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Abstract

Recently a parametrization of biorthogonal QMF by means of ele-
mentary loops in SL(2) has been proposed generalizing the factoriza-
tion of orthogonal QMF through loops in U(2). These factorizations
can eagsily be realized by some network of elementary propagators. In
this paper we discuss the asymptotic shape of the QMFs that are ob-
tained by iterating one elementary factor in this parametrization. It
turns out that in the case of orthogonal QMFs the shape is asymp-
totically described by some Airy function as the supports of the filters
increase. In the bi-orthogonal case instead we obtain asymptotically a
quadratic chirp. Similar results are to be expected when more factors
are involved.
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1 Introduction

Let L be some complex valued 2 by 2 matrix. We then associate with it the
following linear operator £y[L] acting in L?(Z). Its restriction to the linear
space spanned by &y and §; is just given by L. We then extend it to all of
L?(Z) by requiring that £o[L] commutes with the translations by 2.

[Lo,T5] = 0.

We denote by £[L] the operator 11 Ly[L]T—;. Its action is given by letting
act L on the space spanned by d_; and dg and extending it by requiring

[£1,T5] = 0.

See figure 1 for an illustration.
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Figure 1: A portion of the structure of the operators considered in this paper.
The boxes represent the matrices L and the circles illustrate sequence entries. The
filled circles show the non-zero sequence entries resulting from applying Lo£1 Lo to
a sequence with the filled circle in the bottom row as its only non-zero component.

Clearly we have that £;£'; = L;[LL'] but note that in general the op-
erators £y and £q do not commute even if both are associated to the same
element L € M(2).

Consider now the special case when L € U(2). Then the operators L;
are unitary. As it was shown in [5], any unitary operator that commutes
with the translations by two and leaves invariant the subspace of compactly
supported sequences, can be factorized into operators of the above type. An
immediate corollary of this is that the operators £; can be used to generate
all compactly supported QMFs. More precisely, if we consider

a = EO[Lm]El[Lm—l]EO[Lm—Q]---ACO[LI](SO, (1)
B = Lo[Lm)Li[Lm—1]Lo[Lm—2]--.Lo[L1]d1, (2)



then the pair (o, ) is a QMF if the all the matrices Ly, are in U(2). Vice
versa, for a compactly supported QMF, there is a sequence of matrices and
some overall translation such that (Tja,T;/5) can be written in the above
form. Recently, this result has been extended to bi-orthogonal filter pairs,
in which case the matrices Ly are in SL(2), [3]. These factorizations can
also be understood in terms of loop-group factorizations.

In this paper we are interested in the asymptotic behaviour of these QMF
if the number of factors gets large. This question obviously makes sense only
if we make some restrictive hypothesis on the set of factors involved. In this
paper we actually assume that L is the same for all factors. So we are
interested in the asymptotic behaviour of say

(L)™26y, L = Lo[L]L1[L).

Here we only will consider even n. There are clearly some trivial situations.
For instance L = 1 will be the identity.

The behaviour is also simple if L = ¢, 1 = 1,2, 3., where the o;’s are
the Pauli spin matrices given by
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It is natural to associate a time with the number of iterations n. Repeated
application of £ then naturally becomes an evolution in space-time. The
diagonals in the space-time plane will be called the mathematical light cone.
In the case where L equals one of the Pauli matrices o1 or g9, the operator
L is a propagation along the light cone. More precisely, §; propagates to
the right and §; propagates to the left.

Let us now consider a more complicated situation. We consider the case
when L = isin01d + cos fo1. With no immediate analytic solution at hand
we are referred to computer simulation. In figure 2 we show the result of
applying £ 800 times to the initial sequence §y. Surprisingly, a rich struc-
ture develops. From figure 2 we clearly see that the ‘mass’ of the sequence
moves at a speed distinctly slower than that of the mathematical support.
Furthermore we see that a horizontal structure develops at the wavefront.
In Section 3 we prove that this wavefront approaches an Airy functions in
a sense to be defined in that section. We shall also compute the effective
support. Note once more, that each horizontal line corresponds to a QMF.
Since Airy functions naturally appear in the description of propagation phe-
nomena, these QMF might play a role in the wavelet analysis of propagation
data. Because of this numerical finding we say that the matrices L which
asymptotically produce this kind of behaviour are in the propagative class
(a more precise definition is given below).



Figure 2: The result of iterating L = isin 8Id + cosfa; 800 times, on the starting
sequence dg. The solid lines indicate the mathematical light cone.

Consider now the case of a matrix L that is not unitary but only in
SL(2). Asyou can see in figure 3 its asymptotic behaviour is totally different.
Instead of a propagative behaviour, the asymptotic behaviour looks rather
like a diffusion and an over-all translation. Again this will be made precise
in this paper.

Figure 3: The result of iterating a non-unitary matrix L 400 times, on the start-
ing sequence dg. The result has been renormalised to keep the maxima at each
horizontal level the same. The solid lines indicate the mathematical light cone.



2 Classifications

Let us consider a 2 x 2-matrix L € GL(2), and let £ be its associated

operator just as in the introduction. Without loss of generality we may
assume that

iL € SL(2) . (4)

This will be assumed throughout. By construction £y and £; commute

with T5. According to Bloch theory this implies that they leave the space
spanned by

(eiwn’ (—1)" eiwn) (5)

invariant. The action of £y3 and £; on the base functions of this space

can be represented as 2 X 2 matrix-valued functions: Lo (w) and L (w).

Consequently, the action of £2 on (5) is given by T (w) = Li (w) Lo (w).

When we construct I' (w) in detail below, we shall see that it has a square

root given by: R R

L (w) = 03Lo (w) - (6)

Since L™ (w) represents the action of £" on the space spanned by (5) for

n even, we will focus much attention on the properties of L (w). As can be

verified by direct computation and as we will see in more detail below, for

iL € SL(2) of the form
I - [ loo  lo1 ] (7)

lio I

the associated loop L(w) reads

L(w)= L] oo+ b+ hoe™ +loe™ oo =l + hoe™™ — lore™ (8)
© 2| —loo + i1+ loe™ = lore™ —lgo — l11 + lige™ ™ + lg1€™

In particular it follows that
det L (w) = —det L , Vw , (9)
which proves that the convention (4) implies that
L(w)eSL(2), Vw. (10)
We are now able to make the following definitions:

Definition 1 We say a matriz L such that iL € SL(2) is admissible if
L (w) is not a constant matriz and if the eigenvalues of L (w) are distinct
for all w and if they can be chosen to be C*°-functions of w. We say an
admissible matriz L such that iL € SL(2) is propagative if both eigenvalues
of L (w) are on the unit circle for all w. An admissible matriz L such that
il € SL(2) is called diffusive if the absolute values of the eigenvalues of
L (w) are not constant functions of w.



It is clear that there are matrices L such that iL € SL (2), which are
neither propagative nor diffusive, for instance, (—i)1 is non-admissible.

Note that all admissible L € U (2) are propagative, but there are prop-
agative matrices outside U (2).

In terms of the components of L we have the following characterization.

Lemma 1 A matriz L with iL € SL(2) is admissible if and only if not both
lo1 and lip vanish and in addition

{l()leiw + 110671'“" twE [O, 27!')} N {—2,2} =0 (11)
An admissible matriz is propagative if and only if l1g = lo1.

There is no simple characterization of diffusive L in terms of the com-
ponents of L. Proof We have L(w) is constant if and only if lo; = 119 = 0.
In addition, for A € SL(2) its eigenvalues are given by

trA trA\2
= — 4+ — —1. 12
Az == ( 5 ) (12)

Applied to L(w) this shows the first part of the statement, since
trf/(w) = l01€z’w + lloe_iw. (13)

Since the eigenvalues of L (w) are distinct, it is diagonalizable for each
w. It is well known that the eigenvalues of a matrix in SL(2) are on the unit
circle if and only if the trace of the matrix is a real number between —2 and
2 (inclusively). Evaluating the trace at w = 0 shows us that Sl1g = —Slpq,
and the same requirement for w = 7/2 yields the condition Rl;9 = Rlo,
which shows the necessity part of the second statement. On the other hand
if llO = l()_l, then

tI‘Z* (w) = 101€iw+101€iw (14)
= 2§R (l()leiw) , (15)

and the sufficiency part follows. qed

3 The asymptotic analysis of propagative case

For any sequence s, with m € Z we can define a measure 7 on R by

n(y) = smé(y—m) . (16)
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Specifically, the iterated action of £ associated to a matrix L on an initial
sequence sg with compact support gives rise to a sequence of measures 7,
on R according to

M (y) = Y L"(8) 6 (y — ) (17)

In terms of these measures we can formulate the main result of this
section.

Theorem 1 Assume that L is such that 1L € SL(2) is propagative. Let
L be its associated operator and define the measures n,- according to (17).
Then there ezists a unique number v, € (0,1), and phases ¢, ¥ € [0,27)
such that for all initial conditions sy the renormalised measures

Xn () = ”%e_m(pe_ml/aywnn (n%y + ’ch) (18)
converge as m — 00
Xn — x =mAi(a), in S, (19)

where a is a real number and m is some complex number depending linearly

on s. Moreover the linear form s — m is not identically 0. An analogue
1

statement holds for ny, (n§y - %n)

Here Ai is the airy function as defined e.g. in [6]

Remark 1 : For a particular initial sequence, m may well be zero. Higher

order terms will then dominate, but we do not treat this case.

Remark 2 : There are precisely two choices of the phases (¢, ).

Remark 3 : All constants in the theorem can be calculated explicitly using

the ideas of the proof. In particular, we have that v, = |lop1], see (67) below.
Let us now introduce the following characteristic asymptotic features:

Definition 2 Let CS(Z) denote space of all sequences of the integers with
compact support. We then define
(a) The asymptotic growth factor, F

F= sup inf{®eR| lim @7"L"(s) =0} . 20
s€CS(Z) { i ) } 20)

(b) The asymptotic exponent of algebraic decay, a

a= sup supia€R| lim n®*F™"L"(s) =0} . 21
S sup{a €R | Jim (s) = 0} (21)

(c) The asymptotic opening angles, B+

+ . . E : at+ep—npn —
5 =t (i {p € (0.5) 1l P o =0



whenever % > tan ﬁs}) (22)

- . o . a+e m—n pn _
g~ = sesélgzz) lim (sup {ﬁe € ( 2,0> | i n®TEFTRLE (5),, = 0,
whenever % < tan ﬁ5}> , (23)

where 0 denotes a sequence s = {s;}, z € R consisting only of zeros. The
definition (c) is based on a definition in [4], but since our definition takes
renormalisation into account its range of application is much larger. It is
evident that Theorem 1 contains information about all these asymptotic
features. In fact, for a propagative L they are:

F = /|detL| (24)
1
tan 5 = +y.==+|lp| - (26)

In [4] it is shown that the 1-dimensional Dirac equation can be approxi-
mated by an operator associated with
78ind  cosd
= .. 2
l cos zsmé] (27)

We recognize this as the case illustrated in figure 2, and if we apply (26) to
it we have that the asymptotic opening angle satisfies the expression:

tan 8 = |cosd| . (28)

We will devote this entire section to the proof of Theorem 1. In the first
subsection we will introduce L (w) in more detail. In the next subsection
we will show that iterates of £ can be calculated from the inverse Fourier
transform. In the final subsection we will complete the proof of Theorem 1.

3.1 On operators on L? (Z) which commute with translation
by two

Since the operators £y and £; commute with 72, translations by two, the
general theory for operators which commute with 72 will be of great use for
us in this paper. This theory is presented in [4], and here we will follow that
presentation closely. We define s = {s;} to be the element in L2 (Z) with
ith entry s;. We will also make frequent use of the sequences 8 = {0ki}-



Our analysis will be based on Fourier analysis, so we begin by recalling
the definition of the Fourier transform of a sequence:

$(w) = Z spe "Wk (29)
k=—o00

Sk = L /27r§ (w) e“*dw (30)
k 21 Jo

It is clear that any linear operator A which commutes with translations
by two, T3, is completely determined by its action on the two sequences dg
and §;. We introduce the projections onto the even and odd terms:

1 i \ _ J siifiiseven
{Te (3)}i = 2 ((_1) st SZ) - { 0 otherwise (31)
and similarly for the odd projection II,. We can now express A as:
A(s) = A(bo) x e (s) + (T-1A (61)) = I1, (s) (32)

If we let F; (w) = A/(E,) (w), and take the discrete Fourier transform of (32)
we obtain:

—_— —_— —_—

A(s) (w) = Fo (w) e (5) (w) + € F1 (w) L, (5) (w) (33)
From the first equality in (31) we have that

— 1

IL (s) (w) = 5 Z (efik(w+7r)sk+efikwsk)

k=—00

_ %(g (w+7) + 3 (w)) (34)

The same calculation for 11, yields:

(=8 (w+m)+3(w)) (35)

N | =

I, (s) (w) =

If we substitute (34) and (35) into (33) we finally obtain:

— 1

A(8)(@) = 5((3 @)+5 @+ ) Fo(w) +(5(w) ~3(w + ) ¥ Fi(w)) . (36)

If we substitute w + 7 for w in the last equation we get in addition:

P

A(s+m)(w) = (B(w)+8(w+m) Fo(w+m)+

~ N[

+ (W) —sw+m) R (W) . (37)
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A combination of the last two results enables us to express the action of A
in Fourier space as a linear operator A (w):

l §(i(i)7r) ] — Aw) [ §(i(i)7r) ] (38)

where A (w) is a 2x2-matrix valued function of w € [0,27) given by

(39)

Aw) = ! Fy () + ' Fy (w) Fy (w) — €“F (w)
2 FO(w+7T)+eZwF1(w+7T) Fo(w+7r)_esz1(w+7r)

Henceforth, A (w) will stand for this matrix-valued function. We also in-
troduce the projection operator P defined by P (a,b) = a, projection onto
the first component. Now the iterated application of the operator may be
studied with the aid of

) (40)

Since Ly and £; commute with translation by two in z, we can apply
the previous section to express their action in Fourier space as the linear
operators L; (w,t), where i = 0,1. However, L;(dy) and L; (61) for i =
0,1 are determined entirely by L (in fact if ¢ = 0 they are the first and
second column of L respectively), and thus the same holds for L; (w, ).
Consequently, we need only consider Lg (w) and L (w). However, a look at
figure 1 convinces us that L (w) = T} (w) Lo (w)l/’fk (w), therefore we have
that £? is described in Fourier space as

A (s) (w) = P (A (w)" l . (i (i)w)

T (w)=L1Lo =T (w) Lo (w) TF () Lo (w) - (41)
If we calculate .
Tiw=|¢ % |=eiv (42)
! 0 —e™ 3

we can simplify (41) according to
T (w) = 03L¢ (w) 03Lo (w) = L? (w) (43)

where L (w) = 03Lo (w). This proves the claim we made in Section 2. The
explicit formula for L(w) follows immediately from our general computa-
tions.

3.2 Computing iterates of L by Inverse Fourier Transform
Our main aim in this subsection we show how iterates of L associated to an

admissible L can be computed by the Inverse Fourier Transform. For each
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admissible L, such that iL € SL (2), the eigenvalues can be written in the
following form

/\1,2((4)) = 6ii<(w). (44)

We choose, as we may, ((w) to be a C* function. Then in fact we have the
following lemma:

Lemma 2 The following holds:
(a) the eigenvalues A 2(w) of L (w) are 2m-periodic.
(b) L (w) is diagonalizable for all w.
(c) There exists a C* function E : R —-GL(2), with E (w+ 27) = E (w)
such that
L* (w) = E(w) D (w) E™! (w) , (45)

where

(46)

Proof (a) follows by direct computation. (b) holds since by hypothesis on L
the eigenvalues are distinct for all w. Now L (w) is 27-periodic, and from (a)
so is D (w). Clearly, since we are working with complex valued matrices, the
eigenvectors e;(w), i = 1,2, associated to the first and second eigenvalue may
be chosen to be periodic functions. Since as usual F(w) can be constructed
from these eigenvectors the periodicity of E follows. qed

Putting all together, we have shown that the iterates of £ associated to
an admissible L can be computed by Inverse Fourier Transform as follows

L (s), = % /O 7 p (E (w) D™ (w) E~L (w) e™ [ 8 (“’)W) D dw . (47)

Carrying out the computations more explicitly we have shown the fol-
lowing lemma which we state for further reference.

Lemma 3 If L is associated to an admissible L, and if s (z) is a sequence
with compact support then there exist C*° vector valued functions Gy (w) and
G1 (w), that are 2m-periodic and independent of n, such that

27 . )
L(s) = _en\U|mam/O Go (w) ez(n.ﬁ(w)+mw+m(u(w)—|—\u\mam))dw
27
+ _en\l/|maac/ Gy (w) ei(—nﬁ(w)—l—mw—l—in(\u\mam—u(w)))dw (48)
27 0

where |v|,,,, denotes the mazimum of the absolute value of the function

v(w) =3 (¢ ()

11



3.3 End of the Proof of Theorem 1

In this case, the eigenvalues are on the unit circle and we may write

1 2 . 1 2w L
L£h(s), = =— [ Go(w)e™ @Mdw+ = [ Gy (w)e™ @Ndw (49)
21 Jo 2 Jo
with v = m/n and ¢*(w,y) = yw + £(w). Here £(w) is real valued and
satisfies
E(w+2m) = &(w) + 27k (50)

for some k € Z not depending on w. Actually £ is periodic as we will see
below (see Eq. (59) below).

The main step in proving Theorem 1 is to estimate these integrals with
the aid of a theorem which originates from Airy. We have used the form
which appear in [6] and [2]:

Theorem 2 (Airy) Let f be a real valued C* function near 0 in R? such

that gg = g—zé =0, but % # 0 at 0. Then there exists C* real valued
functions a (g), b(g) near 0 such that a (0) =0, b(0) = f(0,0) and

‘/u (w,g) €9 dw —w (g) e9) Ai (a (9) vg) v 3 <Cu s, (51)

provided that uw € C§° and supp u is sufficiently close to 0. Here w € C§°,
and C 1is independent of v in some neighbourhood of 0. Moreover, there
exists a real-valued C* function T (w,g) with T (0,0) = 0 and MTaz—’Ol >0

such that 5

f@.9) =% +a@)T+b(g) - 2

This theorem can not be applied directly, since our functions are on the
circle. Indeed, we have integrals of the type

2
" f(w)ei(fnﬁ(w)—kmw)dw (53)
0
with ¢ satisfying (50). However, let h(w) be a smooth real valued function,
taking values between 0 and 1 such that }_; h(w+2nl) = 1. Then the above
integral may be rewritten as

/ h(w) f (w) el mE@)+me) g, — / h(w) f (w)emE@mm) g, (54

Here h and £ are the uniquely defined smooth extensions to the whole real
line of the previous functions defined a priori only on the circle.

From this we see that we only have to look for critical points of the total
phase ¢*(w,v) = yw + £(w), v = m/n, for values w € [0, 27).

12



Lemma 4 The following holds for {(w). There are ezactly two inflection
points. More precisely, there ezists a unique wy € [0,7) such that

d%¢
I =0. (55)
w=w1
Furthermore,
d*¢
) =0. (56)
wW=w1+7

For all other values of w, we have d*¢(w)/dw?® # 0. In addition, we have

that
L3 L3

=— (57)
dw w=w1 dw w=w1+7
and that
d3¢ d3¢
| T | (58)
wW=w1 w=wi+m
Moreover the following holds
§(r+w) =m—¢(w) (59)
Proof Since L (w) € SL(2), Yw we have that
cosé (w) = trL (w) /2 (60)
= R (lmeiw) (61)
= |lo1] cos (w + v). (62)
where v = argly;, and where we have used (15). It follows that
;i_f _ . |01 sin (w + v) ’ (63)
w \/1— lo1|? cos? (w + v)
2 o] (1 = |l01]*) cos (w + v)
e € ( ) and (64)

dw? 3/2
dw (1 — Jlo1|? cos? (w + v)) /

& fon | (1= lior|*) sin (w + ) {Hg lor[* cos (w + v) } (65)
_ —6 -
o (1 ltorPeos? (@ + ) U 1= HorPeos® (w +-0)

where € is either +1 or —1. Obviously, (64) implies the first two statement
of the lemma, but then (57) follows from (63). Furthermore, if we insert
cos(w+wv) = 0 and sin(w+v) = +1 into (65) we get the penultimate
statement.

13



Clearly trL(m + w) = —trL(w). Therefore either &(m + w) = 7 + £(w).
Note that (63) implies that

0

3, W) +&w+m)) =0, Vw (66)
Consequently ¢ (w) + & (w + 7) = ¢ and hence the last statement. ged
Set
dé(w
’Yc:‘ % |- o (67)
w

Consider again the two phase functions ¢*(w,v) = yw % &(w). We then
have shown that for |y| < ~y. there are two critical points for each of them.
As v approaches . they get closer to give a rise to a cubic critical point.
For |y| > 7. there are no critical points any more. This already explains
the effective support inside a cone smaller than the mathematical light cone,
since the integrals in (49) are rapidly decreasing oscillatory integrals. This is
precisely the situation to which Theorem 2 applies. A priori, for -y close to 7,
there are two contributions. One coming from each of the integrals in (49).
We might therefore expect a superposition of two different Airy functions
in the asymptotic behaviour. However, because of the symmetries of ¢ the
phases look locally the same. We may therefore conclude by invoking the
following result the proof of which we may leave to the reader.

Lemma 5 Let oy n € Z, m = 1,2,..., be a double sequence of complex
numbers subject to the following

|am.n| < C(1+ n2)P/2 (68)

with some p, C > 0. Let h(z) be a monotone function, tending to 0 as
x — o0. Suppose there is a smooth function f of tempered growth at co such
that

where the convergence is uniform for |mh(n)| < K for any K > 0. Then
consider the following sequences of distributions

M = Zan,mh(n)é(w—mh(n)) (70)

Xn = Zan,mh(n)Q(—l)md(m — mh(n)). (71)
m
We have n, — f and xn — f' in the sense of distributions.

The theorem follows upon considering amn = (L£"S)|yn|+m, Where |z]
denotes the nearest integer < z. qed
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4 The asymptotic analysis of the diffusive case

In this section our main result is

Theorem 3 Assume that L is such that iL € SL(2) and that L is diffusive.
Let L be its associated operator. Define the measures ny, according to (17).
Then there ezists a unique number . € [—1,1], and phases ¢, ¥ € [0,27)
such that for the renormalised measures

() (v) = e Wman2e=mee=m Pwy, (ny 4 yon) (72)

we have that

{2),-1%)
), >x=mel * Je 1?") inSasn— oo, (73)
where D is a positive number, A is a real number and m is a complex number
depending linearly on s. Moreover, the linear form s — m is not identically
Z€ro.

Remark 1: Once again m may be zero for a particular initial sequence.
Higher order terms will then dominate, but we do not treat this case.
Remark 2: There are exactly two choices of the phases (¢, ).

Remark 3: In this case the constants are must easily calculated by a
numerical procedure suggested by the proof. It is, however, possible to
construct explicit formulae.

4.1 Proof of Theorem 3

All the results in Subsections 3.1 and 3.2 hold in the non-propagative case
as well. However, before we estimate the integrals in (48), we must prove a
proposition, analogous to Theorem 2.

Proposition 1 Let K C R be a sufficiently small neighbourhood of (0,0).
Let u (w,g) € C§° (K),and f (w,g) be a complez-valued C* function in some
neighbourhood of (0,0) fulfilling

2
$F 20, 37(0,0)=0, o 0, o £0. (74
W l(w,9)=(0,0) Y (w,9)=(0,0)
Let us furthermore assume that %g—g (©.0)=(00) =0, and that for some p > %
w7g = )
and some b > 0 we have that
g€ [P bw7P] . (75)
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Then for some c € C§° and for some C' which only depends on b and p we
have

2 2
‘/u (w,g) eivf(w,g)dw —c (g) ,Uf%eiwm eivgxzei”g?X?’e*”Dgg_ S
<Cv 36D 450, (76)

where x1, X2, X3 and D are real constants depending only on f and its
derivatives in the origin. Explicit expressions for these constants follow
directly from the proof.

In this case f (w) is a complex number, and therefore the main idea of
the proof of this proposition is to use a theorem by Melin and Sjostrand
[7], which extends the method of stationary phase to the complex case. The
version we state is a slightly simplified R'*! version of the corresponding
theorem in [6].

Theorem 4 (Melin and Sjostrand) Let K C R'T! be a sufficiently small
neighbourhood of (0,0). Let u(w,g) € C§° (K),and f (w,g) be a complez-
valued C*® function in some neighbourhood of (0,0) fulfilling (74). Then for
some constant b we have

027\ °
/u (w) (@9 dy —p (—UW) %0

D=

211

3

<Cvz,v>0. (77)

where for functions p (w,g) we have used the notation from Hérmander [6]
and let p° (g) stand for a function of only g such that p (w,g) and p° (g) are
in the same residue class modulo the ideal generated by gg. When g = 0 we
have that

1
0\ 2 2
62 R 1o
(%g) N g(_z

211

4
(mw=mm>/ J 2m (78)

2f
(w.9)=(0,0)

Ow?

For small g # 0 we determine the square root by continuity.

Proof of Proposition 1.
The conditions in Theorem 4 are clearly met, so to prove Proposition 1 we

must evaluate f°(g). Let I =T (%) be the ideal generated by %. From
[6] we have that there exists a C™ function W (g) such that W (0) and

o (w9 - () (79)
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for some C* function ¢ in some neighbourhood of (0,0). In [6] it is also
shown that we have

w—Wi(g))"
fwg =P+ ¥ @Ol a0
2<a<N @
If we differentiate (79) with respect to w and set w = g = 0 we obtain that
2
c(0,0) = % . (81)
¥ lwia)=00

If we in addition differentiate (79) with respect to g and set w = g = 0 we
find that

% f ‘
dw Owdyg ,9)=(0,0
d_g _0:_62_f (w,9)=(0,0) (82)
- 957 |(w,9)=(0.0)
Since W (0) = 0 this implies that
%f ‘
_ _ 9999 (w.9)=(0,0) :
W (g) = — =00 o (g2 (53)
0% |(w,9)=(0,0)
Now differentiate (80) twice with respect to w and set w = g = 0 to obtain
o%f
f*(9) = 902 +0(g) - (84)
(w,9)=(0,0)
Insertion of (83) and (84) into (80) with w = 0, now yields
of
o) = f0,00+9 7
9 1(w,9)=(0,0)

, , ( 82f )2
P 0wy |(4,9)=(0,0
9 J; B . (w,9)=(0,0) —|-(’)(g3). (85)
2 ag —(0.0 0_)2‘.
(w,g)—( P ) Ow (w,g):((),())

Using condition (75) and remembering that p > % we have that
exp Cvg® < expCo~ P~V =140 (v_(sp_l)) . (86)

To conclude the proof we need the following estimates, which are obtained
analogously to those above:

u’(9) = u(0,0)+0(g) , and (87)
_1
azf 0 2 _
V552 1 271 _1
—o = v 2 |————+v 20(9) . (88)
(27”> SEl
(wag)f(ovo)
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Because of the condition (75) this completes the proof of Proposition 1. ged

Proof of Theorem 3
Recall that according to Lemma 3 we have

1 2T .
E*n (s)m == %enh/‘mam o GO (w) ezn¢+(w”y)dw +

1 27 L
+ Eenll/\m /0 Gy (w) € @) gy (89)
where we now let ¢* (w,y) = yw+( (w)+i|v|
consequence of Lemma 2 is that

¢ (w+27) = (w) + 27k (90)

maz> and y = 2. An immediate

Once more we cannot apply Theorem 1 directly, since our functions are
only defined on the circle. However, we proceed just like in the propagative
case and take a smooth function h (w) taking values between 0 and 1 and
satisfying >, h (w + 27l) = 1. Now we can rewrite (89) as

m

1 .
LM (s), = ﬂen\ulmw/h(w) Go (w) eindt (@) g,

1 o

b e / h(w) Gy () € @) du (91)
s

This, and the following theorem from [6], now tells us that we only have

to look for critical points of ¢* for values w € [0, 27).

Theorem 5 Let K C R be a compact set, X an open neighbourhood of K
and k a positive integer. If u € C2F (K), f € C3*T1(X) and Sf > 0 in X.
Then

k

12 al/2—k
v f|+%f> Lu>0.  (92)

/u(w) ei”f(“’)dw‘ <C Z | D%u| (

a<k

Here C is bounded when f stays in a bounded set in C*+1 (X).

The following proposition gives most of the information about the critical
values of ¢T that we need:

Proposition 2 Let L and L (w) be as in Theorem 3, and let the eigenvalues
of L (w) be '

)\1,2 = e:l:z((w) ; (93)
where ( = ( (w) = & (w) +iv (w), then either v (w) is constant or there exists
a unique wy € [0,7) such that

v (wi)| = |v(wi+7)| =V, , and (94)
v (W) < |V|pee f w# wi, wi+m, (95)

and where the mazima are of the first order.
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We defer the proof of Proposition 2 until the next subsection.
By assumption v (w) is not constant. According to Proposition 2 there
thus exists a unique w; such that
v (@) = v (@1 + 7] = V] (96)
Now two different situations can occur. These are, as illustrated in figure
4, that we either have that v (w1) = v (w1 + 7) which gives us the situation
in figure 4(a) or that we have that v (w1) = —v (w1 + ) as shown in figure
4(b). In the first of these cases one of the integrals in (91) has two critical
points for w € [0,27). To enable the application of Proposition 1 in this
case as well we now take a C§° partition of unity ¢y (w) such that ¢ =1
in a neighbourhood of w; and ¢ = 1 in a neighbourhood of wy + 7. If we
insert this partition of unity into the integrands in (89) we obtain

L7 (S)m = %enhj'maw i / h (w) Qbk (w) GO (w) ez'n(¢+(w,'y))dw
k=1

v L e i / h (W) i (w) G1 (w) ™8™ @M) gy . (97)
27 P!

(a) (b)

Figure 4: Typical variation of the absolute values of the two eigenvalues as w goes
from 0 to 2w, for (a) the case when v (w1) = v (w1 + 7), and (b) the case when
v(wy) =—v(w + 7).

However, if we now let

4

o (98)

e = sign (v (w1))

w=w1

both of the situations in figure 4 can be treated by the following lemma:
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Lemma 6 If we define

r(w,7) = (v+7) (w+w)—sign (v (w1)) ¢ (@ + wi)+i|v] e, (99)
s(w,7) = (Y+7) (wHw +7)—
sign (v (w1 + 7)) ( (w4 w1 +7) + 4|V, (100)
we have that
(a) Sr>0, Ss>0, (101)
(b) Sr(0,0) =Ss(0,0) =0, (102)
(02 - o 0, (103)
00 lwm)=(00) 99 l(w)=(0,0)
2 2
@ o -2 40, (104)
(w77):(010) (“"'77):(050)
0%r 9%s
= = 1
(e) Owdy  Owdy (105)
Remark : For r we have either that
r(w,y) = ¢ (w+wi,y+7), or that (106)
r(w,y) = ¢ (wtw,y+7) - (107)

depending on the sign of v (wy). A similar statement holds for s.
Proof We have that

Sr(@,7) = |Vlpe — ¥ (@)] > 0 and (108)
lv(w+m)| >0, (109)

Ss(w,7) = Wl —

which together with Proposition 2 prove (a) and (b). To prove the rest of
the lemma recall that trL (7 4+ w) = —trL (w) which implies that

((wHm) =7+ (w) . (110)

If we take the imaginary part of this, we obtain that for w in some neigh-
bourhood around w; we have

sign (v (w1)) ) . (111)

Clwtm) = sign (v (w1 + 7))

From this we have that

or dg
- = 7 —sign(v(w1)) - =0, (112)
aw (w,’y)Z(O,O) dw wW=w1
0s ) d¢
— = 7 —sign(v(w + 7)) (113)
0w |(1,7)=(0,0) ' AW | =y 47
. d
= e-sim@) | =0, (1)
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which proves (c). To prove (f) let us notice that

0?r i d?*¢
5 = —sign (v (w1)) - , and (115)
aw (wy'Y):(OaO) dw w=w1i
0?s . d*¢
5 = —sign (v (w1 + 7)) —— (116)
0| )=(0.0) g P

The equality of these expressions follows from (111), and since the minimum
of the imaginary part of r at w is of the first order according to Proposition
2, it follows that at least
d*v
-— 0, 117
707 # (117)

w=w1i

which concludes the proof of (f). Finally (e) is a trivial consequence of the
definitions of r and s. This concludes the proof of the lemma. ged

With Theorem 5 and Proposition 1 we have now all the tools needed to
calculate amn = L" (8)|y 5| 1m> Where |z] denotes the nearest integer < z.
Finally we use Lemma 5 to finish the proof. qed

4.2 Proof of Proposition 2

We begin the proof by noting that since L(w) € SL(2), Yw, we have that
cos( (w) = trL (w) /2, and thus

v(w) = Sarccos <trL2(w)). (118)

However, the imaginary part of the arccos-function is well known (see for
example [1]), and thus we have

v (w) = Jarccos <trf,2(w)> = +£In [a + (a2 - 1) 1/2] (119)

= zarccosha (120)
where
o = et y] "+ @02+ o
r = a:(w)=§R<trL2(w)) and (122)
y = y(w)z%(%). (123)

Choosing always the plus sign in (120) corresponds to studying |v (w)|.
We see that the level sets |v (z,y)| = 7 are given by the equations

.’L‘2 y2

cosh®?7 = sinh?®7r

—1, (124)
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These level sets are for 7 > 0 ellipses with centre at (0,0) foci at (£1,0)
and with the length of the major and minor semi-axis given by cosh 7 and
sinh 7. The level set for 7 = 0 is the part of the real axis between —1 and
1. Consequently, finding the maximum of |v (w)| is equivalent to finding the
maximum value of 7 obtained in (124)as w changes. From (124) we also see
that

v (=z,—y)| = [v(z,y)] (125)

Note now that from (13) we have that

tI‘E (w) /2 = (l()leiw + lloe_iw) /2 (126)
lon —1
(@) cosw + 14 (%) sinw . (127)

From this it is clear that trL (w + ) /2= —trL (w) /2, so (125) tells us that
|V (w+ 7)| = |v (w)|. To prove the existence of a unique maximiser of |v (w)]
in [0, ), note that the locus of the equation in ( 127) is also an ellipse (or

a straight line) with centre (0,0), as can trivially be seen if (l—OHQ'—llQ) and

(l—°1§—l1‘1) are real, and by a change of variables in the general case as well.

We therefore have the situation depicted in figure 5. From the geometry
of the situation it is clear that there exists a 7y, and a Tyez such that the
ellipse followed by trL (w) /2 as w goes from 0 to 27 crosses all the level sets
v (z,y)] = 7,7 € (Tmin, Tmaz) €xactly four times, and such that the level
sets v (z,y)| = 7,7 > Tmaz or T € [0, Tmin) are not intersected at all. If
Tmaz = Tmin then it is clear that v (w) is constant. From the degree of the
trigonometric polynomials involved it is also clear that the intersection of
trL (w) /2 with the level set | (z,9)| = Tmaz is of the second order.

We have therefore proved that |v (w)| is either constant or attains a
unique first order maximum at some w; € [0,7) as well as at w; + w. This
concludes the proof of Proposition 2. qed

It is easy to see that the situation in figure 5 corresponds to that in
figure 4 (a). With the absolute values of the eigenvalues as in figure 4 (b)
the ellipses would cross the real line between —1 and +1 and consequently
look like that in figure 6.

5 Numerical illustrations of the asymptotic be-
haviour

The purpose of this section is to illuminate the asymptotic analysis by nu-

merical examples. These will also give some idea of the speed of convergence
towards the asymptotic solution.
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Figure 5: The solid lines show some level sets for the absolute value of the imagi-
nary part of the arccos-function. The line segment between —1 and 1 corresponds
to the imaginary part of the arccos-function being zero, and the absolute value of
it grows with the size of the ellipse. The ellipse indicated by — - — shows the locus
of cos ¢ (w) = trL (w) /2 for a typical case. It is clear that there is a smallest and
largest level set each intersecting the latter ellipse exactly twice.

Figure 6: The solid lines show some level sets for the absolute value of the imagi-
nary part of the arccos-function. The line segment between —1 and 1 corresponds
to the imaginary part of the arccos-function being zero, and the absolute value of
it grows with the size of the ellipse. The ellipse indicated by — - — shows the locus
of cos( (w) = trL (w) /2. Tt is clear that there is a largest level set each intersect-
ing the latter ellipse exactly twice, and that the only other level set intersecting it
exactly twice is the level set corresponding to v = 0.
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5.1 The convergence towards the Airy function

The primary difficulty when trying to illustrate the convergence towards the
Airy functions is the very marked presence of a term which eventually will
oscillate to zero in S'. One possibility around this problem is certainly to use
an initial sequence which makes the amplitude of the oscillating term vanish.
However, it is not an easy task to find such an initial sequence. Fortunately,
one can find that if we restrict ourselves to even time-steps the oscillating
term affects all the even sequence entries in one way and all the odd entries
in another way. Therefore if we treat the odd and even sequence entries
separately we see that each of them approaches an Airy function without
any terms oscillating to zero. Needless to say, the amplitudes of the two limit
Airy functions will be different, but apart from that they will be identical.
This is illustrated in Figure 7 where we have applied £ associated to the
Dirac equation with § = 0.5 repeatedly. We have renormalised the result just
as in Theorem 1 and finally we have linearly interpolated between the even
and odd points of support to enhance the visual impact of the convergence.

Figure 7: The renormalised measures from (17) for £ associated to the L modelling
the Dirac equation with § = 0.5 with a typical initial sequence are shown at (a)
n = 100, (b) n = 200 and (c) n = 400. For the solid (dashed) lines we have linearly
interpolated between the even (odd) points of the support to illustrate that these
each converge towards an Airy function in S'. In (d) we show the limit Airy function
obtained from Theorem 2.
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5.2 Convergence towards the Gaussian functions

To illustrate the case when v (w) # 0 we chose

1 2
L= l 3 ] (128)

By a calculation entirely analogous to that in the previous subsection
we can show that even in this we will have to restrict ourselves to even or
odd time-steps and treat odd and even terms separately to avoid the dis-
turbing oscillations. In Figure 8 we show parts of the renormalised measures
corresponding to (128) at different times.

0.5F bt
(_)5 _4‘1 4‘1 5

(b) ‘ ‘
0.5F bt

0 . .
(© [ —
0.5F bt

0 . .
-5 -4 4 5

@ |
0.5F bt

0 L L
-5 -4 4 5

Figure 8: The renormalised measures from (17) for the £ associated to the L given
in (128), with a typical initial sequence are shown at (a) n = 40, (b) n = 70 and
(¢) m = 100. For the solid (dashed) lines we have linearly interpolated between the
even (odd) points of the support to illustrate that these each converge towards a
Gaussian function in S'. In (d) we show the limit Gaussian function obtained from
Theorem 3.
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