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1 Introduction

A classical notion in the theory of induced representations is that of a Frobe-
nius extension. Let S — A be a homomorphism of unital associative rings,
and call this a ring ertension A/S. A Frobenius extension of rings [12] re-
quires that A be isomorphic to its dual as S-A-bimodules,

sAa = sHomg(As,Ss)a, and Ag be a finitely generated projective right
S-module.! The bimodules sA4, 4Ag, and ¢Sg are the natural ones, ex-
cept that ¢Sg may be replaced by a left twisted bimodule gSs, where
is a ring automorphism on S and the left module structure is indicated
by s1 - sy := ((s1)s2. This replacement by 3Sg defines more generally a
B-Frobenius extension [18]. A theorem in [20] characterizes a (-Frobenius
extension A/S by the existence of a Frobenius (bimodule) homomorphism
E: sAs — Ss and a (finite) dual base z;,y; € A for the ring extension such
that 3 871 (E(az;))y; = a = 3, 2;FE(y;a) for every a € A: call (E,xz;,y;)
a Frobenius system. As a corollary, a S-Frobenius extension is a separable
extension [9] if and only if (iff) there is a d € A such that >; x;dy; = 1 and
B(s)d = ds for every s € S [11].

For example, a Hopf subalgebra S in a finite dimensional Hopf algebra A
over a field is a free B-Frobenius extension, where (3 is a relative version of
the Nakayama automorphism of A and S defined below. A Frobenius system
is given in [8]. Ag and gA are free by a theorem in [19].

As another example, a subfactor of type I/; and finite Jones index is a sep-
arable Frobenius extension S C A with special Frobenius system (FE, x;, ;)
such that E(1) = 1 and X; z;y; = [A : 5], the trace of the Hattori-Stalling
rank of Ag or sA [10]. By an endomorphism ring theorem in [10], the ring

L This is equivalent to assuming that s A is finite projective and 4 Ag = 4Homg(sA,sS)s.



& := Ends(Ag) is a separable Frobenius extensions of A with the same prop-
erties and index: [A; : A] = [A : S]. Note that F is an idempotent in £.
Iterating the (€, E) construction for £/A, ..., builds a tower of separable
Frobenius extensions with a family of idempotents satisfying the braid-like
relations of Jones [10].

As a third example, let A/S be an algebra, i.e., S is a commutative ring &
and k£ — A has image in the center of A. Thus Frobenius extension reduces
to a Frobenius algebra as defined in [6]. If (¢, ;,y;) is a Frobenius system?
an algebra automorphism 7 of A, called the Nakayama automorphism, is
defined by n(a) = Y; #(z;a)y; for all @ € A. Making use of 7, [2] has shown
that the Frobenius (or Casimir) element R = Y, 2; ® y; in A ® A satisfies
the Yang—Baxter Equation given by R12R23R12 = R23R12R23 in A & A X A.
Moreover, R is invertible in A ® A iff A is a central separable k-algebra [2].
If A/k is a commutative Frobenius algebra, [1] shows how to interpret this
precisely as a two-dimensional topological quantum field theory, based on
the coalgebra A with comultiplication given by a — Ra = aR (the equality
follows from the equations above for a dual base) and counit by ¢.

Now it has been known since [14] and [21] that a finite rank Hopf algebra
over a p.i.d. and more generally a finite projective Hopf algebra H over
a commutative ring £ of trivial Picard group, respectively, is a Frobenius
algebra. With f a right norm in H* and ¢ a right norm in H such that ft
equals the counit €, a Frobenius system was given recently by (f, S™'(t2), 1)
in [3] and in [8] for k£ a field (the notation we use is borrowed from [8]). [3]
proves that the Nakayama automorphism 7 is the square of the antipode S, if
H is unimodular. If £ is a field, [8] has an improved formula for 7. [3] shows
that n has order at most 2 if H and H* are unimodular, while [8] shows that
S and n have order dividing 4 dim H and 2dim H respectively, if £ is a field.

The purpose in this paper is to apply Frobenius systems to Hopf-Frobenius
algebras, which is a notion implicit in [21] that is more general than a finite
projective Hopf algebra over a ring with trivial Picard group. We will prove
that if H is a Hopf-Frobenius algebra, then H* and the Drinfel’d quantum
double D(H) are Hopf-Frobenius algebras as well. We will derive two of Rad-
ford’s formulas in [23, 25], including the formula for S*, for Hopf-Frobenius
algebras. Then we will show that D(H) is a unimodular, symmetric alge-
bra generalizing [24, 3]. In the last section, we prove that a group-like in a
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general finite projective Hopf algebra has finite order, from which it follows
from the formula for S* that S and 7 have finite order.

2 Augmented Frobenius algebras

In this section k denotes a commutative ring. Given an associative, unital
k-algebra A, A* denotes the dual module Homy (A, k), which is an A-A bi-
module as follows: given f € A* and a € A, af is defined by (af)(b) = f(ba)
for every b € A, while fa is defined by (fa)(b) = f(ab).

We first consider some preliminaries on Frobenius algebras over commuta-
tive rings. A Frobenius algebra A/k is a k-algebra where the natural module
Ay is finite projective, and

Ay =AY (1)

Suppose f; € A*, x; € A form a finite projective base, or dual base, of A over
k: i.e., for every a € A, ¥, x;fi(a) = a. Then there are y; € A and a cyclic
generator ¢ € A* such that the A-module isomorphism is given by a — ¢a,

and
Z$i¢(yia) =a= Z o(ax;)y;, (2)

for all @ € A. It follows that ¢ is nondegenerate in the following sense: a
linear functional ¢ on an algebra A is nondegenerate if a,b € A such that
a¢ = bo or ¢pa = ¢b implies a = b.

We refer to ¢ as a Frobenius homomorphism, (z;,v;) as a dual base, and
(¢, z;,y;) as a Frobenius system.

It is equivalent to define a k-algebra A Frobenius if Ay is finite projective
and 4A = 4A*. In fact, with ¢ defined above, the mapping a — a¢ is such
an isomorphism, by an application of Equations 2.

Note that the bilinear form on A defined by (a,b) := ¢(ab) is an inner
product in the sense of [16], which is associative: (ab,c) = (a,bc) for every
a,b,c € A.

The Frobenius homomorphism is unique up to an invertible element in
A. If ¢ and v are Frobenius homomorphisms for A, then v = d¢ for some
d € A. Similarly, ¢ = d'y for some d' € A, from which it follows that dd’ = 1.
The element d is referred to as the (left) derivative of ¢ with respect to ¢
following [27]. Right derivatives in the group of units A° of A are similarly
defined.



If (¢, z;, y;) is a Frobenius system for A, then e := Y, z;®y; is an invariant
element in the tensor-square A®y, A, called the Frobenius element, depending
only on ¢ and not on the dual base. We consider the natural A-bimodule
A® A given by a(b®c) =ab® c and (a ® b)c := a ® be for every a,b,c € A.
By a computation involving Equations 2, e is a Casimir element satisfying
ae = eaq for every a € A, whence Y, x;y; is in the center of A. It follows that
A is k-separable if and only if there is a a € A such that 3, z;ay; = 1. 3

For each d € A°, we easily check that (¢d,z;,d 'y;) and (de, z;d ', y;)
are the other Frobenius systems in a one-to-one correspondence. It follows
that a Frobenius element is also unique, up to a unit in A® A (either 1® d*!
or d*' ®1).

A symmetric algebrais a Frobenius algebra A/k which satisfies the stronger
condition:

AAa = A(A") 4 (3)

Choosing an isomorphism &, the linear functional ¢ := ®(1) is a Frobenius
homomorphism satisfying ¢(ab) = ¢(ba) for every a,b € A: i.e., ¢ is an trace
on A. An algebra A over a field has a symmetric associative inner product
iff A is a symmetric algebra.

A k-algebra A with ¢ € A* and z;,y; € A satisfying either 3, z;¢(y;a) = a
forevery a € Aor Y, ¢(ax;)y; = a for every a € A is automatically Frobenius.
As a corollary, one of the dual base equations implies the other. For if

? 1 (xi0)y; = Ida, then A is explicitly finite projective over k, and it follows
that A* is finite projective too. The homomorphism 44 — 4A* defined
by a — a¢ for all a € A is surjective, since given f € A* we note that
f = (i f(yi)xi)p. Since A and A* have the same P-rank, for each prime
ideal P in k, the epimorphism a — a¢ is bijective [26], whence 4A = 4A*.
Starting with the other equation in the hypothesis, we similarly prove that
a — ¢a is an isomorphism Ay = A%.

The Nakayama automorphism of a Frobenius algebra A is an algebra
automorphism « : A — A defined by

¢afa) = ag (4)

for every a € A. In terms of the associative inner product, (x,a) = (a(a), z)
for every a,z € A. « is an inner automorphism iff A is a symmetric algebra.

3¢ is the transpose of the element @) in [3].



The Nakayama automorphism 7 of another Frobenius homomorphism ¢ =
od, where d € A°, is given by

n(z) =3 ¢(dziz)d ™'y = 3 d7 $la(z)dz:)y; = d” a(z)d, (5)

so that an™'(z) = drxd~'. Thus the Nakayama automorphism is unique up
to an inner automorphism. A Frobenius algebra A is a symmetric algebra if
and only if its Nakayama automorphism is inner.

The left and right derivatives of a pair of Frobenius homomorphisms differ
by an application of the Nakayama automorphism.

A k-algebra A is said to be an augmented algebra if there is an algebra
homomorphism € : A — k, called an augmentation. An element ¢t € A
satisfying ta = €(a)t, Va € A, is called a right integral of A. It is clear that
the set of right integrals, denoted by [}, is a two-sided ideal of A, since for
each a € A, the element at is also a right integral. Similarly for the space of
left integrals, denoted by ff;.

Now suppose that A is a Frobenius algebra with augmentation e. We
claim that a nontrivial right integral exists in A. Since A* = A as right
A-modules, an element n € A exists such that ¢n = € where ¢ is a Frobenius
homomorphism. Call n the right norm in A with respect to ¢. Given a € A,
we compute:

¢na = (¢n)a = ea = €(a)e = ¢ne(a).
By nondegeneracy of ¢, n satisfies na = ne(a) for every a € A.
Proposition 2.1 If A is an augmented Frobenius algebra, then the set [

of right integrals is a two-sided ideal which is free cyclic k-summand of A
generated by a right norm.

Proof. Let ¢ € A* be a Frobenius homomorphism, and n € A satisfy ¢n = ¢,
the augmentation. Given a right integral ¢ # 0, we note that

¢t = p(t)e = p(t)pn = ¢no(t),

whence
t = o(t)n. (6)
Then (n) := {pn| p € k} coincides with the set of all right integrals.



Given A € k such that A\n = 0, it follows that
d(n)A=e(H)A=X=0,

whence (n) is a free k-module. Moreover, (n) is a direct k-summand in A
since a — ¢(a)n defines a k-linear projection of A onto (n). O

In particular, [} is free of rank 1 in an augmented Frobenius algebra A.
The right norm in A is unique up to a unit in k. For, in the notation of the
proof above, if ¢ is another right norm in A, then there exist \;, Ao € k such
that t = A\in and n = Ayt. Then A Ain = n, so that A\ Ay = 1; by freeness.
Note that right norms are precisely the right integrals that generate [}: the
two notions only coincide if £ is a field.

Similarly the space ff; of left integrals is a rank one free summand in A,
generated by any left norm. If [} = ff;, A is said to be unimodular. If the
spaces of right and left integrals do not coincide we define an augmentation
on A which measures the deviation from unimodularity. In the notation of
the proposition and its proof, for every a € A, the element an is a right
integral since the right norm n is. From Equation 6 one concludes that
an = ¢(an)n = (ng)(a)n. The function

m:=n¢:A—k (7)

is called the right modular function, an augmentation since Va,b € A, we
have (ab)n = m(ab)n = a(bn) = m(a)m(b)n and n freely generates. If n
denotes the Nakayama automorphism of ¢, then A is unimodular if and only
if m = € = ¢n if and only if n(n) = n.

Proposition 2.2 Suppose A is an augmented Frobenius algebra with aug-
mentation €, Frobenius homomorphism ¢, and Nakayama automorphism 7.
Then A is unimodular if and only if en = €.

Proof. Let n denote the right norm such that ¢n =e.
(=) If A is unimodular, the right modular function m = €. Then Va € A

¢(a) = m(a) = (n¢)(a) = ¢(an) = $(nn~"(a)) = €on~*(a).

Equivalently, € = en.
(<) If en*! = ¢, then



whence m = € and A is unimodular. O

We will use several general principles repeatedly in the next section. First,
if a is an k-algebra automorphism of the augmented Frobenius algebra (A, €)
(satisfying e-invariance: € o & = €), then « send integrals to integrals and
norms to norms, respecting chirality. If 3 is an anti-automorphism of (A, ¢),
it sends left norms to right norms, etc. Secondly, with no assumption of
an augmentation, a Frobenius system (¢, z;,y;) of A is transformed by an
automorphism « into a Frobenius system (¢ o o', a(z;), a(y;)), while an
anti-automorphism 3 : A — A transforms it into the Frobenius system (¢ o
87, B(y:), B(x;)). Third, if A and B are Frobenius k-algebras with Frobenius
homomorphism ¢4 and ¢p, then A® B is a Frobenius algebra with Frobenius
homomorphism ¢4 ® pp: AQ B — k.

In closing this section, we note that Frobenius algebras over commutative
rings have been studied in several papers including [6, 2, 11]. Augmented
algebras have been treated in [21, 7, 11].

3 Hopf-Frobenius algebras

Let k£ denote a commutative ring. We review the basics of a Hopf algebra H
which is finite projective over k [21, 22]. A bialgebra H is an algebra and coal-
gebra where the comultiplication and the counit are algebra homomorphisms.
We use the reduced Sweedler notation A(a) := Y a; @ as for the values of the
comultiplication homomorphism H — H ®; H. The counit is the k-algebra
homomorphism € : H — k and satisfies Y, €(a;1)as = 3" a1€(az) = a for every
a€ H.

A Hopf algebra H is a bialgebra with antipode. The antipode S : H - H
is an anti-homomorphism of algebras and coalgebras satisfying >~ S(a1)as =
€(a)l =Y a15(ay) for every a € H.

A group-like element in H is defined to be a g € H such that A(g) = g®g
and €(g) = 1. Tt follows that g € H° and S(g) = ¢~

Finite projective Hopf algebras enjoy the duality properties of finite di-
mensional Hopf algebras. H* is a Hopf algebra with convolution prod-
uct (fg)(z) = X f(z1)g9(z2). The counit is given by f — f(1). The
unit of H* is the counit of H. The comultiplication on H* is given by
Y f1® fo(a®b) = f(ab) for every f € H*, a,b € H. The antipode is the
dual of S, a mapping of H* into H*, denoted again by S when the context



is clear. Note that an augmentation f in H* is a group-like element in H*,
and vice versa, with inverse given by Sf = fo S.

As Hopf algebras, H = H**, the isomorphism being given by z — ev,,
the evaluation map at x: we fix this isomorphism as an identification of H
with H**. The usual left and right action of an algebra on its dual specialize
to the left action of H* on H** = H given by ¢ — a := Y a1g(as), and the
right action given by a — g := Y g(a1)as.

Definition 3.1 A k-algebra H is Hopf-Frobenius if H is a bialgebra and a
Frobenius algebra with Frobenius homomorphism f a right integral in H*.
Call f the Hopf-Frobenius homomorphism.

The condition that f € [7. is equivalent to

> fla)as = f(a)l (8)

for every a € H. Note that H is an augmented Frobenius algebra with
augmentation €. Let ¢t € H be a right norm such that ft = €. Note that
f(t) = 1. Fix the notation f and ¢ for a Hopf-Frobenius algebra. We show
below that a Hopf-Frobenius homomorphism is unique up an invertible scalar
in k. If H is a Hopf-Frobenius algebra and a symmetric algebra, we say that
H is a symmetric Hopf-Frobenius algebra.

It follows from [21, Theorem 2] that a Hopf-Frobenius algebra H auto-
matically has an antipode. With f its Hopf-Frobenius homomorphism and ¢
a right norm, define S: H — H by

S(a) =Y f(tia)ts. 9)

Then for every a € H

Y S(ar)as =) f(tiar)teas = f(ta)l = €(a)l.

Now in the convolution algebra structure on Endy(H), this shows S has Idg
as right inverse. Since Endy(H) is finite projective over k, it follows that Idg
is also a left inverse of S; whence S is the unique antipode.

The Pareigis Theorem [21] generalizing the Larson-Sweedler Theorem [14]
shows that a finite projective Hopf algebra H over a ground ring k£ with trivial
Picard group is a Hopf-Frobenius algebra. In detail, the theorem proves the
following in the order given. The first two items are proven without the
hypothesis on the Picard group of k. The last two items require only that
[E. be free of rank 1.



1. There is a right Hopf H-module structure on H*. Since all Hopf mod-
ules are trivial, H* = P(H*) ® H, for the coinvariants P(H*) = [f..

2. The antipode S is bijective.

3. There exists a left integral f in H* such that the mapping © : H — H*
defined by

O(z)(y) = f(yS(z)) (10)

is a right Hopf module isomorphism.
4. H is a Frobenius algebra with Frobenius homomorphism f.

It follows from 2. above that a Hopf-Frobenius algebra H possesses an
e-invariant anti-automorphism S. If f € H* is a Hopf-Frobenius homomor-
phism, then Sf is a Frobenius homomorphism and left integral in H*. It is
therefore equivalent to replace right with left in Definition 3.1.

Let m : H — k be the right modular function of H. Since m is an algebra
homomorphism, it is group-like in H*, whence m at times is called the right
distiguished group-like element in H*.

Proposition 3.1 Let H be a Hopf-Frobenius algebra with Hopf-Frobenius

homomorphism f and right normt. Then (f, S ‘ty,t1) is a Frobenius system
for H.

Proof. Applying S~! to both sides of Equation 9 yields

> S Ht) f(tia) = a, (11)

for every a € H. It follows from the finite projectivity assumption on H that
(f,S7L(t2),t1) is a Frobenius system. O

It follows from the proposition that t «— f = 1. Together with the
corollary below this implies that f is a right norm in H*, since 1 is the
counit for H*. It follows that ¢ is another Hopf-Frobenius homomorphism
for H iff g = f\ for some A € k°.

Proposition 3.2 H is a Hopf-Frobenius algebra if and only if H* is a Hopf-
Frobenius algebra.



Proof. It suffices by duality to establish the forward implication. Suppose
f is a Hopf-Frobenius homomorphism for H and ¢ a right norm. Note that

> g1(t)g2 = g(t)e and (fg)(t) = X f(t1)g(t2) = g(1) for every g € H*. Then
by Equation 9 and the argument after it,

S(g) = _(f9)(®) fo (12)

is an equation for the antipode in H*.

Then (t,S™'fo, f1) is a Frobenius system for H* by taking S~ of both
sides. Whence ¢ is a Hopf-Frobenius homomorphism for H* with right norm
f. O

It follows that H* is also an augmented Frobenius algebra. Let b € H be
the right distiguished group-like element satisfying

9f =9()f (13)

for every g € H*.
The convolution product inverse of m is m~
v € H, we claim that

L' = moS. Given a left norm

va = vm ™ *(a).

Since t is a right norm, S an anti-automorphism and e-invariant, it follows
that St is a left norm. Then we may assume v = St. Then S(at) = StSa =
m(a)St, whence vz = vmS~!(x) for every a,z € H. The claim will follow
from m o S? = m, since this implies that m o S~! = m~'. Since S? is an
e-invariant k-automorphism of H, S?t is also a right norm and differs by a
unit from ¢. It follows readily that m o S? = m.

Lemma 3.1 Given a Hopf-Frobenius algebra H with right norm f € H* and
right norm t € H such that f(t) = 1, the Nakayama automorphism, relative
to f, and its inverse are given by:

n(a) = S%*(a — m™") = (S%a) = m™, (14)

n ' (a) = S7*(a = m) = (S%a) — m.

10



Proof. Using the Frobenius system (f, S 't,;), we note that

ZS tl’l'] Z S atl .

We compute:

S*(n~(a)) = Y flat1)Sty
= Y f(ait1)astaSts
= > flait)ay

= a“—m

since a — f = f(a)l, at = m(a)t for every a € H and f(t) = 1. Whence
n'(a) = S72(a — m). Since mS~2 = m it follows that ' (a) = (S~2a) —
m.

It follows that a = (S ?na) — m, so let the convolution inverse m ' act
on both sides: (a — m™') = S 2p(a). Whence n(a) = S%*(a — m!) =
(S%a) — m™!, since m~18* =m~1. O

As a corollary, we obtain [3, Proposition 3.8]: if H is a unimodular Hopf-
Frobenius algebra, then the Nakayama automorphism is the square of the
antipode.

1

Proposition 3.3 If H is a Hopf-Frobenius algebra with Hopf-Frobenius ho-
momorphism f and right norm t, then

Ztg ® tl == Zb_ISQtl ® tg. (15)

Proof. On the one hand, we have seen that (f,S™'ts,%;) is a Frobenius
system for H. On the other hand, the equation f — z = bf(z) for every
x € H follows from Equation 13 and gives

Z S(tl)bf(tQCL) = Z S(tl)t2a1f(t3a2)
= Z a1 f(tas)
= Y aie(az) f(t) = a.

Then (f,S(t1)b,t2) is another Frobenius system for H.

11



Since (S~ !(t2),t1) and (S(¢1)b, t2) are both dual bases to f, it follows that
>SSy ®t; = Y S(t1)b ® to. Equation 15 follows from applying S ® 1 to
both sides. O

Proposition 3.1 with a = S~!t gives

S ST f(tST) = STHf(STH) =S¢
Since St is a left norm, it follows that
f(S7H) =1. (16)

Proposition 3.4 Given a Hopf-Frobenius algebra H with Hopf-Frobenius
homomorphism f, the right distinguished group-like element b is equal to the
derivative d of the left integral Frobenius homomorphism S™'f with respect

to f.

Proof. Another Frobenius system for H is given by (S™'f, Sty,1,), since S
is an anti-automorphism. Then there exists a (derivative) d € H® such that

df = S~'f. (17)

S~1f is a left norm in H* since S~! is an e-invariant anti-automorphism.
Also bf is a left integral in H* by the following argument. For any g,¢' € H*,
we have b(gg') = (bg)(bg') as b is group-like. Then for every h € H*

h(bf) = bl(b~"h)S]
= b[(b™"h)(b)/]
= h(1)(bf).

Now both S=1f(t) and bf () equal 1, since f(S™1t) = 1, f(tb) = €(b) f(t) =
1 and b is group-like. Since bf is a scalar multiple of the norm S~ f, it follows
that

S tf=bf. (18)

Finally, d = b since df = bf from Equations 17 and 18, and f is nondegener-
ate. O

We next derive a formula for the fourth power of the antipode of a Hopf-
Frobenius algebra by noting that the Nakayama automorphisms associated
with the two Frobenius homomorphisms S™!f and f differ by an inner au-
tomorphism determined by the derivative in Proposition 3.4.

12



Theorem 3.1 Given a Hopf-Frobenius algebra H with right distinguished
group-like elements m € H* and b € H, the fourth power of the antipode s
given by

Sta) =b(m ™ = a—m)b* (19)

for every a € H.

Proof. Let g := S~!f and denote the left norm St by A. Note that g(A)
1 = g(S7A) since f(t) = 1 = f(S7't). We note that (g, Ay, ST*A;) is
Frobenius system for H, since S is an anti-automorphism of H

Then the Nakayama automorphism « associated with g has inverse sat-
isfying

a

a H(a) = Aog(aS™'Ay)
whence
Sla'(a) = ZS‘lg (A1Sa)S™(Ay)
= ZS 3)S™g(A1Saz)AsSay
ZS gASag)Sal
= g(S7'A)Y_m '(Saz)Sa; = S(m — a),

since Sm~! = m. It follows that

al(a) =5%*(m—a) =m—5% (20)
ala) =m =52 =S?*m" —a). (21)

Recall from Proposition 3.4 that ¢ = bf = fn '(b), where n is the
Nakayama automorphism of f. By Equation 5 and Lemma 3.1,

m™' = S%a = afa)

= ( n(a)n(b)
= m~ (b7)b(S%(a) = mT)bm ™' ()
b~ 152( )b —m™,

since b and m are group-likes and S? leaves m and b fixed. It follows that

a=m—b"1S*a)b —m,

13



for every a € H. Equation 19 follows. O

The theorem implies [3, Corollary 3.9], which states that S* = Idy, if H
and H* are unimodular finite projective Hopf algebra over k. For localizing
with respect to any maximal ideal M, we obtain unimodular Hopf-Frobenius
algebras H ® k and its dual, since k4 has trivial Picard group. By Theo-
rem 3.1, the localized antipode satisfies (Sx4)* = Id for every maximal ideal
M in k; whence S* = Idy [26].

In closing this section, we note that relationships among the antipode, in-
tegrals, the distinguished group-likes and Nakayama automorphism for Hopf
algebras over fields were investigated in [3, 8, 23, 25].

4 The quantum double

Let k& be a commutative ring. We note that the quantum double D(H), due
to Drinfel’d [5], is definable for a finite projective Hopf algebra H over k: at
the level of coalgebras it is given by

D(H):= H**? ®; H,

where H*“P is the co-opposite of H*, the coproduct being A°P.

The multiplication on D(H) is described in two equivalent ways as follows
[17, Lemma 10.3.11]. In terms of the notation gz replacing g ® = for every
g € H*,x € H, both H and H* are subalgebras of D(H), and for each
ge H*and r € H,

xg = Z(xlgS_lxg)xQ = Zgg(S_lgl -z — g3). (22)

The algebra D(H) is a Hopf algebra with antipode S’(gx) := SzSg,

the proof proceeding as in [13]. A Hopf algebra H' is almost cocommuta-

tive, if there exists R € H' ® H', called the universal R-matriz, such that

RA(a)R™" = A°P(qa) for every a € H'. A quasi-triangular Hopf algebra H' is

almost cocommutative with universal R-matrix satisfying the two equations,

(AQIR = RisRy; (23)

By a proof like that in [13, Theorem 1X.4.4], D(H) is a quasi-triangular Hopf
algebra with universal R-matrix

R:Zei@)eiED(H)@D(H), (25)
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where (e;, €') is a finite projective base of H [5].

Theorem 4.1 If H is a Hopf-Frobenius algebra, then the quantum double
D(H) is a unimodular, symmetric Hopf-Frobenius algebra.

Proof. We first show that D(H) is a unimodular Hopf-Frobenius algebra.
Let f be a Hopf-Frobenius homomorphism with ¢ a right norm. Then 7" :=
S~1fis aleft norm in H*, and b is the left distinguished group-like element
in H satisfying Tg = g(b~1)T for every g € H*. Moreover, note that £ :=
S~1(t) be a left norm in H.

In this proof we denote elements of D(H) as tensors in H*® H. We claim
that T ® t is a left and right integral in D(H). We first show that it is a
right integral.

The transpose of Formula 15 in Proposition 3.3 is Y t; ® to = Y o ®
b=1S2%t,. Applying A ® S7! to both sides yields >t @ to, ® S7H3 =Y 1, ®
t3 ® (St1)b. It follows easily that

Z Siltgbiltl ® tg — ]. ® t (26)

Given a simple tensor g®x € D(H), note that in the second line below we
use T'g = g(b~)T for each g € H*, and in the third line we use Equation 26:

(Tet)gor) = Y Tg(S™'t3(=)t) @t
= Tg(S_ltgb_ltl) X tgfL‘
= g()T ®tx
= g(De(z)T &t
In order to show that T'®¢1 is also a left integral, we note that Formula 15
applied to the right norm 7" = ST in H*is X T, @ Ty = Y. Ty ® m ' S?Tj.
Apply S ® S to obtain

ZTQ X T1 = Z T1 X S2T2m. (27)

Applying A® S™! to both sides yields > To@Tz@mS T, = X T1 To R ST5.
Whence

Z T2 X Tng_lTl = Z T1 ® TQSTg
T®1. (28)
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Then

(49@2)T oY) = Ygho(S T~z =T
= > g1 ® ST (z3)Ts(z1) 2ot
= Y gL ® [TsmS 'Ti](z)t
= gI@e(r)t=g(1)e(x)T @1

Thus T'®t is also a left integral.

Next we note that 7' ® ¢ is a Hopf-Frobenius homomorphism for D(H)*,
since D(H)* = H°?® H*, the ordinary tensor product of algebras (recall that
D(H) is the ordinary tensor product of coalgebras (H°P)* ® H). This follows
from T ® t being a right integral in D(H) on the one hand, while, on the
other hand, H°® and H* are Hopf-Frobenius algebras with Hopf-Frobenius
homomorphisms T = S~!f and t.

Since T ®t is a Hopf-Frobenius homomorphism for D(H)*, it follows that
T ®tis a right norm in D(H). Since T'® t is a left integral in D(H), it
follows that it is a left norm too. Hence, D(H) is unimodular.

We finally prove that D(H) is a symmetric algebra. Since D(H) is uni-
modular, Lemma 3.1 shows that D(H) has Nakayama automorphism S2.
Now D(H) is almost cocommutative. The computation in [17, Proposi-
tion 10.1.4] shows that S? of an almost commutative Hopf algebra H is an
inner automorphism as follows: recalling the universal R-matrix in Equa-
tion 25, R =Y, e; ® €', then S?(a) = uau ' where u = Y_;(Se')e;. Since the
Nakayama automorphism is inner, D(H) is a symmetric algebra. O

Corollary 4.1 S(t) ® f is a Hopf-Frobenius homomorphism for D(H).

Proof. Note that S(t) ® f is a right integral in D(H)* & H°? ® H*, since
S(t) and f are right integrals in H°? and H*, respectively. Then

(T@t)(S(t) ® f) = en-T(S(1)f(t) = epg-- (29)

so that S(t) ® f is a right norm in D(H)*. By Proposition 3.2, D(H) is a
Hopf-Frobenius algebra with Hopf-Frobenius homomorphism S(¢) ® f. O

Theorem 4.1 is a generalization of the theorem that D(H) is unimodular
in [24] and the theorem that D(H) is a symmetric algebra [3, Corollary 3.12],
both for a finite dimensional Hopf algebra H over a field.
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5 Finite order elements

Let H be a finite projective Hopf algebra over a commutative ring £ and
d € H be a group-like element. Our aim in this section is to prove that
dY =1 for some integer N. Then we will prove as corollaries of Theorem 3.1
that the antipode S and Nakayama automorphism 7 have finite order.

Let k[d,d"'] denote the subalgebra of H generated over k by 1 and the
negative and positive powers of d. Let k[d] denote only the k-span of 1 and
the positive powers of d. Clearly k[d,d™'] is Hopf subalgebra of H. d has a
minimal polynomial p(z) € k[x] if p(x) is a polynomial of least degree such
that p(d) = 0 and the ged of all the coefficients is 1. We first consider the
case where £ is a domain.

Lemma 5.1 If k is a domain, each group-like d € H has a minimal polyno-
mial p(x) = 2° — 1 for some integer s.

Proof. Let k denote the field of fractions of k. We work at first in the
Hopf algebra H ®; k in which H is embedded. Since k[d,d!] is a finite
dimensional Hopf algebra, there is a unique minimal polynomial of d, given
by p(x) = x¥ + A\, 125 ' + --- + Xl. Since d is invertible, Ay # 0 and
k[d,d™'] = kl[d].

k|[d] is a Hopf-Frobenius algebra with Hopf-Frobenius homomorphism f :
k[d] — k. Then f(d*)d* = f(d¥)1 for every integer k, since each d* is group-
like. If f(d*) # 0, then k > s, since otherwise d is root of ¥ —1, a polynomial
of degree less than s.

Thus, f(d) = --- = f(d*7!) = 0, but f(1) # 0 since f # 0 on k[d].
Then f(p(d)) = f(d*) + Xof(1) = 0, so that f(d*) = —Aof(1) # 0. Since
f(d®)d® = f(d*)1, it follows that (d* — 1) = 0 for some nonzero r € k. Since
H is finite projective over an integral domain, it follows that d®* — 1 =0. O

It follows easily from the proof that if f(z) € k[z]| such that f(d) = 0,
then d* = 1 for some integer s < deg f.

Theorem 5.1 Let H be a finite projective Hopf algebra over a commutative
ring k. If d € H is a group-like element, then dY =1 for some integer N.

Proof. Let a4,...,a, be generators of H as a k-module. Then there are
Aij € k such that da; = 37_; Aija;. Let p(x) = det(d;jz — a;;), where §;; is
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the Kronecker delta. It follows that p(x) is a monic polynomial of degree n
such that p(d) = 0.

Let P be a prime ideal in k. Note that H/PH = H ®, (k/P) is a finite
projective Hopf algebra over the domain k£/P. By Lemma 5.1, there is an
integer sp < n such that d*» —1 € PH. Since 2! — 1 divides 2™ — 1 for each
integer ¢ < n, it follows that

d¥ —1ePH

for each prime ideal P of k. Since H is a finite projective over k, a standard
argument gives Nil(k)H = N(PH) over all prime ideals, where the nilradical
Nil(k) = NP is equal to the intersection of all prime ideals in k. Thus,
d™ — 1 = Y rja; where r; € Nil(k). Let k; be integers such that rf =
Then

(@ — 1) iz k)t = g, (30)

It is clear that P(z) := (z™ —1)(2i=1 #4041 is a monic polynomial with integer
coefficients.

Suppose there is a least positive m € Z such that m1 = 0. Then Z,, :=
Z/mZ C k. Consider Z,[d,d™'] in H. From Equation 30 we see that
Znld, d7' = Z,,[d]. But Z,[d] and so Z,,[d]° are finite, whence d¥ =1 for
some N.

Suppose that m1 # 0 for any integer m. Then Z C k. Again by Equa-
tion 30, Z[d,d '] = Z|d| is a Hopf algebra over Z. It suffices by Lemma 5.1
to prove that Z|[d] is a free module.

Because of Equation 30, there is a polynomial ¢(x) = A;z°+- - -+ Xy € Z[z]
of least degree such that ¢(d) = 0. Since 1,d,...,d* ! freely generate a free
submodule of Z[d], it follows that ¢(z) may chosen such that the content
c(g(z)) = 1.

It suffices to prove ¢(x) monic, for then Z[d] is freely generated by
1,d,...,d*"'. Now the minimal polynomial ¢(x) divides P(z) in Q[xz], so
that 7P(z) = h(z)g(z) for some r € Z and h(z) € Z[z]. By the Gauss
Lemma, c(h) = r since ¢(P) = ¢(q) = 1. Then P(z) = q(z)hi(x) where
hi(z) € Z[z]. If v is the leading coefficient of h;(z), then yY\; = 1, so that
As = £1. Hence, ¢(z) is monic. O

As a consequence of Theorem 3.1, Theorem 5.1 and Equation 14, we
obtain the following corollaries.
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Corollary 5.1 Let H be a Hopf-Frobenius algebra. Then S*™ = n?M = 1dy
for some integer M.

Proof. Let M be an integer such that ¥ = 15 and m™ = 1y.. O

Corollary 5.2 Let H be a finite projective Hopf algebra over a commutative
ring k. Then S*™ = Idy for some integer M.

Proof. Localizing with respect to any maximal ideal of &k, we reduce the
statement to the Hopf-Frobenius case. O
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