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In this paper a mathematical proof of existence and non-existence of conically self-similar
free-vortex solutions to the Navier—Stokes equations is presented. This proof clearly estab-
lishes that these solutions do not have any kind of singularity at the symmetry axis. This
analysis gives considerably improved existence and non-existence bounds and it is shown
that these bounds are close to optimal in the low-swirling limit. This approach links the
questions of existence/non-existence for the swirling case and for the non-swirling case.
The proof is based on Schauder’s Fixed Point Theorem and is therefore non-constructive.
Therefore the paper ends with a brief discussion of the question of how to compute the
conically self-similar free-vortex solutions to the Navier—Stokes equations.

1. Introduction

The swirling jet is a flow phenomenon of great importance both in nature and in tech-
nology. Indeed, tornados, air motion above whirlpools and the flow inside a combustion
chamber are all examples of flows characterised by the strong presence of a swirling jet.
The study of the swirling jet has also led to the emanation of numerous fundamental
flow problems, such as vortex breakdown. Another fundamental flow problem which has
emerged from the study of swirling jets is concerned with the properties of swirling con-
ically self-similar solutions to the Navier—Stokes equations. It is still a matter of dispute,
which, if any, flow problems can be reasonably modelled by such solutions, nevertheless
swirling conically self-similar solutions form one of the most intriguing classes of exact
(in the far-field sense) solutions to the Navier—Stokes equations, and hence they pose a
fundamental flow problem.

Conically self-similar solutions to the Navier—Stokes equations can be defined as such
solutions for which the velocity components decay are O (R™') as R — oo and for which
the quotient of any two velocity components depends only on the azimuthal angle of a
spherical coordinate system.The first conically self-similar solution was the Schlichting
(1933) profile for a non-swirling round jet, using the boundary layer equation. (Slezkin
1934) derived an equation for the streamfunction of a general non-swirling conically self-
similar solution to the Navier—Stokes equation. The first solution to the Slezkin equation
was given by Landau (1944), who provided an exact far-field solution to the Navier—
Stokes equations in the whole space. His profile, which generalised that of Schichtling,
was independently rederived by Squire (1951). A different solution was found in (Squire
1952), which considered a jet emerging over a plane streamsurface, and this was the
first time when loss of existence for some regions in parameter space was encountered.
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A new interpretation of this solution was given by Wang (1971), who also generalised it
somewhat. Finally, the general solution to the Slezkin equation with the fluid bounded
by a conical streamsurface was given by Potsch (1981).

Early attempts to construct a solution for swirling jets, using the conservation of
angular momentum, was made by Loitsyanskii (1953) for the boundary-layer equations,
and independently by Gortler (1954), who obtained an equivalent solution by a quite
different procedure. For the full Navier—Stokes equations Tsukker (1955) was the first to
construct a solution for a swirling jet, which conserves angular and axial momentum. All
of these solutions have the property that the swirling (azimuthal) velocity decays faster
than the axial and radial velocities, and none of them allow a central recirculation zone,
and hence their value as models for swirling flow is rather limited.

The study of swirling conically self-similar solution trace back to Long (1958) and Long
(1961) for the boundary-layer equations and independently to Goldshtik (1960) for the
Navier—Stokes equations. Already in this articles the intriguing existence/non-existence
properties of these solutions were highlighted. Long’s vortex has since been considered as
a fundamental flow problem, and as such it has attracted much attention, see for example
(Burggraf & Foster 1977; Foster & Smith 1989; Drazin, Banks & Zaturska 1995). The
problem considered by Goldshtik was subsequently generalised and given a full mathe-
matical treatment by Serrin (1972). In the final form it describes the flow in a domain
bounded by a plane and driven by a vortex half-line. It should be stressed that this
solution satisfies the no-slip conditions on the walls, but has a logarithmic singularity
on the symmetry axis. In (Goldshtik 1979) swirling conically self-similar solutions driven
by a half-line vortex was conisidered in the entire space. In principle, this solution is an
extension of Serrin’s solution to the entire space, but where some boundary conditions,
such as the no-slip condition, have to be relaxed in order to ensure that the solution is
regular on the free half-axis. The next development was due to Yih et al. (1982), who re-
placed the half-line vortex in (Goldshtik 1979) by a cone, and hence they obtained a fully
regular free-vortex flow inside the domain. What Yih et al. (1982) thus achieved was a
direct swirling extension of the non-swirling solutions found in (Squire 1952) and (Potsch
1981). Consequently, the solution found in (Yih et al. 1982) exhibits the same inability
to satisfy the no-slip condition on the conical walls as the non-swirling counterparts do.
In fact, what drives these free-vortex solutions is the radial velocity distribution on the
bounding conical streamsurface.

Yih et al. (1982) found that the their swirling conically self-similar solution allowed
both one-cell and two-cell flows, and for this and other reasons this solution has sub-
sequently been studied on several occasions. In the context of conservation laws it was
analysed by Paull & Pillow (1985) some asymptotic properties were derived in (Gold-
shtik & Shtern 1989) and recently extensive asymptotic and numerical studies have been
conducted in a half-space (Shtern & Hussain 1993) as well as in cones bounded by stream-
surfaces (Shtern & Hussain 1996). In (Shtern & Hussain 1996) it was also suggested that
the solution found in (Goldshtik 1979) is a very suitable generalisation of Long’s vortex
to the full Navier—Stokes equations and the entire space. In short, the solution found
in (Yih et al. 1982) is perhaps the swirling conically self-similar solution, which has at-
tracted the most recent research effort, yet the state of the mathematical theory for it is
much worse than say for Serrin’s vortex.

Yih et al. (1982) claim to have found their solution is not supported by a formal exis-
tence proof. Most of the article is concerned with the important question of properties of
solution, if any exists, but the very question of existence is not treated. Existence of their
solution is a consequence of the convergence of the numerical method they propose, but
although this method indeed seems to converge in the proper region of parameter space,
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their proof for this convergence is not convincing as we will argue in §5. Fortunately,
their conclusion about the existence of a solution to their problem is correct as we shall
demonstrate in the present paper. In order to do this, we will use a technique from (Ser-
rin 1972) as well as the properties of the general non-swirling Squire-Potsch solutions.
In doing so we reveal the underlying relationship between existence in the swirling and
in the non-swirling case. Furthermore, this procedure will yield substantially improved
bounds for existence and non-existence of solutions to the problem.

Another characteristic property of the free-vortex solution found by Yih et al. (1982)
is the regularity of the solution on the symmetry axis, as opposed to the logarithmic sin-
gularity found for the solution to Serrin’s problem. However, the absence of a logarithmic
singularity at the symmetry axis, would not have followed from the convergence of the
numerical method proposed by Yih et al. (1982). On the other hand, in this paper, we
will give a formal proof of the regularity of the solution at the symmetry axis. In the
sequel to this article we will improve this regularity result further, and in addition prove
that the solution is uniquely determined by its behaviour on the symmetry axis.

1.1. Possible applications and interpretations

The solution found in (Squire 1952) proved difficult to interpret, since it is a solution
to the Navier—Stokes equations, which does not satisfy the no-slip condition at the wall.
This difficulty has been inherited by the Potsch solutions and the solution found by Yih
et al. (1982). Squire interpreted his solution as the solution for a jet above a plane wall.
An experimental study (Schneider, Zauder & Bohm 1987) shows that a jet emerging
from the apex of a cone, and bounded by conical walls is not described by a similarity
solution. As pointed out in (Shtern & Hussain 1996) this is easily seen, since the total
axial flow force decays at the walls, but is required to be constant by Squire’s solution. A
further difficulty is that the cone apex need not a priori coincide with the mathematical
cone apex of the theoretical profile, and if it does not then the experimental geometry is
not compatible with that of the theoretical profile. However, for the study of phenomena
in the vicinity of the symmetry axis, such as vortex breakdown, the boundary conditions
at the walls are commonly believed to be of little importance. Indeed, some numerical
simulations of the Navier—Stokes equations aimed at investigating vortex breakdown,
such as (Beran & Culick 1992), has neglected the no-slip condition at the walls.

A different approach has recently been presented in (Shtern, Borissov & Hussain 1997),
where the solution found by Yih et al. (1982) was used as the inner solution, which was
then forced to match a generalised vortex sink solution, which satisfies all boundary
conditions.

An entirely different interpretation of the Squire solution was presented by Wang
(1971), who used this solution to model the spreading of oil from a sinking ship on the
ocean. This interpretation inspired Goldshtik & Shtern (1989) to reinterpret the solution
found in Yih et al. (1982) as a model of the air flow above a whirlpool.

2. Formulation of the problem

In basic textbooks in fluid mechanics, see for example (Panton 1984), axisymmetric
non-swirling solutions to the Navier—Stokes equations are normally found by using a
Stokes’ streamfunction and conical self-similarity. This approach was extended to the
swirling case by Long (1958). The idea is then to seek conically self-similar solutions to
the Navier—Stokes equations which are characterised by a streamfunction as well as by a
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circulation function, i.e. to seek solutions on the form:

W@ we @
N R ° % "Rsin®’ ° Rsind’
@2.1)
prq (z)

p_pw:T’ ¥ =vRyY(x), x=cosl,

where (R, 8, ¢) are spherical co-ordinates, (ug,ug,uqs) the corresponding velocity com-
ponents, p the pressure, p, the atmospheric pressure and ¥ a streamfunction. We have
also let a prime denote differentiation with respect to x. It may appear that (2.1) is not
the most general form of a conically self-similar solution, defined as a solution which is
(0] (Rfl) and where any quotient of velocity components depend only on the azimuthal
coordinate. However, if we consider only such forms of conically self-similar solutions
which satisfy the continuity equation we find that (2.1) indeed is the most general form
of such solutions.

When (2.1) is substituted into the Navier—Stokes equations and terms if lowest order
are identified we obtain after some manipulations the following system of ODEs (Serrin
1972) and (Shtern & Hussain 1996):

(1—2) ¢ +2u¢) — %w? =F, (2.2a)
(1-2®)F +22F —2F =17, (2.20)
(1-a®)I" =9I . (2.2¢)

2.1. Boundary conditions
The boundary conditions we use in this paper are obtained if we assume that we do not
have any flow sources on the axis, except at the origin, which implies that
raq=¢v(1)=0. (2.3)

For the radial velocity to be bounded outside a neighbourhood of the origin we require
that

‘¢’ (1)| <oo. (2.4)
If we substitute these conditions into (2.2a) and its derivative, we obtain boundary con-
ditions for F,
F(1)=F (1)=0. (2.5)
We furthermore assume that the swirling flow is driven by a constant circulation along
some fixed conical streamsurface = z. which implies that

Y(z) =0, I'(z:)=1I¢. (2.6a,b)

Since the system of equations (2.2) is symmetric with respect to the sign of I', the sign is
immaterial, and we will henceforth assume that I, > 0. The last condition to be specified
is the total axial flow force J,.

Throughout the paper we will make frequent reference to Serrin’s problem and therefore
we will briefly state the boundary conditions used in this problem. Here we reinforce the
no-slip condition at the conical walls

¥ (ze) =9 (zc) =T (z:) =0. (2.7)

At the symmetry axis we assume that the circulation is constant, and that we have at
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most a logarithmic singularity for streamfunction at the symmetry axis, i.e. that

lim I'(z) = C, lir?_ Y(z)=0. (2.8)

rz—1—

With these conditions equation (2.2b) is no longer correct, and instead one must use

"

(1-2?)F" =2rr . (2.9)

Indeed this was the definition of the auxiliary function originally introduced by Goldshtik
(1960). Under the conditions (2.3)-(2.4) it was integrated by Sozou (1992) to yield (2.2).
It is easily seen that in Serrin’s case the boundary conditions for F' are

F(z)=F(1)=0. (2.10)

3. The formulation of the theorem of existence and non-existence

On physical grounds the total axial flow force is perhaps the most suitable parameter
to use to characterise the strength of the axial flow. However, it is very difficult to
compute and therefore to prove a existence /non-existence results for the system (2.2) we
must replace it with a different parameter of lesser physical, but greater mathematical
importance. To this end, notice that equation (2.2b) is linear and hence we can follow
Serrin (1972) and Yih et al. (1982) and solve it to obtain

Flo) = (12 [F ' rede TI?

where we have used the boundary conditions (2.5). T is an arbitrary parameter, which
will replace J, in the subsequent analysis. The physical meaning of T' is most easily seen
for the case z. = 0, where

(1-2)*, (3.1)

L2F(0) _ 29 (0)

rz Iz
To see the mathematical importance of T set I' = 0, which reduces the system (2.2) to
the Slezkin equation:

T =

(3.2)

2
ey, (3.3)

and for this equation with z. = 0 Squire (1952) found that the solution ceases to exist if
T is sufficiently small. This fact is one of the key elements in our analysis, and therefore
we will make a short digression to study the properties of the solutions of (3.3).

(1-2%) W+ 2z — %1/}2 =

3.1. Analytical solutions in the non-swirling case

Already in 1934 Slezkin discovered that any non-swirling conically self-similar solution to
the Navier—Stokes equations, which satisfies the boundary conditions we have described,
must be a solution to

(1-2) 0 + 200 — 0? = C(1-2)° (3.4)

for some constant C' = ¢ () (14 z.) /(1 — z.). For the case z, = —1 this was solved
by Landau (1944) and independently by Squire (1951), but it turns out that this is a
rather special case. In (Squire 1952) solved the (3.4) for z. = 0, and this solution was
subsequently generalised to all z. € (—1,1) by Potsch (1981). To calculate the general
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Potsch solution one makes the substitution ¢ = —2 (1 — z2) U’ /U to obtain
d’U C
7 T p
dz?  2(1+z)

Here one can either follow Squire and Potsch and use the general solutions for a hypergeo-
metric equation of this type, or we may change the independent variable toy = In (1 + x),
which will transform (3.5) to a second order differential equation with constant coeffi-
cients.

When z, > —1 the Potsch solutions are given by:

e For the case C < %

U=0. (3.5)

Ay, ()% -1

nd, @ >0

e =—C(1-a2)
where 4, (z) = (1+2)/(1+2.), a = (1-20)}, 11 = L (1+0a) and 15 = L (1 —a).
Note that if C = 0 we have the trivial solution, which shows that the Landau solution is
the only interesting solution in this case.
e For the case C = %
In A;, (z)

TYRCEE (3.7)

W =-(1-2)
e For the case C > %

sin (B1n A4, (z))
sin (Bln Az, (z) —=7)

N

Y& =—(20)% (1 - ) (3.8)

1
where v = arctan2f and 8 = 1 (2C — 1)*.
Of even greater importance to us in this paper are the modified Potsch solutions defined
by
P
P Yo
=——— . 3.9
fC’ 2 (1 _ .Z’2) ( )
We notice that f£ is positive if C' is negative and vice versa. It is easily seen that fZ is
monotone: increasing if C' < 0 and decreasing if C' > 0. We also mote that fg satisfies
the equation

C

F+r=-
as well as the condition f£ (z.) = 0.

The most interesting property of the Potsch solutions is the fact that they no longer
remain bounded in [z, 1] if C is decreased past a certain negative value, which depends
only on z.. This was discovered by Squire (1952) but was not mentioned in (Potsch 1981).
This property is a key element in our analysis and therefore we will explicitly state it
here. In fact we need a more refined concept:

DEFINITION 1. For any z1 € (2., 1], let Cy, be the unique value of C' such that fE is
bounded in [x.,21] if and only if C < C} . The case x1 = 1 is of special importance and
we will therefore use the notation C* = C7.

Remark. This definition is stronger than if we had used ¢£ instead of f£. The two

definitions would coincide for z; € (2,1), but for 21 = 1 it requires also that ¢ (1) is
bounded.
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FIGURE 1. Plots of (a) C* and (b) the maximum obtainable value of ¢’ (z.) as functions of ..

To see that there exists a unique C7;, for any z. and x;, consider the denominators in
(3.6)-(3.8). In the vicinity of z. they are all negative, but if we set z = z; and increase
C there is exactly one value of C' where they will vanish. This value is precisely C;, . To
calculate Cj we thus simply look for the zeros of the denominators in (3.6)-(3.8) and
finally we have to see which of the conditions is the critical one. If this is done we obtain
the following:

e When z. < (1+z; —e?) /e* we get that C, is the positive solution to

1 1+« 1+
—In{f——) =1 . 11
an<1—a> n(l—}—mc) (3.11)
e When z. = (1+ 21 — €?) /e* we have that
.1
Cy, = 3 (3.12)
e When z. > (1+ 71 — e?) /e? we find that
* 1 *
Ci =5 (1 +4(3 )2) (3.13)
where in turn 8* is the positive solution to
1+
1 = 20 . .14
ﬁn(l%—a%) arctan 20 (3.14)

In figure 1(a) we have plotted C* versus z.. In figure 1(b) we have shown the maximum
value of ¢ (z.) = C(1—=.)/(1+=,) versus z., and for this graph we see that all
solutions with ¢’ (z,) < 2 are obtainable. We also see that as . — 1~ we have that the
maximum possible value of ¢’ () — 2%, and this is consistent with the Landau solution
for z, = —1, for which it is easy to verify that ¢’ (=1) < 2.

3.2. The main result

Unlike the argument produced by Yih et al. (1982) our argument will emphasize that
the question of existence/non-existence of a solution to the swirling problem is almost
the same as that for the non-swirling one, which has been completely resolved. From this
it is evident that T defined in (3.1) will be a parameter highly relevant for the question
of existence and non-existence. Indeed, we will spend most of this paper proving the
following theorem:

THEOREM 1. (Ezistence/Non-ezxistence) For any x. € (—1,1) and any I, there exist
numbers Ty, < T* such that



8 C. F. Stein

(a) If T > T* then there exists a solution to (2.2) which satisfies the boundary conditions
(2.8)-(2.6). Furthermore v € C* ([z.,1]), F € C? ([z.,1]) and I" € C? ([, 1]).
(b) If T < T, there exists no solution to (2.2) which satisfies the boundary conditions

(2.3)-(2.6).

Remark. 1. The theorem does not say anything about uniqueness. However, in the
sequel to this article we will prove a much weaker uniqueness result, namely that the
solution is uniquely determined by its behaviour on the symmetry axis.

Remark. 2. The bounds T, and T* depend only on z. and I, and they are given by
the following expressions:

2C* g HY(-z.) 22H'(-z.)

T = 1
I? 11—z, T zz (3:15)
2C* $1HT (.’L'l) SE2HT (Z‘C)
T, = —min{ =2 c , 1
”%11“{ rz T Tiog }+ 1= a2 (3.16)

where H' is a Heaviside function taking the value zero at zero.

In figure 2 our bounds are compared with those obtained in (Yih et al. 1982). It is
seen that we have improved the bounds substantially, and the improvement is greater
the smaller the value of ., and the smaller the value of I',. When 2. = 0 we can use
(3.2) to illustrate these bounds in terms of the renormalised tangential velocities in the
plane (=t (0)) and I.. This has been done in figure 3 and here we see that as I}, — 0
the critical velocity approaches the value 7.6727, which was found by Squire (1952) for
the non-swirling case. It is also evident that our estimates are very good in the low-I-
limit, but worse in the high-I, limit. Using an asymptotic analysis technique Goldshtik
& Shtern (1989) has been able to obtain better limits in the high-I', limit, however, they
have not formally established that the asymptotic behaviour accurately describes the
situation for finite values of I'.. Our analysis will in no way depend on any asymptotic
approximation of (2.2) and is therefore directly seen to be valid for all values of I.

4. Proof of Theorem 1
4.1. An outline of the proof

The ideas we use to prove Theorem 1 were originally developed by Serrin (1972), who
applied them to a similar, yet different, problem. Yih et al. (1982) applied some of Serrin’s
ideas to the present problem and their effort has strongly inspired the present effort.
However, (Yih et al. 1982) is primarily concerned with the properties of solutions and
they do not present a complete mathematical proof of a statement similar to Theorem
1. In this paper we will use different ideas of Serrin’s to make a rigorous treatment of
the question of existence of conically self-similar free-vortex solutions. Furthermore, as
already pointed out this will yield sharper bounds in parameter space for the existence
and non-existence of conically self-similar solutions.

The pivot of our proof is the Schauder Fixed Point Theorem, and most of the proof
is concerned with finding a suitable set to which it can be applied. We will present the
basic structure of the proof in more detail below, but first of all, let us transform our
problem into the form used by Serrin (1972) and Yih et al. (1982). To this end let us
make the substitutions

2
r2

C

r
.Q:FC, G=-—=F, (4.1a - ¢)

f:_ma
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FIGURE 2. Plots of the regions of existence and non-existence for (a) z. = 272, (b) z. = 0,

(c) zc = —27% and (d) z. = —0.95. The solid line shows T and solutions exist above it. The
dashed line illustrates T, so on and below this line no solution exists. The lines marked with
stars and circles show the existence and non-existence bounds from (Yih et al. 1982).
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FIGURE 3. Plots of the regions of existence and non-existence for . = 0 for various tangential
velocities in the plane and various I.. Solutions exist above the solid line, and do not exist below
the dashed line. The lines marked with stars and circles show the corresponding existence and
non-existence bounds from (Yih et al. 1982).
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and then we obtain the system

' r.\> G(z)
o () 2L 4.2
F+f (2) (1—.2:2)2 (4.20)
" +2f0 =0, (4.20)
where
T ot02dt bon%dt
G:c=21—a:2/7 2/7+T1—m2. 4.2¢
(=20~ e (1—12)° » (1+1)? (=) (420)
To satisfy the boundary conditions we must have that
flee)=0, [f(1)]<oo, (4.3a,b)
N(ze)=1, N(1)=0. (4.3¢,d)

To begin our analysis, let us fix the values of T', I'. and z. and assume that we have
an arbitrary f € C ([z.,1]). Let S be the mapping which takes this function f to the
solution {2 which is the solution to (4.2b) with the boundary conditions (4.3¢,d). Now
2 = S f enables us to calculate G using (4.1), and we denote this mapping Sg,. Hence

G= SG,_QQ = SG,_Q o ng = ng (4.4)

and we let this serve as the definition of Sg. Finally this value of G can be used to find
a new value of f, f as the solution to (4.2a) which satisfies the boundary conditions
(4.3a,b), and this mapping we denote Sy, . To summarise, we have that

f: Sf’GGZSf,G OSG,QQESJF,QQ (45)
= Sf,g o SG,_Q o ng = Sf (46)

and this defines both Sy o and Sf. At this stage we do not know if these mappings
are well defined in all of C ([z,,1]), but we will henceforth adopt the convention that
SC ([z., 1]), is the image of the largest subset of C ([z.,1]) for which it is well-defined.

Note that if Sf = f, f is sufficiently regular and f (1) is bounded then (f,Sqf) is
a solution to (4.2) satisfying all the boundary conditions (4.3), i.e. the existence (non-
existence) of solutions to our problem is primarily reduced to the question of the presence
(absence) of fixed points of S. If we had followed Yih et al. (1982) and had not distin-
guished between f and Sf, we will only have been able to study properties of solutions
to (4.2b)-(4.1), if any exists. However, the fundamental question of existence of a solution
would have been impractical for us to treat in that framework.

Consider now the space C ([z., 1]) equipped with the uniform (supremum) norm. This
is a well-known example of a Banach space. Suppose now that for every T' > T™ we can
find a non-empty, closed, bounded and convex subset X C C ([z.,1]) such that

(1) SX Cc X,

(2) S is continuous on X,

(3) SX is conditionally compact in X,
(4) SX c C* ([zc, 1)),

(5) SpX C C2 ([z, 1)),

(6) S X C C? ([z, 1]).

From conditions (1)-(3) the existence of a solution to (4.2) satisfying all the boundary
conditions (4.3) follows from the Schauder Fixed Point Theorem, here presented in the
form which appears in (Deimling 1985).

2
3
4
)

THEOREM 2. (Schauder) Let X be a real Banach space, C C X nonempty, closed,
bounded and convex, and F : C — C compact. Then F has a fized point in C.
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Conditions (4)-(6) imply that our solution has sufficient regularity, and therefore it is
clear that to prove Theorem 1 it is enough to find a non-empty, closed, bounded and
convex set X C C ([z¢,1]) such that (1)-(6) hold. In the next subsection we will find a
candidate for X and show that it satisfies (1) and (4)-(6), and in the following subsection
we will complete the proof.

To prove the non-existence statement, it suffices to prove that SC ([z., 1])NC ([z., 1]) =
0 when T < T..

4.2. Properties of the mapping S
In this subsection our primary aim is to find a non-empty, closed, bounded and convex

set X C C([z.,1]) such that SX C X, and to this end we will state two comparison
results which appear in (Serrin 1972) and in (Yih et al. 1982) respectively.

PROPOSITION 1. (a) Let x1 be an arbitrary point in [x.,1]. Suppose that G12 €
C ([zc,®1]) and that G1 > Go, then S;cGi1 > SraGa in [z, 1], as long as both of
the expressions are finite.

(b) Suppose that fi 2 are integrable in [x.,1] and that f1 > fa then Sofi < Safa.

Remark. A direct consequence of (a) is that 7,[151 > 1[110)2 if C;1 > C5, which is not
obvious from the explicit formula for ¥F.

The proof of (a) appears in (Serrin 1972) but by a Riccati transform f = U /U it can
also be deduced directly from one of Sturm’s comparison theorems, see for example (Ince
1956, p. 229). The proof of (b) can be found in (Yih et al. 1982), and it uses the following
auxiliary result, which is of interest in its own right.

LEMMA 1. If f € C ([x¢,1)) N L ([zc,1]) then Saf € C! ([xc, 1)), it is decreasing and
it satisfies 0 < Sqf < 1. Furthermore, let Y C [z.,1] be any interval and suppose that
F€C(Y) then Sof € C*(Y)N C! ([z.,1]).

Proof. Let us denote S f by 2. If f is integrable we can integrate (4.2b) to obtain

2 (2) = 2 (22) exp (_2 / fdz) . (@.7)

From this it is clear that {2 is monotone, and if it is to satisfy the boundary conditions:
2(z.) =1 and 2(1) = 0, it must be decreasing. If we integrate (4.7) once more and
enforce the boundary conditions we obtain

Yexp (=2 [Y fdz)d
n(x):fxep( Je. S )y (4.8)

lec exp (—2 fmyc fdz)dy ‘

From the integrability of f it thus follows that 2 € C! ([z.,1]). Finally, if f € C (Y)
then it follows from the last statement and (4.2b) that 2 € C? (Y). [

We will use this lemma to prove an almost universal estimate of Sg:
PROPOSITION 2. If f is integrable in [x., 1] then Sgf satisfies the estimate
eH (=2) BY (=) _ #2H (=20) ) _
1—=z 1— 22 -
zHY (z) 22H' (z.)
11—z 1— a2 ’

(1-z)° {T+

< Saf < (1- ) {T n (49)
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where H' is a modified Heaviside function, i.e.

ot (m):{ (1] ;Z: i;g . (4.10)

Furthermore, Si f € C? ([z.,1]).

Proof. Just like in (Yih et al. 1982) we first notice that Lemma 1 implies that 0 <
2 <1, and then (4.9) follows directly from (4.1) by setting 2 = 1 or 2 = 0 depending on
whether the contributions are positive or negative. The second statement follows from
the second statement in Lemma 1. Some caution must be taken at = 1 since the
denominator of the first integral in (4.1) vanishes there. However, from Lemma 1 we
have that 2 € C' (@, 1]) thus we have that 2 = O (1 — ), and hence the first integral
is finite as z — 1. [

Thus far we have only restated some of the results in (Serrin 1972) and (Yih et al.
1982), but at this point when we will discuss the properties of Sy ¢ our arguments will
deviate. In fact, the results for Serrin’s problem are no longer applicable to our problem
and our use of the Potsch solutions as comparison functions is considerably sharper than
the corresponding estimates in (Yih et al. 1982).

PROPOSITION 3. Suppose that G satisfies the left inequality in (4.9) and that T > T*,
where T* is defined in (3.15), then there exists a constant C' depending only on I'., T
and x. such that Sy G > fg > —00.

Proof. We have that

Ht (—x) Ht . 2t (—
Gz(l—x)2{T+m ( 13:)—3:( ze) wcl_(xf)} (4.11)
CH - QHT —de
> (1) {T+ ud & _(xx ) _ 2% : _(xf )} (4.12)
=(1-2)°G* (4.13)
By Proposition 1(a) we have that Sf oG > f where f satisfies
f7
5 = (L Gt

as well as the condition f(z.) = 0. However, this we recognise as (3.10) with C' =
—I'?G* /2. Consequently, the solution to (4.14) is given by f£ as defined in (3.9) with
this value of C. However, from (3.11)-(3.13) we know that fZ is bounded in [z, 1] if and
only if C' < C*. Consequently, Sy G is bounded from below if I'?G*/2 > —C*. This
concludes the proof of the proposition. ]

Next we would like to show that if T < T, then S oG — —oco somewhere in [z, 1],
i.e. we would like to prove the following proposition

PROPOSITION 4. Suppose that G satisfies the right inequality in (4.9) and that T < T,
where Ty is defined in (3.16) then S;,cG — —oo somewhere in [z, 1].
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Proof. Pick any z; such that z. < 1 < 1, and consider the interval [z, z;]. In this
interval we have that

HY () 22H' (2.)
<(1—z)?{T+" - = . 4.1
G = a:){ * 1—=z 1— 22 } (4.15)
Ht (zy) 22H' ()
< (1= )2 T1 1) Te c )
<(1-2) {T+ )i (4.16)
=(1-2)"Gun (4.17)
By Proposition 1(a) we have that Sy oG < fin [z.,z], where f satisfies
2 = (L.\® G.
+ = (—c> - 4.18
Foer=(%) as (118)

as well as the condition f (z.) = 0. Once again, we recognise this as (3.10) with C =
—I'2G. 3, /2. Consequently, the solution to (4.18) is given by fZ (as defined in (3.9) with
this value of C. However, from the definition of C}, we know that f£ — —oo in [z.,21]
if and only if C > C%, . Consequently, Sf.¢G — —o0 in [z, 1] if [2G*/2 > —C . If
S5,cG — — in [z, 21] for any z1 € (x.,1) then it is clear that Sy ¢G — —o0 in [z, 1].
Consequently, we have that Sy ¢G — —oo in [z, 1] if T < T, where T} is given by (3.16).
This concludes the proof of the proposition. ]

Having now found a condition which ensures that Sy ¢G is bounded from below, we
must now obtain an upper bound. To begin with we will prove the following proposition,
which is a modification of a result in Serrin (1972).

PROPOSITION 5. Suppose that G satisfies the right inequality in ({.9) then we have
that
(a) if T >0 and z. <T/(T +1) then

T
ffTrg (z) for z < T+1
Sf,GG S fUP = T I‘!2 1 T (419)
Pl m— |+ =~fIn o for > ——
“TIE\T +1 8 (T+1)(1-ux) = T+1
(b)) if T >0 and z. > T/ (T + 1) then
rz i1-z
< =-° c .
SraG < fup R n 1— 2 (4.20)
(c) if T <0 and z. < 0 then
0 for <0
SreG < = 2 4.21
7.¢G < fup an 1 for &3>0 ( )
16 1—=z
(d) if T >0 and z. > 0 then
rzr i1-z
< ==£1 c 4.22
SraG < fup 62T, (4.22)

Remark. 1. If this proposition holds then it is clear that Sy G is integrable.

Remark. 2. Note that in all cases we have that fyp > 0.
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Proof. Let us begin with the case (a). Since G satisfies the right inequality in (4.9)
we have that

T
2T (1 —xz)* for z< o1
G(z) < ; (4.23)
2z(1—2x) for x> T+1
From Proposition 1(a) we find as in the last two propositions that
. T
856G < fppe(z) if @< 71 (4.24)

For x > T/(T + 1) we have that Sf¢G is bounded from above by the function fyp,
which satisfies that fup (T/ (T +1)) = fF.;2 (T/ (T + 1)) and

: r: 1 I
ip=—% — 4.2
fup + fop A+l 813’ (4.25)

where we have used the basic inequality 4z < (1 + a:)2. Hence we have that

/ rz i
< ¢ 4.26
fUP = 81—z ’ ( )
which we can integrate to find that
T r? 1 T
< = fP — —“In—-——— f > — . 4.2
$1.6G < Jup = Jorr (T+1)+ s T DA O fZ7er (42

This concludes the proof of (a). (b) follows if one makes the obvious modifications. To
prove (c) replace (4.23) by

0 for <0
G(m)s{m(l—x) for >0

and the rest of the proof is analogous to that used to prove (a). Finally (d) follows if the
proof of (c¢) is modified slightly. 0

(4.28)

For given T > T™*, Re and z. we now define X; to be the closed convex (but unbounded)
set

Xi={feC(z.,1)): f& < f < fupr}, (4.29)
where C = —I'?G. /2, G. is defined as in Proposition 3 and fyp is defined as in Proposi-
tion 5. Propositions 3 and 5 imply that SX; C X;. One can proceed as in (Serrin 1972)
and prove that X; contains a fixed point, but then one would obtain a solution which
possibly has a logarithmic singularity at z = 1 and this we should not have to accept, and
hence we will continue our search for a closed convex and bounded subset X C C' ([, 1])
such that SX C X. In fact, most of the remaining analysis is involved in proving the
following proposition.

PROPOSITION 6. Suppose that f € X1 then there ezists a C>0 depending only on

P
I, T and z. such that Sf < f—5F3/2 < 00.

Proof. Since fyp is integrable there exists an 0 < M < oo such that for all f € X;
and all y € [z.,1]

Y Y 1
/ fdJU S/ fUPdSL' S/ fUPdSL'EM . (4.30)
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Furthermore, let C' be as in the definition of X; and define

0 if C<0

= inf fE = 4.31
m= ot o {fg(l) if C>0 (4:31)

From these definitions and the definitions of C' and fyp above it is clear that m and M
depend only on T, I', and z.. Consequently, for all f € X; we have the estimate

exp (—2M) < exp (—2/$ fdz) <exp(=2m[z —z.]) . (4.32)

If these relations are used to estimate d/dz (S f) uniformly from (4.7) we obtain

% (Saf) (@) > —SREM =2m[r = zc])

1— =z,
L e (2M1—_2;n -z _ o (4.33)

which is a uniform bound for each f € X, where N only depends on T, I, and z.. (Here
we have calculated I'' (z.) from (4.8)). Using (4.33) we obtain the following upper bound
for S f which holds for all f € X;.

N1-z) if <z<l1
Saf (z) < N N-—1 . (4.34)
1 if z<

This is well defined since . > (N — 1) /N cannot occur as follows from

N-1
Tt — a1 20) (1 exp (2m (1~ 2) — 2M)) > (4.35)
where we have used that 2m (1 — z.) < 2M, which is an immediate consequence of the
definitions of m and M.
Our next task is to use (4.34) to estimate Sgf for all f € X;. By straightforward
calculations one easily establishes that for (N — 1) /N <z <1 we have that

Saf(z) < (1—1)° {T rya (N = L mj) +2N2I, (z) + 2N2 (”;Ii(;)L} (4.36)

where 7 = max {z.,0} and

(Y tdt y? =22
I (y,2) —/Z Q—ep 20-9) -7 (4.37)
[ tdt 1 N (2N -1)(1+2)
I (;z;)_/(N_l)/N(IH)2 =T et (+> (4.38)
I3(;,;):/1 8;22(115:—(a:+1)+41nxT+1+mile (4.39)

From (4.37)-(4.39) and the definition of N it follows immediately that the right-
hand side in (4.36) depends only on T, I'. and z.. From (4.37)-(4.38) it follows that
I; (N —1) /N,z}) is bounded and that I> (z) < I5 (1) < co. Let us now consider I3: it
is evident that I3 € C* ([z.,1]) and that I3 (1) = 0, and since the integrand in (4.39)
has a double zero at ¢ = 1 we have that I5 (1) = I, (1) = 0. Hence, by Taylor’s theorem
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it follows that there exists a bounded function R, such that

I(z)=(01-2)"R(z) (4.40)
If we now define R = sup,¢(v—_1)/n,1) R (z) we can express (4.36) as

S(;f(:c)g(l—:c)z{T-i-ﬂl(

=0 (1-2)° (4.42)

,xj) +2N%L, (1) + 2N2R} (4.41)

where C; depends only on N and z. and hence only on T, I, and z..
For z < z. we similarly obtain

Saf (@) <1 —2)* {T+2L (z*,2F) +
-1

A [N213 (N—> + 14 (;ﬁ)] (4.43)
(1-z) N
where £ = max {z,0}, I;, I3 are defined as in (4.37) and (4.39) and I, is defined as
(N=D/N- gt 1 N
L (2) — - - _ 4.44
1 (@) /w (1+t)° 14z 2N-1 (4.44)

1, is clearly a decreasing function of z which depends only on N and z.. We now note
that since ¢ < (N — 1) /N we have that #/ (1 — 2)” = 2N (N — 1), and hence we may
estimate (4.43) as

Saf(z) < (1 —z)” {T+2L («F,zF) +

+ 4N (N -1) [N213 (%) +1 (xj)] } (4.45)

=0, (1—1z)° (4.46)

where C5 depends only on N _and z. and hence only on T, I'. and z..
To summarise we now let C' = max {C1,C>} and we have shown that

Saf(z)<C(1-2)*. (4.47)
According to Proposition 1(a) we have that Sf < f where f is the solution to
N F A NG
. (_) _C 148
F+7=(3) qoar (445)
which satisfies f (z.) = 0. However, this means that f = ff ey Hence we have found
~ P e
a C such that Sf < f—5r3/2 for all f € X;. ]
With Proposition 6 at our disposal it is natural to define the set X as
X ={feClae1): £ < f <min{fur, {75, ,}} - (4.49)

With this definition it is clear that X C X; and that X is a non-empty, closed, convex
and bounded subset of C ([z., 1]). Propositions 3, 5 and 6 taken together show that

SXCX. (4.50)
Since X C C ([z,1]) Lemma 1 tells us that
SoX c C*([z.,1)) - (4.51)
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Furthermore, it follows from Proposition 2 that
SaX C C? ([z.,1]) - (4.52)
To conclude this subsection we would like to prove that
SX c C* ([z.,1)) , (4.53)
which follows from (4.52) and the following lemma.

LEMMA 2. Suppose that G € C? ([z.,1)), then S;,cG is C' in any open interval in
which it is bounded. Additionally, if S¢.cG is bounded in [z.,1] then S;.¢G € C* ([z.,1))N

C ([ze,1]).-

Proof. The equation (4.2a) is regular in [z.,1) and therefore it follows from standard
ODE theory that the solution is C* whenever it is bounded. However, if f = S;¢G is
bounded in [z., 1] then we can define f (1) = lim,_,;- f (z), which ensures that Sy oG €

C ([z.,1]). 0
4.3. End of the proof of Theorem 1

Proof. of Theorem 1

(a) Since T' > T* we may define X as in (4.49). We then have that X is a non-empty,

closed, convex and bounded subset of C ([z.,1]) such that SX C X. To use Theorem 2

we must now only prove that S : X — X is compact, 1.e. that it is continuous and that

SX is conditionally compact in X.

Let us now prove that S is continuous in X. To this end, assume that f converges to
fo in X, this convergence is uniform since X C C ([z.,1]). If we can prove that

12f = Safol < Ky (1 =) |If = foll,, (4.54)

where ||-||, denotes the uniform (supremum) norm, we can use the estimate (4.34) to
establish that S f converges to S% fo uniformly in such a way that

Saf —Safol < Ka(1—2)*|If = foll, (4.55)

By applying Gronwall’s lemma one sees that this implies that Sf converges uniformly to
Sfo in X. Hence to show that S is continuous on X all that remains is to establish the
inequality (4.54). To simply the notations we introduce the following variables

E(y) = exp (—2 / y fdz) (4.56)
Fo () = exp <_2 / y fodz> . (4.57)

If we use (4.8) and (4.32) we find that

dyf EO Yy — [1 E(y)dy [} Eo (y dy‘

|Sef — Safol = (4.58)
y)dy [, Eo (y)dy
e’fp 4M dy/ By (y) dy — /E dy/ Eo(y dy‘ (4.59)
_:L'C

If we let F = min (f, fo) and use the fact that exp (—z) > 1 — z we obtain that

exp (=2 [ Faz) (1= 20 =20 11 - o} < BG) <o (-2 [ Fiz) (460

c
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and exactly the same estimate for Eo. Hence (4.59) becomes

1 T
|Saf —Safo] < %/ exp (—Z/dez> dy/ exp (—2 /dez) dy (4.61)
— T T T Te Tc

c

x 1= (1=2(1=2)If - foll,)’| (4.62)
<K (1-2)f = foll, > (4.63)
where K; is given by

K, = dexp (AM — 4m (1 — z.))

(z —zc) (1+2(1— =) [IX]],,) - (4.64)
1— 2,
Here we have used (4.32) and here || X||, denotes the supremum of the uniform norm of
the elements in X, which is finite since X is a bounded set in this norm. We have thus
found a constant K7 such that (4.54) holds. Hence we have proved that S is continuous
on X.

Since SX C X we know that SX is pointwise bounded for all z € [z.,1]. From (4.47)
it is also follows that (SgX)/(1— x2)2 is pointwise bounded as well. However, from
(4.2a) we have that

d L\*_ Saf 2
560=(3) 725 - (4.65)
for any f € X;. Hence Sf consists of continuous functions with uniformly bounded
gradients. Consequently, SX is equicontinuous in [z, 1]. The conditional compactness of
SX thus follows from the Arzela-Ascoli theorem (See for example Folland 1984).

To summarise, we have shown that X and S satisfy all the conditions of Theorem 2,
and hence there exists an f € X such that Sf = f, and thus f, 2 = Sef and G = Sa f
solve our system of equations (4.2) and the boundary conditions (4.3). From (4.51)-(4.53)
it follows that

f e ([ze,1)) N C ([zc,1]) (4.66)
2 e C?([z.,1)) (4.67)
G € C?([z,1)) . (4.68)

After back-substitution to our original variables v, F' and I', all that remains is to
establish that ¢ € C* ([z., 1]). However, we have that

o =dzf-2(1-2%)f (4.69)

and we know that lim,_,;- (1 — ) f () = 0 or else we would not have that |f (1)| < co.
This concludes the proof of (a).

Proof of (b)

Let X =C ([x¢,1]). All functions f € X are integrable in [z, 1] and hence (4.9) holds.
Since T' < T, Proposition 4 shows that Sf — —oo somewhere in [z, 1], for all f € X.
On the other hand, there is no f € X such that f — —oo somewhere in [z,1], and
therefore we have established that

SXnX=90 (4.70)

This obviously rules out the possible presence of a fixed point in X , and hence for T' < T,
there can be no continuous solution to (4.2) which satisfies the boundary conditions (4.3).

O



Mathematical properties of conically self-similar free vortices. Part 1. 19

5. Some remarks on the computability of the solutions obtained in
Theorem 1

A problem with existence theorems based on the Schauder Fixed Point Theorem is
that theorems do not establish that it is possible to compute the solution approximately
with a finite number of operations. Suppose that f € X is a fixed point to S, where X
is as defined in (4.49) then it is clear that f € S X for all n. Inspired by this Yih et al.
(1982) suggested the following computational approach. Let £2y = 1. Let f1 = Syof2
and then define f, = S"~1f; and 2, = Suf,. Yih et al. (1982) claimed to have proved
convergence for this numerical method if . > 0. Although numerical experiments suggest
that this method indeed converges, in our opinion the proof presented in (Yih et al. 1982)
is not complete. To see this we will repeat and comment on their argument.

If z. > 0 we may add a further comparison result to those in Proposition 1, namely

LEMMA 3. Ifz. > 0 and {21 > {25 then Sg,0f > Sa,0f?.

The proof is a trivial consequence of (4.1).

Using this, Proposition 1 and Lemma 1 we can follow Yih et al. (1982) and establish
that the f,s and (2,,s form nested sequences

h>2fs>2...2...>2fa>fo (5.1)
Q0> 2>...>...>0,>0 (5.2)

Yih et al. (1982) claimed that this is enough to ensure convergence of the numerical
method, but in our opinion this is not necessarily true. The first problem is that we cannot
establish that f; (1) < oo. This problem can be remedied with an argument similar to
that which led up to Proposition 6. Having done so, it is true that odd sequence entries of
fn approach some limit [ from below and that the even sequence entries approach some
limit L from above. There is, however, no reason why these limits should necessarily
coincide. We claim that without additional knowledge of the iterated sequences it is
quite possible that some limit cycle (I, L), such that Sl = L and SL = [, is approached
in the limit.

As mentioned in Yih et al. (1982) nested sequences of this type have previously been
used by Weyl (1942) to prove the existence of similarity solutions for some boundary-
layer problems. However, an essential part of Weyl’s proof is the establishment that for
his problems

|frt1 — fn| =0 (5.3)

pointwise and uniformly on compacts as n — oo. This is clearly sufficient to establish
convergence of the numerical method outlined above, unfortunately however, a property
like (5.3) is difficult to establish for our problem. It is precisely this difficulty in proving
a suitable contraction property, which has forced us to invoke the abstract framework of
the Schauder Fixed Point Theorem.

Finally, we should say a few words about uniqueness. Using Proposition 1 we easily
establish that for . > 0 any solution obtained from the procedure outlined above is
unique. However, this does not imply that this is the unique solution to (4.2) which
satisfies (4.3) for given values of T, I'. and z.. The reason for this, is that we have
started the iterations with 29 = 1. This choice is clearly arbitrary, to obtain all solution
we should therefore try all continuous decreasing functions in [z, 1] taking values between
0 and 1 as starting functions. This would be an enormous set of initial functions, all of
which could in principle yield different solutions. In the sequel to this article we will prove
a theorem which shows that all possible solutions to our problem, can be exhaustively
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indexed by a three-dimensional set, and some evidence indicates that it may in fact

be one-dimensional. In doing so we will mathematically justify a numerical procedure
described in (Shtern & Hussain 1993) and (Shtern & Hussain 1996).

6. Conclusion

We have mathematically proved sufficient conditions for the existence and non-existence
of conically self-similar free-vortex solutions to the Navier—Stokes equations. Specifically,
we have proved the absence of a logarithmic singularity at the symmetry axis. In do-
ing so, we have also improved the bounds for solution existence and non-existence, and
the resulting bounds are shown to be close to optimal in the low-swirling limit, which
emphasizes the relationship between solution existence and non-existence in the swirling
case and in the non-swirling case. Finally, we have discussed briefly some mathematical
difficulties which occur when we try to compute these solutions.

The author is grateful to Jéran Bergh for comments on the manuscript. This research
was partially supported by the Swedish Institute of Applied Mathematics (ITM) and the
Swedish Network for Applied Mathematics (NTM).
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