ON INTEGRAL REPRESENTATIONS BY TOTALLY
POSITIVE TERNARY QUADRATIC FORMS

ELISE BJORKHOLDT

ABSTRACT. Let K be a totally real algebraic number field such that its
ring of integers R is a principal ideal domain. Let f(z1,z2,z3) be a
totally definite ternary quadratic form with coefficients in R. We shall
study representations of totally positive elements N € R by f. We prove
a quantitative formula relating the number of representations of N by
different classes in the genus of f to the class number of R[\/—csN],
where ¢f € R is a constant depending only on f. We give an algebraic
proof of a classical result of H. Maass on representations by sums of three
squares over the integers in Q(+/5) and obtain an explicit dependence
between the number of representations and the class number of the
corresponding biquadratic field.

INTRODUCTION

Let f(z1,%9,23) = 22 + 23 + 23 and let N € Z be a square-free positive
integer such that N # 1,3. Let S = Z[v—N]. Gauss proved that the
number of solutions (z1,z2,z3) € Z3 to the equation f(z1,z9,73) = N is

12h(S) for N =1,2 (mod 4),
Tr(N) = 8h(S) for N =3 (mod 8),
0 for N =7 (mod 8),
where h(S) denotes the class number of S.

In 1940 it was shown by Hans Maass, using analytical means, that the
equation f(z1,z2,73) = N can be solved in R = Z[1+2—‘/5] for every totally
positive N € R. He also gave a formula for the number of solutions (see
[12]).

In this article, we shall discuss similar results for representations of inte-
gers by totally definite ternary quadratic forms with integer coefficients in
totally real algebraic number fields.

As an application, we give a proof of Maass’ result, based on algebraic
methods. Moreover, we prove that there is always a primitive representation
of N by f (that is, a solution to f(x1,x2,x3) = N such that GCD(x1, z9,z3) =
1). Furthermore, using a result on the stability of embedding numbers of
quadratic R-orders into quaternion R-orders, we find that the number of
primitive representations T?C(N ) of a totally positive non-unit N € R is
given by
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where S = R[v/—N] and v; = 12,24 or 32.

Let R be a principal ideal domain whose quotient field K is a totally
real algebraic number field. Let f(z1,z2,z3) be a totally definite ternary
quadratic form over R and let N € R denote a totally positive number.
After an auxiliary Section 1, we prove in Section 2 a quantitative formula
relating the number of representations of N by different classes in the genus
of f to the class number of R[\/—cfN]|, where ¢y € R is a totally positive
constant, which only depends on f. In Section 3, we examine the stability of
the embedding numbers in a special case. Finally, in Section 4 , we consider
the sum of three squares over R = Z[H'Q—\/g] and we prove the existence of
primitive representations of N € R by f. We also find an explicit formula
for the number of such representations.

1. PRELIMINARIES

Throughout this article, R will denote a principal ideal domain whose
quotient field K is a totally real algebraic number field and f : R? — R will
be a totally positive definite quadratic form. We denote by N > 0 that N
is totally positive. We let Rp denote the completion of R with respect to a
non-zero prime ideal p C R. A will denote a quaternion algebra over K i.e.
a central simple K-algebra of dimension four.

An R-order A is a subring of A containing R, finitely generated and
projective as an R-module and such that KA = A. We let Ap = Rp Qr A
denote the completion of A at p.

If L is a free R-lattice with basis e, €2, e3 and ¢ is a quadratic form,

g:L— R, q(zie1 + z2e9 + z3€3) Z aijT;xj,
1<i<j<3
then the Clifford algebra, which we denote by C(L,q) or C(q), is T(L)/Z
where 7 (L) is the tensor algebra of L and Z is the ideal in 7 (L) generated
by £ ® z — g(x) for z € L. The even Clifford algebra is defined to be

CO(La Q) = %(L)/Ia
where To(L) = @ T®? (L) is the even part of the tensor algebra of L.
Let f(x1,x2,x3) = Zl§i§j§3 a;jr;ixj = q(x1e1+z2ep +x3e3). The matrix

2011 a2 a3

My=1| a2 2a2 a3

aiz a2 2a33
is called the matrix of f and d(f) = det My is called the discriminant
of f. We denote by € the greatest common divisor of the elements in the
adjoint matrix of My. With ¢ non-degenerate, Co(L,q) ®r K is a quaternion
K-algebra. Furthermore, the square-root of the discriminant of the R-order
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A = Cy(L,q), called the reduced discriminant and denoted by d(A), has
dx = 3 det M; as a generator (see [1]).

Two quadratic forms f and g are equivalent over R if there is a lin-
ear mapping ¢(z;) = Y a4z, with a;; € R, such that det[a;;] € R* and
flp(z1), p(x2), p(x3)) = g(x1,z2,23). The quadratic forms f and g are in
the same genus if they are equivalent over Rp for each prime ideal p # 0 in

R.

2. REPRESENTATIONS BY TERNARY QUADRATIC FORMS

Let Aut™(f) denote the group of integral automorphisms of f with deter-
minant 1 and 7;(N) the number of integral representations of N > 0 by f,
where N € R. It can be checked, without difficulty, that |Aut™(f)| is finite.

The following proposition describes a relation between representations of
integers by ternary quadratic forms and solutions to quadratic equations in
quaternion orders.

2.1. Proposition. Let f be a totally positive definite ternary quadratic
form over R. There is an R-order A in a quaternion algebra A over K
and a totally positive constant cy € R, such that the integral representations
of Ne R, N> 0, by f are in one-to-one correspondence with the solutions
A€ A tox?=—¢sN.

This is a generalization of Prop. 3.2 in [4] and a proof can be given along
the same lines. We will only give a description of A and c;. Let

f(x1,22,23) = @127 + a3 + as373 + a127122 + a137173 + a23T27s3,
where a;; € R. Let V = Key + Key + Keg, q(Z:?:1 zie;) = f(z1,22,73)
and T'(z,y) = q(z +y) — q(z) — q(y). Let L = Re; + Rea + Res and
L# ={v eV :T(L) C R} Then A = Cy(L#,coq) and c; =
where ¢y = %.

g
2det(Mf) ?

Thus, instead of counting representations of N by f, we may count solu-
tions to 22 = —cyN in A. We will now take this one step further, so that
we may look at embeddings of R[,/—c;N] into A instead of solutions to the
equation. For this purpose, we need a relation between quadratic lattices
and quaternion orders.

2.2. Proposition. Let A be a quaternion K -algebra and A an R-order in
A with reduced discriminant d(A) = (dp), dy € R. Let

Ay={z € A:tr(z) =0}
and

A* ={z € A:tr(zA) C R}.
Then L = A# N Ag is an R-lattice on Ag. Furthermore,
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q(z1f1 + 22 fo + 23 f3) = danr(z1fi + z2fo + 23 f3),
where f1, fa, f3 is an R-basis for L and nr = nry/k denotes the reduced
norm, is a ternary quadratic form such that A = Cy(L,q).

Proof. We follow the proof of Prop. 3.2 in [1]. Every R-lattice in A is free,
since R is a principal ideal domain. Let A = R + Re; + Res + Res. Then
A# = Rfo+ Rf1 + Rfs + Rfs, where fo, fi, fo, f3 is the basis for A over K
dual to 1, e1, ez, e3 with respect to the reduced trace form. Since tr(f;) =0,
for i =1,2,3, we get Ag = Kf1 + Kfo + K f3. Thus

L=AyNA#* =Rfi + Rfo+ Rf3
and

nr(rifi +rofo +13f3) =

nr(f1)rf +nr(f2)ry + nr(fa)ry — tr(fifa)rire — tr(faf1)rar — tr(fafs)rars.
One can easily check that

fifj = tr(fififo) + tr(fifaf3)ex, (2.3)

ex = tr(fifafs) " (fif; — tr(fififo)), (2.4)

where (i, j, k) is an even permutation of (1,2, 3).

We know that the element d = tr((eje2—e2eq)e3) generates the ideal d(A),
where z — Z is the standard anti-involution on A (see [1] Lemma(1.1)).
Using (2.4), we get d = —tr(f1faf3)”t. Let dy = tr(fifofs)~! and denote
by N(A#) the ideal generated by all norms nr()), where A\ € A#. Then
N(A#)d(A) C R (see [1], p. 21) , and N(A#)~!A#A# is an R-order (see
[11], Tum. 6). Since d(A)A¥ A# C N(A#)~'A#A#, the products dy fif; are
integral over R. Using this fact and (2.3), we get, datr(fifjfo) € R. Hence

A = R+ Rdafifa+ Rdp f3f1 + Rda fafs.
Observe that all products dy f; f;, where 4,5 € {0,1,2,3}, are in A. This
follows from the equalities

fg = fo — nr(fo), fi2 = —nr(f;) for 1 =1,2,3
and

3
fifi = Ztr(fifjfn)en with ey = 1.
n=0

Let E; = dafjfx, where (4,4,k) is an even permutation of (1,2,3). Let
E; = fjfy- Then 1,E;, Ey,E3 is a basis for the even Clifford algebra
Co(L,danr). It is now easy to check that E; — —Ej; is an isomorphism. [
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Let (L,q) and (L', ¢') be two quadratic R-lattices. They are similar, which
we denote by (L,q) ~ (L',q'), if and only if there is an R-linear mapping
¢:L— L' o(L) = L' and an element ¢ € R* such that ¢'(p(z)) = cq(x) for
all z € L. Prop. 2.2 and straightforward calculations will give the following
proposition:

2.5. Proposition. There is a one-to-one correspondence between similarity
classes of quadratic R-lattices (L,q), where q is a ternary non-degenerate
form, and isomorphism classes of quaternion orders over R.

Let L = Re; + Rey + Rez and let ¢ be a quadratic form defined on
L. Define f by f(z1,22,23) = > a;jzix; = q(z1e1 + zoez + z3e3) and let
A = Co(L#,coq). Let o : L — L be R-linear, o(L) = L and ¢(o(l)) = cq()
for some ¢ € R* and all [ € L. Denote by A the matrix representing o
in the basis e, ez, e3. We have A'M,A = cM,, so (det(4))? = ¢3, which
implies that ¢ = & for some é € R*. We can now define 0z : L — L,
where oz(e;) = ¢ 'o(e;), € is 1 if det(4) > 0 and —1 otherwise. Let A
be the matrix for oz. We have os(L) = L, det(A) = 1 and ¢(oz(1)) = ¢(I)
for all [ € L. Using this, we find that |Aut(A)| = |Aut™(f)|- Also note
that for f; in the genus of f, the determinants of My, and M; are equal up
to multiplication by a unit in R. Moreover, {2y, and ; are defined up to
multiplication by a unit, so ¢f; can be chosen equal to cy.

2.6. Lemma. Let (Li,q1) = (L,q),... , (L, q) represent all classes in the
genus of (L,q). Then the orders Ay = A, ..., A, constructed as in Prop.
2.1, represent all the classes in the genus of A.

Proof. Since (L1,q1) = (L,q), ..., (L, q;) represent all classes in the genus
of (L,q), we know that (Lf&,coql), ... ,(Lf ,coqt) will represent all classes
in the genus of (L#,cgq). Assume that A’ and A = Co(L#,cyq) are in the
same genus. Then d(A) = d(A’) and we may choose dy = djs. Using Prop.
2.2, we have A’ = Cy(L',q') and A = Cy(L",q"), where ¢' = dyrnr gk and
q" = danry k. Let My and My be matrices corresponding to the lattices
(L',q') and (L",q") respectively. We find that the determinants det(My)
and det(My») can only differ by the square of a unit in R*. This implies
that (L,¢') and (L”,¢") are in the same genus, so A’ is isomorphic to one
of the orders A;.

O

Let A be an R-order in the quaternion algebra A over K and S an R-order
in a separable quadratic K-algebra B. An R-embedding ¢ : S — A is called
optimal if A/p(S) is R-projective.

Let So = R[\/—csN]. Then the integral representations of N by f, where
N > 0 and f is as in Prop. 2.1, are in one-to-one correspondence with all
embeddings Sy — A. Notice that each embedding can be extended to an
optimal embedding of an R-order S such that So C § C K(y/—cyN). We
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have r;(N) = ) ge(S,A), where e(S,A) denotes the embedding number of
S into A, that is, the number of optimal embeddings S — A.

A* acts on the set of embeddings ¢ : S — A by inner automorphisms,
that is, for a € A*, (a0 ¢)(s) = ap(s)at, s € S. The isotropy group for ¢
consists of all elements a in A* such that a o ¢ = ¢, that is, those elements
a € A which commute with each element in ¢(S) i.e. the isotropy group is
Kp(S) N A*. Since ¢ is an optimal embedding K¢(S) N A* = S§* and the
number of elements in each orbit of A* is [A* : S*]. Let ep~(S,A) denote
the number of A*-orbits on the set of embeddings of S in A. We know that
[A* : S*] < oo since [A* : R*] < oo, see |9], Satz 2. Thus, we have the
equality

e(S,A) =[A* : S*]ea~(S,A) = [A*/R* : §*/R*]ep~ (S, A) (2.7)
Using (2.7) and the expression of 7y, by e(S, A;), we get

Z |A7;ﬁ+ ZZ |A = (2.8)

|A7/R"|
H(A)ea= (S, As),
Z; 5% Re [Aut(Ay) [H(Ag) T A0)ens (5 A)
where H(A) denotes the order of the group H(A), consisting of the locally-
free two-sided A-ideals modulo the principal two-sided A-ideals. We will
now see that the first factor in this expression does not depend on 1.

2.9. Proposition. |A}/R*|/H(A;)|Aut(A;)| is the same for all 3.

Proof. We follow the proof of Prop. 3.5 in [4]. Let Aut(A) = {0 = (op)y:
op(z) = pzay’, a = (ap)y € J(A) and op(Ap) = Ay}, where p € SpecR,
p #0, and J(A) is the idele group of A. Denote o = [a] Then [o] = [A] if
and only if ap_lﬂp € IA(;‘ ([o =[] & ap ﬁpx = Ty ,Bp, where © € Ap
ay '8, commutes with all elements of A, < ay 6, € K;‘) Let Aut*(A) be
the subgroup of Aut(A) consisting of o = [(ayp)p] such that oy € A*. There
is a surjective group homomorphism ¢ : Aut(A)/Aut*(A) — H(A) such that
o = [a] is mapped onto the class of Aa. The kernel of this homomorphism
will be

Aut*(A)Aut(A)  Aut(A)
Aut<(A) Aut*(A)’
where Aut(A) is the automorphism group of A and Aut*(A) is the subgroup
induced by the elements of A*. Hence we get

|Aut(A)/ Aut* (A)| = |Aut(A)/Aut* (A)|H(A).
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Every automorphism of A can be extended to an automorphism of A, so we
know that this is an inner automorphism (by the Skolem-Noether theorem)
given by an element o € A* and hence Aut*(A) = A*/R*. We also notice
that |Aut(A;)/Aut*(A;)| remains the same for all orders A; in the genus of
A. This observation concludes the proof. O

We also need the following proposition from [4], p. 204.

2.10. Proposition. Let Ay = A, ..., A; represent all the isomorphism classes
in the genus of A. If S is a mazimal commutative suborder of A, then

ZH iear (S, As) = h(S)ey(a) (S, A),

where H(A;) is the two sided class number of A;, h(S) is the locally free
class number of S and ey(a) (S, A) =[], e(Sp, Ap), p € Spec(R), p # (0).

Interchanging the summation order in (2.8) and applying Prop. 2.9 and
2.10, we get

2.11. Theorem. Let f be a totally positive definite ternary quadratic form
and A = Co(L#,coq) the quaternion order corresponding to f according to
Prop. 2.1. Let fi = f,..., fi represent the classes in the genus of f. Then

t
r (N
27 S, A
Z Aut+ Z |S*/R* eU(A ( )
where 0 = %, the sum 1is taken over all R-orders S such that

R[\/—c¢yN| C § C K(y/—c¢N) and S is a mazimal commutative suborder
of A.

We make the following observation.

2.12. Lemma. Let f be a totally positive definite ternary quadratic form
and let A be the quaternion order constructed as in Prop. 2.1. The primitive
solutions correspond to optimal embeddings of S = R[\/—csN| in A.

Proof. Let A= R+ RE; + REy + RFE3. We have an embedding ¢ : § — A,
where ¢(y/—cyN) = A, A2 = —¢yN and ¢(S) = R+ RX. Since R+ R\ C A
and R is PID, there exists a basis, ag, a1, as, a3, for A such that A = Rag +
Ray + Ras + Ras and ¢(S) = Rdpag + Rdyai, where dy,d; € R and dy|d;.
Then

A/o(S) = R/(do) ® R/(d1) ® R?
so A/y(S) is R-projective if and only if dy,d; € R*. Let f(ry,re,73) = N
be a primitive solution, that is, GCD(r1,r2,73) = 1. Using Prop. 2.1, we
get A = rg + r1E1 4+ r9FEs + r3FE3 such that A2 = —c;N. We know that
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1 = rjdoag + ridia; and XA = r{doag + r/dia;. Then dy|1, since dy|d, so
do € R*. We also know that

R
o To | _ .t m "1 *
oo T rory —rory € R
1 1

We observe that Ar{, — ryj = (r(r{ — r{r1)diai. Then d;|r{ and d;|r{, since

GCD(r1,r9,73) = 1, so di divides the determinant and we find that d; €
R*. Hence the embedding of S in A is optimal. Now we assume that
f(r1,re,r3) = N is not primitive. Let d = GCD(r1,72,73). Then we know
that d|r;, 1 = 0,1,2,3, where r; denote the coefficients of A € A. But then
©(S) =R+ RANC R+ R%, that is, ¢(S) is not a maximal commutative
subring of A. Hence A/p(S) is not projective. O

Denote by r?c (N) the number of primitive solutions to f(z1,z2,z3) = N.
Using Lemma, 2.12, we have a Corollary, which gives us a formula for the
number of primitive representations of N by f when ¢ = 1.

2.13. Corollary. With the same notations as in Prop. 2.11,

r0 n(V 1
Z \Aut"' =0A |S*/R*|h‘(5)eU(A)(S7 A)’

where S = R[\/—Cf .

3. STABILITY OF THE EMBEDDING NUMBERS

We will now obtain a result concerning the stability of the embedding
numbers in a special case.

3.1. Lemma. Let K = Q(v/d), where d € Z, d > 0 and d is square-free.
Denote by R the integers in K. Let S = R[\/—a|, where « € R, « ¢ R* and
a>0. Then S* = R*.

Proof. Let K' = K(v/—a) and denote by R' the integers in K'. Then
S C R is a suborder. By Thm. 12.12 in [13], rank(S*) = rank(R'*) and
|R'™*/8*| < oo. Thus |S*/R*| < oo, since |R"*/R*| < oo. Furthermore,
S* is a fintely generated Z-module, so S* = T @ ZF, for some k, where T
denotes the torsion elements in §*. Using Dirichlet’s unit theorem, we have
R = Wg xZ and R* = WxxZ, where Wg and Wi, denote the sets of roots
of unity in R and in R* respectively. R* C S* C R'™, s0 §* =2 Wg x Z. We
will now consider possible roots of unity in S. We know that Wg = {1, —1}.
Let ¢, denote an n:th root of unity. Then the minimum polynomial m,, is
of degree ¢(n), where ¢ is the Euler function. In our case, ¢(n)|4, so the
only possibilities are n = 2,3,4,5,8,10,12. It is then easy to check that
Wg = Wg. Now we let € denote the fundamental unit in R and let ¢’ denote
the fundamental unit in S. We then have that (¢/)¥ = & for some k and
Nrgik(e') € R*. Since ¢ € R and § = R+ Ry/—a, we get ¢’ € R, so
g =e. O
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Let A be an R-order in a quaternion algebra A. We use Prop. 2.2 to
find f(z1,72,23,) = X; ; aijziz; such that A = Co(f). Recall the following
well-known facts: The R-order A is

(1) hereditary (i.e. every ideal of A is a projective A-module) if and only
if d(A) is square-free (see [2], Prop. 1.2).

(i) Gorenstein (i.e. A¥ is projective as a left A-module) if and only if
the greatest common divisor for the a;;’s is equal to 1 (see [1], Thm. 3.4).

(i77) a Bass order (i.e. each R-order A’ such that A C A’ C A is Goren-
stein) if and only if each completion f\p is a Bass order for every prime p in
R (see |7], p. 778). We also recall that A is a Bass order if d(A) is cube-free
(see [2], Cor. 1.6).

For a quaternion order A there is a Gorenstein order G(A) containing A
such that A = R+ b(A)G(A), where b(A) is an R-ideal. G(A) and b(A) are
unique (see [2], Prop. 1.4).

Let f be such that G(Af) is a Bass order, where Ay is the order corre-
sponding to f according to Prop. 2.1. We then have the following general-
ization of Thm. 3.4 in [6]:

3.2. Theorem. Let K = @(\/E), where d is a positive square-free rational
integer. Denote by R the ring of integers in K. Let d # 1 (mod 8) be such
that R is a principal ideal domain. Let

; m = v(N)R(S),

as in Cor. 2.13, S = R[\/—cyN] and

R
") = a7 L)

Then there is a positive rational integer My such that v has the following
property: Let cyN = N(?Nl and cgN' = N(’)QN{ be two totally positive non-
units in R, where Ny, N1, Nj, N{ € R and N1, N are squarefree, such that
for all p|d(Ay) we have

vp(No) = vp(Ng) or min(vy(No), vp(Ng)) = vp(Mo) (3.3)
Nlp_vp(Nl) = N{p_UP(Ni) (mod pZUp(Q)'i'l) (34)
Ny = N (mod 16) (3.5)

where vy, denotes the p-adic valuation. Then v(N) = y(N') and furthermore,
one may choose My to be the positive generator of the ideal (dAf) NZ, where
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Proof. Let L = K(y/—cfN) = K(v/—Ni) and L' = K(y/—Nj). If ¢4N ¢
R*, then |S*/R*| = 1 and the factor

|A*/R"|
|Aut(A)[H (A)|S*/R|

is independent of V.
Denote by A(L/K) the discriminant of the extension K C L. According
to Prop. 2.4 and 2.5 in [6], we have e(Sp, Ap) = e(S}, Ap) if

A(Lp/Ky) = A(EL/Ky) (mod p¥elh)) (3.6)

and the conductors f, and ﬂ, of S'p and .SA"', with respect to the maximal orders
in L, and IA/; satisfy

fo = fj (mod pi®), (3.7)

where §(Ly, Lj)) = 2vp(2) + 14 min(vy (A (Ly/Kp)), vp(A(L}/Ky))) and i(p)
is a given rational non-negative integer such that i(p) < v,(d(As)). Hence
the factor

H e(Sp, Ap)

p
depends on the conductor f of S with respect to the maximal order in L and
the relative discriminant A(L/K). Let R’ denote the integers in L. R is a
PID, so R = R+ Rw, for some w € R'. For a suborder O C R’, we have
O = R + Raw for some a € R. Then f = (a). Using the relation D(O) =
f2A(L/K), where D(O) denotes the discriminant of the order O, and the
fact that {1,./—Ni} is a basis for L over K, we find that A(L/K) = (¢2Ny)
and f = (2Np) for some ¢ € R such that ¢/2. We use Thm. 1 in [15] and
the classification of possible cases given in [10] in Tables A-C to see, that
the factor ¢ of the relative discriminant will be the same for Ny and Nj if
N; = N{ (mod 16).

Assume that the prime p does not divide d(Ay) and let A denote a maximal
order in A such that Ay C A. Then p does not divide d(A), so A, = AQK, is
split (see e.g. Cor. 5.3 in [16]). Since p does not divide d(Ay), we also know
that A fp 18 a maximal order and thereby hereditary (d(A fp) is square-free).
According to Prop. 3.1.(b) in [5], we have e(Sp,Afp) =1.

Let plda,. Then (3.3), (3.4) and (3.5) will ensure that the conditions
(3.6) and (3.7) are satisfied. Hence y(N) = v(N'). The choice of My as the

positive generator of d(Ay) NZ is possible since i(p) < vy(da,)-
U

3.8. Corollary. The notations are as in Thm. 3.2. There exist positive
rational integers My and My such that the value of y(N) = ~v(Ny, N1) is
determined by the residues of No modulo My and N1 modulo M.
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Proof. Let d; denote the product of all different primes p in R such that
p divides da, but p does not divide 2. It follows from Thm. 3.2 that it
is possible to choose My and M; as the positive generators of the ideals
d(Af) NZ and (4d1)* N Z respectively. O

4. THE SUM OF THREE SQUARES

Let K = Q(V5), R = Z[*Y5] and let f : R3 — R, f(1,2,73) =
72+ 23+ 3. Denote by A the quaternion order Co(L#, coq) corresponding
to f according to Thm. 2.1 and denote by A the quaternion algebra K®gA .
We have ¢; = 1 and Ay = R+ RE| + RE; + RE3, where EZ2 = EJ2 =-1
and E;E; = —E;E; = —Ey, where 4, j,k is an even permutation of 1,2, 3.
The type number of Cy(f) = Ay is 1, since the type number of f is 1 (see
[8], Satz 24). We know that Ay is a Bass order since d(Af) = 4 is cube-free.

We recall that for an R-order A in a quaternion algebra over K the Eichler
symbol, denoted by ep(A), is defined according to the following:

—1 if Ay/J(Ay) is a quadratic field extension of Ry, /m,
ep(A) = 0 if Ay/J(Ay) = Ry/m,
1 if Ay/J(A,) = Ry/m x R, /m,

where J(A) denotes the Jacobson radical of A and m denotes the maximal
ideal in }A%,,. Let g be a ternary quadratic form such that the even Clifford
algebra Cy(g) is isomorphic to A. If Ap is not a maximal order in a matrix
algebra over K, then according to [3], (2.6), |ey(A)| + 1 is equal to the rank
of g modulo p. Moreover, if e,(A) = 1, then g modulo p is a product of two
different linear factors and if e,(A) = —1, then g is irreducible modulo p.

It was proved in [12] that every totally positive number N in R = Z[1+2_\/5]
can be represented as a sum of three squares. We will now give a proof of
this, based on algebraic methods. Moreover, we will prove that there is a
primitive representation for every totally positive number.

4.1. Theorem. Every totally positive number N in R = Z[H'Q—‘/g] can be

represented by f : R® — R, where

f(z1,z0,23) = 2% + 22 + 2.
Moreover, there is always (z1,T2,23) € R® such that GCD(z1,z2,73) = 1
and f($1,$27$3) =N.

Proof. Let A denote the order corresponding to f, described above. Let
N € R be totally positive with N = NlNg, where Ny, N1 € R and N is
square-free. Let L = K(v/—Ni) and let w = % It can then be checked
that the discriminant A(L/K) = —N; if -N; =1, w+ 1 or (w+1)? and
A(L/K) = —4N; otherwise. A is a totally definite quaternion algebra so it
ramifies at both infinte primes. We know that A ramifies at an even number
of primes and that the finite primes where A ramifies divide the reduced
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discriminant of the maximal orders (see [16], Chap. II, Cor. 5.3 and Chap.
ITT, Thm. 3.1). Since dyn = 4, we then know that A only ramifies at the
infinite primes. Furthermore, Ay is not maximal, but pr is maximal for all
primes p # 2 in R.

Using Lemma 2.12 and Cor. 2.13, all we need to show is that for a totally
positive integer N € R it is possible to embedd S = R[v/—N] as a maximal
commutative suborder of A, that is, egr(4) (S, A) # 0. We start by observing
that by Thm. 3.2. in [16], we have e(Sp, Ay) = 1, for all p # 2 and all orders
S in a commutative algebra of degree two over K, since f\p is maximal.

The rank of f modulo 2 is 1, so ea(A) = 0. If 2 divides A(L/K), then
e(S2,A2) # 0, by 3.14 in [5] if S, is maximal in Ly, since L is ramified over
K, and by 3.17 in [5] if it is not maximal. If 2 does not divide A(L/K),
then the maximal order of L will be R['H'Qﬂ], where a =1 for —N; =1,
a=w+1for —N; = (w+1)? and @ = (w +1)? for —N; = w + 1. We have
S = R[\/—N]. Hence, S5 will not be maximal in Ly, so by 3.17 in [5], we
have e(S2, Ay) # 0. Hence ey (S, A) # 0. O

Finally we shall find a formula for the number of primitive representations
of N by f. We start by observing that if N € R* and N > 0, then N is a
square. It is then easy to check that r?c(N ) = 6.

Assume that N ¢ R*. We have |Aut™(f)| = 24. Using Cor. 3.8, we may
choose My = 4 and M; = 16. We also observe that for N1 not divisible by 2,
M; = 8 suffices (see Tables A-C in [10], Thm. 1 in [15] and Thm. 3.2). We
choose a suitable limited set of numbers N to represent all congruence classes
modulo My and M;. We compute the number of primitive representations of
N by f, by exhaustive search, for this finite set. We then calculate the class
numbers h(R[v/—N]). Let S = R[v/—N] and let Sy denote the maximal
order in K(v/—N). We use the following relation

where f is the conductor for S with respect to Sy and p denotes prime ideals
in R (see [13], Thm. 12.12 and [14], 3.4). PARI-GP was used for these
computations. From our results, we deduce that the only possible values for
7(N) are §,1 and 3. The values of r$(N) for N = N§N; will be
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((32h(S) if Ny #0 (2) and Ny =3,7,3 + 3w,
6+ w,6+ dw,
7T+ 7w (8),

24h(S) if No =0 (2)
or Ng#0 (2) and Ny =2+ w,2 + 5w,

3+ 4w,3 + Tw,
7+ 3w, 7+ 4w (8),

\ 12h(S) otherwise,
4V5

where w = )

—_

w

10.

11.

12.

13.
14.

15.

16.
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