

That P is Fredholm is shown largely the same way as Corollary 4.6. The index is
invariant under continuous deformations of (P,§_, A_,d1, A+ ) as long as d4 is never the
real part of any root of the polynomial det Z;n:o pj-E’yj . Each (P%,62,2%2,48%,)9) can
be deformed, subject to this constraint, to some (P*,41,0,63,0) with P! a constant

coefficient operator. For such P! the index formula follows by inspection.

We now return to the proof of Proposition 4.10. Let % be a diffeomorphism
R — Ry with ¢(r) =€" for r < —1 and 9(r) = r for r > 1. It then follows from (2.7)
that

P (W (Ry)) = Hy o5 —s—m+172) (B)-

Let 7 be a smooth function R — [1,00) such that 7 (r) =1 forr < —1 and 74 (r) =7
fOI‘ T 2 1. By (2.7), w*(TJWS(R_F)) - Hg(0)70(5—8+1/2) (R), SO

P (W (RL)) = Hi ), 0(5—s—me1/2) (B)-
The index of B : r®W**t™(R,) — rSW?*(R,) is equal to the index of
f_m’(,b*B : H;(T);?O(é—s—m+1/2) (R) - H;(O),O(é—s—m-}—l/Q) (R)

The operator 7, ™1)* B is of the type considered above with p; = bj,o and p;' =bjm—j-
The proposition follows. O
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Corollary 4.11. Let B be an elliptic Bessel operator. If §(B) < §(B), then B
does not have any indicial roots with real parts in ((B),d(B)).

Proof. 1f §(B) < §(B), then the index of B : r®W*T™(R,) — rOW*+™(R, ) is
zero for all § € (6(B),d(B)) that are not real parts of indicial roots of B. Thus the

index of B, as a function of §, does not have any discontinuities in (§(B),d(B)). The
corollary then follows from Proposition 4.10. 0

Conjecture 4.12. For a generic elliptic Bessel operator §(B) < 6(B).

The motivation behind this is as follows: Let § be a real number that is not the
real part of any indicial root of B. By Corollary 4.6, the operator B : roW*+™(R, ) —
rOW*(Ry) is Fredholm. Let ¢y and o be as in (2.6). Let N denote the space of
all solutions of Bu = 0. Thus dimN = mN. Let Ny denote the space of solutions of
Bu = 0 such that pou € r’W*(R,). Let N° denote the space of solutions of Bu = 0
such that pu € r®W*(R,). It follows from Proposition 4.3 that the spaces N5 and N°
do not depend on s. It follows from Corollary 4.4 that the space N° does not depend
on §. Then

dim Null B = dim(Ns N N?)
(4.9)

codim Range B = dim(N; N N°) 4+ dim N — dim N5 — dim N°.

The first part of (4.9) is obvious. The second part is seen as follows. By examining the
asymptotic expansions of the solutions as r — 0, as in [CL] Chapter 4, we see that the
number of indicial roots of P with real part greater than § is dim Ns. By examining the
asymptotic expansions of the solutions as r — oo, as in [CL] Chapter 5, we see that
the number roots of det Z;’LO bj.m—; 7’ with negative real part is dimN°. It follows
that the number roots of det Z;nzo bjm—j v with positive real part is dim N — dim N°.

(The last statement can also be seen as follows, without using the asymptotic
expansions as 7 — 00. Let ' € R be smaller than the real parts of all the indicial
roots. By Corollaries 4.6 and 4.7, the operator B : v W*t™(R,) — r® W*(R,) is
surjective. By examining the asymptotic expansions of the solutions as r — 0, we
see that its null space is N°. Hence its index is dimN°. On the other hand, by
Proposition 4.10 its index is dimN minus the number of roots of det E;'n:(] bjm—j Y
with positive real part.)

It then follows from Proposition 4.10 that the index of B is dim Ns+dim N°—dim N.
The second part of (4.9) follows from the first part and this index formula.

Assume that 0(B) < §(B). Choose some § € (6(B),d(B)) that is not the real
part of any indicial root of B. Then B : r’W3*+™(R,) — r*W*(R,.) is Fredholm and
neither injective nor surjective. It then follows from (4.9) that N° and N; intersect
nontransversely in N. In order to establish Conjecture 4.12, one would have to show
that such nontransverse intersections do not occur for generic B.
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85. Constant coefficient elliptic uniformly degenerate operators

A constant coefficient uniformly degenerate operator of order m on upper half space is
defined as a partial differential operator

Ly= Z aj,0(70y )% (20,)*

J+lal<m

with a;, complex N xN-matrices. The operator Ly acts on functions RT'I — CN.
We say that Ly is a constant coefficient elliptic uniformly degenerate operator if the
principal symbol
o&m) = aali€) (i)
j+lal=m
is invertible for all (£,1) # 0 € R**1. The indicial matrix of B is defined as

J(y) = Z a;,0 v
3=0

This is an N x N matrix with entries that are polynomials of degree m in y. We define
the indicial roots of Ly as the roots of the degree mN polynomial det J(7).

The model Bessel operators of Ly are defined as the family

By= Y aja(rd/dr+n/2)(irw)®
j+lal<m

of Bessel operators parametrized by w € S"~1. Then B, has principal symbol o (£, nw)
and indicial matrix J(y +n/2). Thus Ly is elliptic if and only if B, is elliptic for all w
and the indicial roots of B, are obtained by subtracting n/2 from the indicial roots of
Ly. In particular, the indicial roots of B,, are independent of w.

Proposition 5.1. Let Ly be a constant coefficient elliptic uniformly degenerate
—n+1
operator of order m on RT- . Let §,s1,82 € R with s; < sa. Then there exists ¢ > 0
such that

[[wll5,50 +m < C(”LOU 5,5 1 llu 6,81+m)
for all uw € z° Ho2+m(RHT),
Proof. This follows from (3.3), (3.5), and Proposition 4.3. O

Let
d(Lo) = sup §(B.)
weSn—l

§(Lo) = weigfffl 0(B,,).
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Proposition 5.2. Let Ly be a constant coefficient elliptic uniformly degenerate
operator of order m on @T-l. Let §,s € R. Assume that § > §(Lo) and that 6 +n/2 is
not the real part of any indicial root of Ly. Then there exists ¢ > 0 such that

l|ulls,54m < c||Lou

4,8
for all u € L H3*™(R}T).

Proof. This follows from (3.3), (3.5), and Corollary 4.9. O

Proposition 5.3. Let Ly be a constant coefficient elliptic uniformly degenerate
operator of order m on ﬁT-l. Let 6,s,t € R. Assume that § > 6(Lg) and that § +n/2
is not the real part of any indicial root of Ly. Then there exists ¢ > 0 such that

”'u' d,8+m,t < CHLOU 4,8,t

for all u € P Hs+™H (R,

Proof. This follows from (3.3), (3.6), (3.7), and Corollary 4.9. O

86. Variable coefficient elliptic uniformly degenerate operators

In the following U will be an open subset of @T—l. By a slight abuse of notation, we
will refer to the set U N 8@1“ as the boundary 0U of U. It is an open subset of R™.
A uniformly degenerate operator on U of order m is defined as a partial differential
operator

L= Y ajaley) (@) (2d,)"

jtlel<m

with coefficients a;, that are complex N xN-matrix valued and smooth up to the
boundary. The operator L acts on functions U — CN. We say that L is an elliptic
uniformly degenerate operator if the principal symbol

U(%i‘/aﬁﬂ?) = Z G;j,a(fll',y) fj’r’a

jt+lal=m

is invertible for all (z,y) € U and all (¢,7) # 0 € R**1. The indicial matrix of L at
(0,y) € QU is defined as

Jy(7) = aj0(0,9) 7.
7=0
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This is an N x N-matrix with entries that are polynomials of degree m in «y. We define
the indicial roots of L at (0,y) € OU as the roots v of the degree mN polynomial
det J,, (7).

By freezing the coefficients of L at (0,1y9) € OU, we get the constant coefficient
uniformly degenerate operator

Ly= Y a(0,3) (30,) (x0,)

J+lal<m

on ET-I. The operator L,, has principal symbol ¢(0,y0,&,n) and indicial matrix
Jyo (7)

We first prove two weighted Sobolev estimates for uniformly degenerate operators.

Proposition 6.1. Let L be an elliptic uniformly degenerate operator of order m
on an open subset U of EZL_—H. Let 6, 51,82 € R with s1 < s2. For any ¢, € C,,,(U)
with 1 =1 on supp ¢ there exists ¢ > 0 such that

lpulls,so+m < (¥ Lulls,s, + llthulls,s-+m)

for all w € H2X™(U).

Proof. We may assume that s; < s; 4+ 1; the general case follows from this
case by iteration. It is enough to establish the estimate for ¢ and v supported in a
small neighborhood of any given point (z¢, %) in U. For an interior point the estimate
follows from standard elliptic theory. For a boundary point (0,y,), it follows from
Proposition 5.1 that

8,s54+m < c(“Lyo (pu) 8,85 T llpu 5,81+m)
< e(I(Lyy, — L) (@) l5,5, + L, @) () I, + 0 Ltall 5,0, + llowlls, sy 4m)-

[lpul

The first term is bounded by €||¢ul|s5 5, +m, where we can make ¢ arbitrarily small by
choosing the neighborhood small, and can thus be absorbed. Concerning the second
term, note that [L, ¢] is a uniformly degenerate operator of order m —1 with coefficients
that vanish on the boundary. Therefore

o]l 5,804+m < c(ll9oulls—1,0+m—1 + [[@Lulls,0 + 192 5,8,4m)-

The proposition now follows from Lemma 2.1(c). O
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The model Bessel operators of L are defined as the family

Yo = Z a;,a(0,v0) (rd/dr+n/2)j(irw)a

Jt+lal<m

B

of elliptic Bessel operators parametrized by (0,19) € OU and w € S"~1. Let

6(L) = sup G(Ly,)= sup  sup (By,w)
(0,90)€8U (0,0)€8U wesSn—1

8(L)= inf 8(Ly)= inf  inf 3(Byg.w)-
o) (O,ytJI)IEBU(S( ) (O,y{)I)leaU welgn—l 0(Byo.w)

Theorem 6.2. LetlL be an elliptic uniformly degenerate operator of order m on
an open subset U of RT_ . Let 61,02, 51,82 € R with 1 < 0. Assume that §2,01 +1 >
d(L). For any p,% € C5,,(U) with 1p =1 on supp ¢ there exists ¢ > 0 such that

lpullssss4m < e(lLullsy,s0 + toulls, s0-4+m)
for all u € x> H2Y™(U).

Proof. We may assume that do < 6; + 1 and sy < s; + 1; the general case
follows from this case by iteration. Arguing as in the proof of Proposition 6.1 using
Proposition 5.2 instead of Proposition 5.1 we get

||(1Du||52,52+m < C(||"pu||52—1,82+m—1 + ||90Lu||52,32)'
The theorem now follows from Lemma 2.1(c). O

In §7 we use Theorem 6.2 to establish Fredholm properties for uniformly degenerate
operators on compact manifolds with boundary. We next establish the regularity results
corresponding to the estimates Proposition 6.1 and Theorem 6.2.

Proposition 6.3. LetlL be an elliptic uniformly degenerate operator of order m
on an open subset U of ET- . Let 6,s1,82 € R with s1 < so. If u € Z HT™(U) and
Lu € 2°H?? (U), then u € 2 H2(U).

loc loc

Proof. We may assume that so < s1+1. Let ¢ € ngmp(U). The operators Ay, i,
as in Lemma 2.1(e), are uniformly bounded z° H**1 (R} 1) — 20 H*(R}*) as (h, k) —
(0,0). The operators [Ay, x, L] are uniformly bounded z° H**™(RYH!) — 20 H*(R1H)

as (h,k) — (0,0). It then follows from Proposition 6.1 that

ARk (0u) 5,55 +m—1 < ([ILAR k(@) [l6,55—1 + | An i (0)]l6,5 +m—1)
< c(|I[L, A k) (o) lls,50—1 + | AR KLU |l5,50 -1 + l0%]l5,5, +m)
< c([|L(pu)ls,s, + llulls,s,+m)-

The proposition now follows from Lemma 2.1(e). O
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Theorem 6.4. Let L be an elliptic uniformly degenerate operator of order m on
an open subset U of ET-I. Let 61,02, 81,82 € R with §; < d2. Assume that 61 > 6(L)
and that [61 +n/2,02 +n/2] does not contain the real part of any indicial root of L at
any point in OU. If u € > H*¥™(U) and Lu € z°2H;? (U), then u € %2 H2T™(U).

Lemma 6.5. Let L be an elliptic uniformly degenerate operator of order m on
an open subset U of @T-l. Let 6,8,t1,t2 € R. Assume that § > 6(L) and that § +n/2
18 not the real part of any indicial root of L at any point in OU. If u € x‘SHS"'m’tI(U)

loc

and Lu € 8 HY"(U), then u € 2 HLT™" (U). For any @, € Coomp(U) with 4 =1

loc loc

on supp ¢ there exists ¢ > 0 such that

loulls,srm.ts < c(llLulls,st + [pulls,srm.t)

for all w € L HET™2(U).

loc

Proof of Lemma 6.5. We may assume that t3 < t1 + 1; the general case follows
from this case by iteration. We prove the second part of the lemma first. Arguing as
in the proof of Theorem 6.2 using Proposition 5.3 instead of Proposition 5.2 we get

lpulls,atrm.ts < c(llulls—1,0tm—1,t, + l[Lulls,st,)-

The second part of the lemma now follows from Lemma 2.2(c). By Lemma 2.2(b), Lu €
L T2 ~H(U). By an argument similar to Proposition 6.3, u € z® HEI™+tH2—1(U).

The first part of the lemma now follows as Proposition 6.3 using Lemma 2.2(e). O

Proof of Theorem 6.4. The two sets U N (Ry x 0U) and U N RT’l form an open
cover of U. By standard elliptic theory, the theorem holds with U replaced by Uﬂ]RT'l .
Thus we only have to prove it with U replaced by U N (R4 x 0U). In other words, we
may assume that U C R, x 9U.

We may assume that do < §; + 1; the general case follows from this case by
iteration. We have

(6.1) L—J,(z8,) =M +z)_ N;0,,

j=1

for some uniformly degenerate operator M of order m and some uniformly degenerate
operators N; of order m — 1. Hence

(L — Jy(20y))(pu) € $61+1H31+1,—1(R1+1).
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The operator [L, ¢] is a uniformly degenerate operator of order m — 1 with coefficients
that vanish on the boundary. Hence

Jy(20,)(pu) = (Jy(20;) — L)(pu) + [L, plu + pLu € % grintsi+ha},—1(Rrtl)

By assumption, pu € z% H* (R}*"). It then follows from Lemma 2.3 that

(6.2) ou € Hgémp(aU, $‘51+”/2HS3+M(R+))
and
(6.3) Ty (20,)(0u) € Hiby (OU, 2 T/2H* (R, ))

for some s3,t; € R. It follows from Lemma, 4.2 that the operators

Ty (205) « Hibyo (0U, a2 H ™R, ) — HY

comp comp

(0U, 2% ¥ /2 (Ry.))

and
Jy(@05) ¢ Hlhy (9, 2% FM P H S+ (Ry) + 2% +7 /2 Hs+7 (R )
o Hiy (00,25 (R, ) 4 a5 2 R )

are invertible. It then follows from (6.2) and (6.3) that

wu € Hé})mp (BU, 152+"/2H33+m(]1{+)).
By Lemma 2.3, gu € z02 H5+Tmt2 (]RT'I) for some s4,t; € R. We have shown that
u € £ H*T™"(U). By Lemma 6.5, v € zH**™(U). By Proposition 6.3, u €

loc loc

% Hi ™™ (U). O

In the rest of §6 we investigate the regularity of solutions of the homogeneous

equation Lu = 0 in z° H _(U) with 6§ > §(L).

loc

Corollary 6.6. Let L be an elliptic uniformly degenerate operator on an open
subset U of @T-l. Let 61,02, € R with §; < d5. Assume that 61 > (L) and that
[61 +7n/2,02 +n/2] does not contain the real part of any indicial root of L at any point
in OU. If u € > HE (U) and Lu = 0, then u € z2A(U).

The following is the most convenient way to state polyhomogeneity in the general
case of variable indicial roots.
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Theorem 6.7. LetY be an open subset of R™. Let L be a scalar (N = 1) elliptic
uniformly degenerate operator on [0,1) X Y. Let 6,s € R. Assume that § > 6(L) and
that 6 +n/2 is not the real part of any indicial root of L at any point in 0 X Y. The
polynomial Jy(v) can then be factored as Jy _(v)Jy,+(y) where the roots of Jy _(7)
have real parts < § +n/2 and the roots of J, +(y) have real parts > 6 +n/2 for any
y€eY. Ifu € z°H}

loc

([0,1) xY) and Lu = 0, then, for any nonnegative integer j,

(6.4) (ﬁ Jy,+(x0y — k)k"'l)u € z*HA([0,1) x Y).
k=0

If J, is independent of y, then, for any nonnegative integer j,

(Jf[ Jy,+ (@0 — k))u € z°HA([0,1) X Y).

k=0

Proof. A totally characteristic partial differential operator on [0,1) x Y is de-
fined as a partial differential operator of the form »_, jo(z,y) (20, ) OF with aj €
C>([0,1) x Y). The algebra of totally characteristic operators on [0,1) x ¥ has a
filtration

FoCF1CFyC---

where P € F; if and only if there exist uniformly degenerate operators L, on [0,1) x Y’
such that P =37, .; La0y. Then

([ Fy is the algebra of uniformly degenerate operators

F+5,CF;
T Tk C Ttk
Tz =235
[F0,Fo) € 2T
L [T, F%] € Fjpn—1+2F 441 for (4,k) # (0,0).

(6.5) 4

It suffices to verify these relations for a filtered set of generators, such as z9,, 9,
and C*([0,1) xY') in Fy and 9,, in F;.

3

We will now show that for any nonnegative integer j and any @) € F; there exists
R € F 41 such that

(6.6) Jy (£0,) T Qu = T Ru.
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This is shown by induction. Let Q € Fo. By (6.1),
(6.7) Jy(20y)u = S1u
for some S; € Fy. By (6.5) and (6.7),
Jy(20)Qu = [Jy(20;), Qlu + QJy (20, )u = [Jy(20;), Qlu + QrS1u = zRu

for some R € F1. The case j = 0 follows. Assume that (6.6) holds with j replaced by
j—1. Let Q € F;. By (6.5), (6.7), and the induction hypothesis,

Jy(20,) 711 Qu = J, (0,) [Ty (20,), Qlu + Jy (20,)! QJ, (20, )u
= J, (20:) Qru + J, (20,) 2Qau + J, (20, ) QzSiu
=zRu

for some Q1 € F;_1 and Q2, R € F11. We have established (6.6).

It follows from (6.6) that there exists a sequence S; € F;, 7 = 1,2,..., with S; as
in (6.7) and Jy,(20,)*1Sju = £Sj11u. Then

J
(H z1J, (xaz)k>u = Sju.
k=1

Now J, (20, — k) = 2*J, (20, )z~*. Hence

7j—1
(6.8) <H Jy(20y — k)k"'l)u = 29Sju € 2 TIA([0,1) x V).
k=0

We will now show (6.4) by induction. By assumption, (6.4) holds for ;7 = 0.
Assume that (6.4) holds with j replaced by j — 1. Applying J, + (28, —j +1)? to both
sides we then get

j—1
<H Jy, (20, — k)k"'l)u € 2 TI71A([0,1) x Y).
k=0

The operators Ji , (20, — k) commute, so it follows from (6.8) that

(H Jy.— (20, — k) k+1> (H Jy 4 (20, — k)k"'l)u € 2°HIA([0,1) X Y).
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Let ¢ be smooth function Ry — [0, 1] such that ¢(z) =1 for < 1/3 and ¢(z) = 0 for
z > 2/3. By Lemma 2.4,

7j—1
(TT s 02 =047 ) () € (v, 77200511, )
k=0

and

(H Jy (20, — k) k+1) (H Jy 4 (28, — k)’““) (pu) € C=(Y,z™2TOHTH>(R,)).

k=0
It follows from Lemma 4.2 that the operators

j—1
I 7u.- @0. — k)T - Co°(Y,a™/2FH H (R, ) = C°(Y, z"/*HH H®(R,))

H Jy,—(-'l»'a:c o k‘)k+1 - O™ (Y, .’En/2+6+j_1H°°(R+) + xn/2+6+jHoo(R+))
k=0
- 0> (Y, xn/2+5+j—1Hoo(R+) + mn/2+5+jH°°(R+))

are invertible. We conclude that

j—1
(H Jy,+ (€0, — k)’““) (pu) € C®(Y,a"*HH H®(Ry)),
k=0

(6.4) now follows from Lemma 2.4.

Finally, if J,(vy) is independent of y, then [J,(20;),F;] C 2F;+1. We can then
omit the power j + 1 in (6.6). O

Theorem 6.8. LetY be an open subset of R™. Let L be an elliptic uniformly
degenerate operator on [0,1) X Y. Let §,s € R. Assume that 6 > §(L) and that 6 +n/2
is not the real part of any indicial root of L at any point in 0 X Y. Let jy(v) be a
polynomial in v with coefficients in C°°( ) such that j( ) does not have any roots -y
with real part 6+n/2 for anyy € Y and J Iy = J,Jy for some N x N-matriz J’( ) with
entries that are polynomials in v with coejfﬁczents in C*(Y). Factor J as Jy _Jy +
as in Theorem 6.7. If u € x‘stoc([O, 1) xY) and Lu = 0, then, for any nonnegative

integer j,
j—1

(jH Jy+ (x0y — k)k+1)u e ztIA([0,1) x Y).
k=0
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If jy('y) is independent of y, then, for any nonnegative integer j,

(Jf[ jy,_}_(a:&c - k))u € z°+HIA([0,1) x Y).
k=0

Such jy always exist; one can take jy = det J,. For instance, for

W= (07 )

this gives jy = (v —a)?(y — b)2. That is not always the best choice however. For

‘@:(W_ﬁp_w w—J@—w)

we can take jy = (y—a)(y —b).

Proof. By (6.7),

Jy(@0z)u = Jy (£05) Jy (205 )u = J, (20z)zS1u = xTiu

for some T7 € F1. Note that [F;, Fi] € Fjyr—1+2F j4541 for N > 2. However, if either
of the operators is a scalar operator, then the commutator is in JFjix_1 + 2Fj 4541
In particular, [jy(a:(?z),f?j] C Fj_1 +2Fj41. We can then argue as in the proof of
Theorem 6.7. U

Remark 6.9. In the following we assume that « is as in Theorem 6.7 or Theo-
rem 6.8. If J,(7), as in Theorem 6.7, or Jy(7y), as in Theorem 6.8, is independent of y,
then we can rearrange H;'io Jy+ (v — k) or [Theo Jy,+(y — k) as

[Ty =)
j=0

with 6; € C and 0; # 0y for j # k. It then follows from Theorem 6.7 or Theorem 6.8
using the meromorphic Mellin transform that v has an asymptotic expansion

o0 )\J‘—]

u(z,y) ~ Y Y aj,z (logz)F

7=0 k=0

with ajr € CN.
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If J,(), as in Theorem 6.7, or jy(’y), as in Theorem 6.8, does depend on y,
then the situation is more complicated. For any given yo € Y, we can rearrange
[1520 Jyo.+ (v = K)7*H or []52, jyo,+(7 — k)?*1 as above. It then follows from Theo-
rem 6.7 or Theorem 6.8 using the meromorphic Mellin transform that u(-,y0) has an

asymptotic expansion
oo Aj—1

u(@,y0) ~ Y > a; 7% (logz)F

=0 k=0

with a; € CN. However, the coefficients and exponents do not have to depend
smoothly on yqg.

If J, (), as in Theorem 6.7, or jy(y), as in Theorem 6.7, does depend on y, then
it may still happen that [, Jy + (v —j)* or [152 Ju,+ (v —4)7*1 can be rearranged
as

H(7 —5;(y)™

with §; € C*°(Y) and 0,(y) # dx(y) for j # k and all y € Y. In that case it follows
from Theorem 6.7 or Theorem 6.8 using the meromorphic Mellin transform that u has

an asymptotic expansion

oo Aj—1
u(z,y) ~ a;(y) 2% (log )
J=0 k=0

with ajr € C>(Y, (CN)

Adjoints. We finally discuss some properties of adjoints that will be needed in §7.
Let p € C*(U,R) with 4 > 0. Let L* be the formal adjoint of L with respect to the
volume element ="~ !y(x,y) dz dy. Then

L= 3 (e y) T (-0,0) (~0:0) 0} o (w,y) " ()
Jtlal<m

- Z a’;,a(may) (_may)a (n—.'L‘ax)j + .-

j+lal<m

where the dots indicate terms with coefficients that vanish on the boundary. Hence
v+ n/2 is an indicial root of L* at (0,y) if and only if — + n/2 is an indicial root of
L at (0,y0). We also see that L* has model Bessel operators

Z a3 (0,%0) (—irw)a(n/2 — rd/dr)j.

j+lal<m
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By (4.7), this simply is B} . By (4.8), then

Yo,w*
(6.11)

In particular, if L is selfadjoint, then the model Bessel operators By, ., are selfadjoint
and

8(L) = —4(L).

This is the case in the examples discussed in §8.

§7. Elliptic uniformly degenerate operators

on manifolds with boundary

In order to extend our results to compact manifolds with boundary, we have to check
invariance under coordinate transformations. First we consider the case of a constant
coefficient elliptic uniformly degenerate operator Ly as in §5 and a linear coordinate
. —n+1

transformation (z'y') = (= y)(‘(‘]1 g) on ]RT_ . Here A >0, C € R*, and D € GL(n,R).
We have

0.\ (A C Oy

0,) \0 D) \o,
and z = A~'z’. Under the coordinate transformation, Ly is therefore transformed to

(7.1) Ly= Y a(@'0y + A7'C2'0,) (A7 D2',).
i+lal<m

We see that Lj is a constant coefficient elliptic uniformly degenerate operator with the
same indicial matrices as L.

We have defined the model Bessel operators of Ly as a family B, of elliptic Bessel
operators parametrized by w € S"~1. At this point it is convenient to extend this to a
family

(7.2) B, = Z aj.o(rd/dr +n/2)’ (irn)“
J+lal<m

of elliptic Bessel operators parametrized by n € R* \ 0. If n = sw with s € R, and
w € S™ 1 then B,, and B, are intertwined by a dilatation by a factor s. Hence they
have the same mapping properties, so §(B,) = §(B,,) and é(B,) = §(B,,). Thus

d(Lo) = sup Q(Bn)

R7\0

(73) . nE. \_
0(Ly) = nelélf\oé(Bn)'
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It follows from (7.1) that, with the convention (7.2), the model Bessel operators B,, of
Lj are

B, = Z aj.o(rd/dr +iA™1C ) (i A~ Dry')®
(7.4) jtlel<m
_ e—ib'aneibr
where b = A~1C -7/ and n = A~ Dy’. Multiplication by e®" defines an automorphism

of *W*(R;). Thus 4(B,,) = 4(By) and E(Bq’?,) = §(B,). Tt then follows from (7.3)
that

(7.5)

Next we consider the case of a (variable coefficient) elliptic uniformly degenerate
operator L on an open subset of ETJ as in §6. Under a coordinate transformation
(«',y") = (' (z,v),y'(x,y)) the operator L is transformed to

o' & 9y 9\ ( 8 & 8y 9\°
r_ . —— Y Oy 91! oy
L' = Z a],a(may) (:L. ot o' +z o 8y’) <:E Oy oz’ T Oy oy’ .

J+lel<m
Now z(dz'/0z) = 2’ + O(z'?) and 9z’ /8y = O(z'). Hence
Po S gty (o2 (2) 2 g0 ) (0N o, 0N
_j+|a|<m gl Y or’ ox or Oy or dy Oy ’

where the dots indicate terms with coefficients that vanish on the boundary. We see
that L' is an elliptic uniformly degenerate operator with the same indicial matrices as
L. We also see that

r . — a5 O oy
Ly6 - Z %a(0,90) <$ ox’ + <8x) ) <6$>(0,yo) § 8y’>

i+lal<m (@90
y (61)‘1 (a_y') AN
97 ) (0,0) \ Y/ (0,00)  OY'

Comparing this with (7.1) we see that that L;(,) is the operator obtained from L,
through the linear coordinate transformation

(0" /9) (0, yo) (3y’/<9w)(0,yo))

@ o) =) (40 (04" /v)(0, o)
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By standard arguments, the notion of an elliptic uniformly degenerate operator L
on a differentiable manifold M with boundary 0M is now well-defined. The indicial
matrix J,(y) of L at point in p € M is well-defined. It follows from (7.6) that d(L)
and §(L) are well-defined. As usual, we can let L map sections of a smooth complex
vector bundle F over M to sections of another smooth complex vector bundle F' over
M.

The model Bessel operators B, , at a point in p € OM depend on a choice of
coordinates in a neighborhood of p. However, it follows from the above discussion that
if two coordinate systems give the same basis for T}, M, then they give the same Bessel
operators By, for all n € R* \ 0. Thus the model Bessel operators B,, ,, of L at p are

well-defined once a basis for T, M has been chosen. Under a change of basis for T}, M,

AC

), the operators B, ,, are transformed as in (7.4).

given by a matrix (

By Lemma, 2.1(f), the function spaces z°H;

i (U) are invariant under coordinate

transformations. Hence there are well-defined Hilbert spaces z° H*(M). We then have
the following:

Theorem 7.1. Let L be an elliptic uniformly degenerate operator of order m on
a compact differentiable manifold M with boundary. Let §,s € R. Assume that 6 +n/2
is not the real part of any indicial root of L at any point in OM. If § > 6(L), then
L: 20H*T™ (M) — z°H*(M) has finite-dimensional null space and closed range. If
§ < 0(L), then the range of L : x H*+*™(M) — z0H*(M) has finite codimension (and
is hence closed).

Proof.  Assume that é + n/2 is not the real part of any indicial root of L at
any point in M and that § > §(L). Let ¢’ € (6(L) —1,6) and s’ < s. Cover M by
coordinate charts. On the coordinate charts in the interior, we can use standard elliptic
estimates. On the coordinate charts at the boundary, we can use Theorem 6.2. Using
a partition of unity we then get

Sstm < C(”Lu

[[u] s+ ||u||5’,8’+m)
for all u € z° H*+™(M). Tt follows from Lemma 2.1(d) that the inclusion

L H ™ (M) — 2 H* T (M)



34

is a compact operator. It follows that L has closed range and finite-dimensional null
space.

Assume that § + n/2 is not the real part of any indicial root of L at any point in
OM and that § < §(L). We choose a volume element on M that in local coordinates at
the boundary is of the form z="~!yu(z,y) dz dy with u smooth and positive up to the
boundary. We let L* : 27 H=*(M) — 2= H=*~™(M) be the adjoint of L with respect
to this volume element. It then follows from (6.11) that —§ > §(L*). By the first part
of the theorem, L* has finite-dimensional null space and closed range. It follows that

L has range of finite codimension. O

Corollary 7.2. Let L be an elliptic uniformly degenerate operator of order m on
a compact differentiable manifold M with boundary. If §(L) < §(L), then the operator

L: 2z Hs*™ (M) — 2 H* (M)
is Fredholm for all § € (6(L),8(L)) and all s € R.

Proof. By Theorem 7.1, we only have to verify that L does not have any indicial
root at any point in &M with real part in (6(L) + n/2,5(L) + n/2). This follows from
Corollary 4.11. O

§8. Examples

In the following examples M is an (n + 1)-dimensional conformally compact asymp-
totically hyperbolic manifold. This means that M has a compactification M that is a
smooth manifold with boundary, and that the metric on M appears, in local coordinates
as in §7, as

n n
z? (goo(w, y)dz® + " goj(@,y) (dz @ dy; + dy; @ dz) + Y gjk(x,y) dy; ® dyk),
j=1 jk=1
where the functions ggo, goj, and g;i are smooth up to the boundary, g;; = gx;, and
n n
goo(m, ) € + 2 goj(,y) &nj + Y gik(w,y) njmk > 0
Jj=1 J,k=1

for all (z,y) in the coordinate chart and all (¢,1) # 0 € R**!. For such a metric the
sectional curvatures converge to a common limit —K (p) < 0 at any boundary point p.

Let
(gOO(w,y) 9‘”(%@/)) _ (900(%31) gOk(-'an))_l
gr(z,y) g% (z,y) gio(z,y) gjr(z,y) )
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If p has local coordinates (0,y), then g°°(0,y) = K (p)2. For proofs of these statements,
see [Mal].

Ezample 8.1. Let A be the (scalar) Laplacian on an (n+1)-dimensional conformally
compact asymptotically hyperbolic manifold M. Then A is a selfadjoint second order
scalar elliptic uniformly degenerate operator. The equation Au = 0 is the variational
equation for the Lagrangian L(u) = 3 [;, [du|2 dVj. Tn local coordinates

L(u) = % /(goo(acaz,,u)2 +2 Zng (10,u) (x0y,;u) + Z g’k (70, u) (20y, u))w_"_lx/detgdw dy.
Jj=1 J)k=1
It follows that
A= 900((-758m)2 - nmax) + Zng (2($8x)($ayj) - (n + 1)3"8%‘) + Z gjk(mayj)(.’rayk) +oee
Jj=1 J,k=1

where the dots indicate lower order terms. The coefficients of these lower order terms
all contain 20, and zd, applied to the components of the metric tensor. Hence these
coefficients vanish on the boundary. Recall that g°°(0,y0) = K (p)2. It follows that the
indicial “matrix” of A at any p € OM is

Jp(7) = K(p)*(v* = ny)

and the model Bessel operators of A at any p € OM are

gOO((r d/dr)* — n2/4) +1 Zg(]jwj (2(7’ d/dr)r — 7") — Z gjkijkrz.

=1 Gk=1

Near any p € M we can choose local coordinates (z,y) with p = (0,y) such that
g% (0,90) = 0 and ¢7*(0,y0) = K(p)?67%. In such coordinates the model Bessel opera-
tors at p are

By = K(p)*((rd/dr)> —r* —n’/4).

In particular, B, , has indicial roots +n/2 for all p and w.

Let § > —n/2. Let u be in the null space of B, , : P W*+2(R.) — r*W*(R;). By

Corollary 4.4, u and its derivatives decay rapidly as r — oo. By [CL] Chapter 4, u has

n/2

an asymptotic expansion as r — 0 with leading term r"/2. Hence u and r du/dr decay

n/2

as r"/“ as r — 0. We can then multiply the equation B, ,u = 0 by u and integrate by

parts with respect to r~1dr to get

/000 ((rdu/dr)?® + r*u+ (n?/4)u)r~tdr = 0.
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Hence u = 0. It follows that B, , : P W**2(Ry) — rSW*(Ry ) is injective for § > —n/2.

The Bessel operator B, , is selfadjoint. It follows that B, , has dense range for
d < n/2. By Corollary 4.6, B, , is then invertible for —n/2 < § < n/2. By Corollaries
4.8 and 4.11, §(B, ) = —n/2 and §(B,,,) = n/2. Thus

5(8) = —n/2
0(A) =n/2.

The indicial roots of L at any boundary point are 0 and n. It then follows from
Corollary 7.2 that
A HST2(M) — 22 H* (M)

is Fredholm for 6 € (—n/2,n/2). Using the maximum principle it is not hard to
show that, if M does not have any compact connected components, A is invertible for
d € (—n/2,n/2).

Ezample 8.2. ([Mal], [A]) Let Ag be the Hodge Laplacian for k-forms on an (n+1)-
dimensional conformally compact asymptotically hyperbolic manifold M. Then Ay is a
selfadjoint second order elliptic uniformly degenerate operator with ("Zl) components.
A tedious but straightforward calculation, see [Mal], shows that the indicial matrix of

Ay at any p € OM is

() =Kp?*(J' @ --eJ ol e -aJ),
(%) (")

where

JHy) =2 —ny + k(n— k)
and
J() =7 —nmy+ (k—1)(n—k+1),

and that the model Bessel operators of A, at any p € M, expressed in suitable bases
for TI,M and AkT; M, are

By, =K(p)?(B'@®---oB'eB’e---@B’6B @& B%),

-~ -~ -~

") (r23) (R21)

where

B! = (rd/dr)> —r? — (n/2 — k)2,
B?=(rd/dr)? —r? — (n/2 +1— k)2,

and
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5= (o) earmr = (o) (30)r= (" st ae)

In particular, B! has indicial roots +(n/2 — k), B? has indicial roots +(n/2 + 1 — k),
and B2 has indicial roots +(n/2 — k) and +(n/2 + 1 — k). We have
8(8Y) = —|n/2— K
{ §(B') = |n/2 — k|,
§(B*) = —|n/2+1—k|
{ 6(B%) =|n/2+1—k|,
and
§(B* =1/2—|(n+1)/2—k|
{5(33) =-1/2+|(n+1)/2— k|

This follows by integration by parts largely as in Example 8.1, except for B® in the
case 2k = n + 1. In that case the null space of B? is spanned by

(), (), (i (),

and it follows by inspection that §(B%) = 1/2 and §(B3) = —1/2.
It then follows that

{Q(Ak) =1/2—|(n+1)/2 — k|
5(Ak) =—-1/2+|(n+1)/2 — k.

In particular,
3(Ag) <0< 6(Ag) for 2k #n,n+1,n+ 2
3(AR) =0=0(A) for 2k = n,n + 2
3(Ag) > 0> 6(Ag) for 2k =n + 1.

The indicial roots of Ay at any boundary point are k — 1, k, n — k,andn+1— k. It
then follows from Corollary 7.2 that

Ag : H¥P2(M,APT*M) — H* (M, A*T* M)

is Fredholm for 2k # n,n+ 1,n + 2.
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It follows from Theorem 6.8 and Remark 6.9 that if v is in the L2 null space of
Ay with 2k < n, then u has an asymptotic expansion

o0

u(z,y) ~uo(y) 2" + > (u;(y) +v(y) log z) ™~
=1

at the boundary. Similarly, if u is in the L? null space of A, with 2k > n + 2, then u
has an asymptotic expansion

u(@;y) ~ uo(y) gh Z(uj(y) + v,(y) log m)mk_l"'j

[e o]

=

at the boundary. In both cases u; and v; are smooth.

In [Mal] it is shown that the L2 null space of Ay, gives the k*® singular cohomology
group of M for 2k < n and the k" singular cohomology group of M relative to OM
for 2k > n+ 2.

Ezample 8.3. ([MaMe], [A].) Next we consider the stationary Schrodinger opera-
tors —A+V — X on an (n+ 1)-dimensional conformally compact asymptotically hyper-
bolic manifold M. Here A is the scalar Laplacian as in Example 8.1, V € C*(M,R),
and A € R. Thus —A 4+ V — X is a selfadjoint second order scalar elliptic uniformly
degenerate operator. As in Example 8.1, —A + V — X has indicial “matrices”

Jp(7) = K(p)?* (=" +1y) + V(p) — X
and model Bessel operators

By = K(p)*(=(rd/dr)* + 1> +n’/4) + V(p) = A
= K(p)*(=(rd/dr)> + r* + 7(p, \)?)

where

o) = o+ T2,

In particular, B, ,, has indicial roots +y(p, A).

Let
2

A= prél;%(nsz(p)z + V(p))

2

A = nfwu;(nzK(zo)2 + V(p))-
pEOM
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In the following we consider the case A < A\;. Then 7(p, \) is real for all p € M. The
operator B, : PW*t2(Ry) — rSW*(R,.) is injective for § > —y(p, ). In fact, if u

lies in the null space, then integration by parts as in Example 8.1 gives
o
/ ((rdu/dr)?® +r*u+y(p, A\)*u?)r~tdr =0,
0

so u = 0. It then follows as in Example 8.1 that §(B,.) = —y(p,A) and §(B, ) =
v(p,A). Thus

d(-=A+V =) =—min v(p,])
pEOM

0(—A+V —A) = min ~(p,A).
pEOM

In particular,

I(—A+V =X <0<(-A+V =N).

The indicial roots of —A +V — X at p € OM are n/2 £+ v(p, ). It then follows from
Corollary 7.2 that

—A+V —\: HY(M) — L*(M)

is Fredholm. By standard arguments, the part of the L2-spectrum of —A + V that lies
below A is then discrete and consists of eigenvalues of finite multiplicities. The corre-
sponding eigenfunctions describe bound states of energy A for the quantum Hamiltonian
p?/2 + V. Tt follows from Theorem 6.7 and Remark 6.9 that any such eigenfunction u

has an asymptotic expansion

0o J
w(@,y) ~ > Y ujk(y) @A (log z)*

with u;; smooth.
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