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Abstract

The multitype Galton-Watson framework is used to model and
analyse structured populations with density-dependent reproduction.
Focussing on the near-critical case we find conditions which ensure
that with positive probability the reproduction process neve r dies
out. We prove that these conditions imply the linear growth of the
population size and population structure stabilisation. These results
are applied to a density-dependent version of the discrete-time Crump-
Mode-Jagers branching process.
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1 Introduction

The classical multi-type Galton-Watson (MGW) process is a multidimen-
sional Markov chain Z, = (Z,(s), s € S) satisfying the branching property:

) Zos)
Zns1 = Z Z "™ (s),

seS j=1

where 7™/ (s) are i.i.d. copies of a vector v(s) = (v(s,t),t € S) with non-
negative integer-valued components, s € S. This process describes a system
of particles with independent reproduction laws. Here a finite set S is the
particle type space, Z,(s) is the number of type s particles at time n, and the
random variable v(s,t) is distributed as the number of the type ¢ offsprings
of a type s particle.

The multi-type feature makes the MGW framework flexible enough to
address structured populations with overlapping generations and bounded
reproduction. Indeed, one can think of the individual life as a chain of particle
transformations with the particle type space S being the set of all possible
life-stages of an individual. The particle type s € S may record individual
characteristics like age, the number of individual’s children born in the past,
the physical size of the individual, e tc. If reproduction is bounded, then the
set S of individual life-stages is finite.

The independent reproduction property has lead to an advanced theory
of the MGW processes (cf. Athreya and Ney (1972)). At the same time
this property is the major restriction for this model. Here we relax the
independence condition and consider a d ensity-dependent MGW process.
By density-dependent we mean a particle reproduction law influenced by the
current population size Z, = Y ,cs Zn(s) and independent from the current
population structure Z,,/Z,.

To be more specific let v(s,t, z) be a random variable distributed as the
number of ¢-particles in the offspring of a s-particle from a population of the
size z. The MGW branching process with density-dependent reproduction is
a multidimensional Markov chain Z, satisfying the branching property

] 2
Zn—|—1 = Z Z iz (8, Zn)7 (]‘)
j=1

where 7™(s, z) are i.i.d. copies of the vector (s, z) = (v(s,t,2),t € S).



We assume also that every particle has no offspring with positive prob-
ability. This assumption, in presence of the absorbing zero-state, turns all
non-zero states of the chain Z,, transient. Therefore, there are only two pos-
sible fates for the population size process Z,,: either the process is eventually
absorbed at zero or it grows to infinity

P[Z, — 0]+ P[Z, — co] =1 as n — o0.
Introduce the S x S matrices

M(z) = {Ev(t, t, Z)}(t,t')est;

[(s,z) = {Cov[v(s,t,2),v(s,t',2)|}upiesxs, s €S;

presenting the first and second moments of the particle reproduction law.
Suppose that the particle reproduction law stabilises as the population grows
larger so that the first and second moment matrices converge:

M(z) = M, z — oc; (2)
[(s,2) > T'(s), s€S, z— 0. (3)

The classical theory of branching processes suggests that if the limit ma-
trix M is positively regular with the Perron eigenvalue p, then the extinction
probability ) = 1 when p < 1, and ) < 1 when p > 1. However, it is a known
fact for th e single type Galton-Watson processes (cf. Klebaner (1984)) that
density-dependence makes situation more delicate in the near-critical case
(when p = 1). The limit behaviour of density-dependent branching pro-
cesses is sensitive to the convergence rate in (2): if the convergence rate
is above a certain threshold parameter the process can survive forever with
positive probability so that () < 1. Our Theorem 2.1 shows that in the multi-
type case this threshold parameter is a linear combinat ion of the elements
of the matrices I'(s). This theorem claims also that a surviving branching
process grows linearly with its type structure aligning along the left Perron
eigenvector of the matrix M.

Theorem 6.1 from Section 6 treats a more general situation when the
matrix M may have a particular kind of decomposable structure. In Section
11 we apply Theorem 6.1 to a density-dependent version of the Crump-Mode-
J agers (CMJ) process. The model is quite general: not only does it discerns



between different age-stages but it also distinguishes between individuals
with different numbers of daughters born in the past.

Situations when reproduction could also depend on the type structure of
the population are beyond the scope of the paper. In particular, our results
can not be applied to two-sex branching populations (cf. chapter 11 of the
book by Asmussen and Hering (19 83)). Nevertheless, Theorem 2.1 indicates
a way of relaxing the key assumptions made by Klebaner (1989b), (1991) for
the state-dependent MGW processes to ensure the linear growth theorem.

2 Linear growth theorem in the irreducible
case

In the next theorem the matrix M from the condition (2) is supposed to be
positively regular with the Perron eigenvectors

7= (v(s), s€S), = (u(s), s€S)), v(s) >0, u(s) >0, se€ S
satisfying

oM = pv; Mu = pu, Y v(s) =Y v(s)u(s)=1. (4)

seS seS

Moreover, we assume the linear rate of convergence in (2):
z(M(z) — M) — D, z — oc. (5)

Theorem 2.1 Consider a MGW process with bounded reproduction under
the reproduction stabilisation conditions (5) and (8). If the matriz M is
positively regular with the Perron eigenvalue p =1 and

0 <7< 2d, where d=vDu, v=Y_ v(s)ul'(s)y; (6)
s€S

then the extinction probability Q = lim,, P[Z, = 0] is strictly less than one,
and Z,/n converges in distribution to nv,
a® e
Pn<al=Q+(1- Qs [ te “d, (7)
r'(b) Jo

where a = 2/v, b=2d/~.



Remark. In the single type case this asymptotic pattern is similar to that
of the critical GW process with Poisson immigration stopped at zero (cf.
Zubkov (1972), Vatutin (1977), Ivanoff and Seneta (1985)). A close connec-
tion between the state-depe ndent GW process and the GW process with
the stopped immigration was noticed by Hopfner (1985). The idea is to view
a near-critical GW process as a critical GW process with a state-dependent
immigration. The inequality d > 7/2 insures that the “ immigration” is
intensive enough to overcome the critical branching extinction effect.

3 Population structure stabilisation

It is shown here that due to the Perron-Frobenius theorem the vector Z,, for
large populations could be approximated by the non-random vector © times

the weighted population size X,, = Z,u. Let F, = o(Zy,...,Z,) be the
o-algebra of the population past up to the time n.

Lemma 3.1 Let the conditions of Theorem 2.1 hold. For arbitrary ¢ > 0
there exist such numbers i(€) that for i > i(e)

P[“Zn—H - @Xn-l-i” > 6Xn+i|fn] — Oa Xn — OQ.
Proof. The branching property (1) implies
E[Zn+1‘2n] = ZRM(Zn)

so that the decomposition

Zn—H = ZnM(Zn) + gna (8)
takes place with
_ Zn(s)
'Sn: (fn(t),tGS), ‘Sn(t) = Z Z I/(J)(S,t,Zn),
seS j=1

where 1 (s, t, z) are i.i.d. copies of [v(s,t, z) — Ev(s,t, z)]. Transform (8) into
Zins1r = ZoM + Z,[M(Z,) — M] + &,

and then iterate 7 times:
i—1

Znsi = ZnM" + 3 (ZnijIM(Zynsj) — M] + Euug]) M1
§=0



Using the Perron-Frobenius theorem:
M — W, 1 —o00; W= {u(s)v(t)}(s,t)eSxS- (9)
we deduce that for large ¢

lim SupP[”Zn—H - ?7Xn|| > 6*Xvn|~7:'n]

Xp—00
i-1 _ o
< limsup P|| D (Zpij[M(Zpij) — M)+ &) M7 71| > X, | Fl.
n—>00 4=0

Due to (5) the vectors Z,[M(Z,) — M] are uniformly bounded. Further-
more, Chebyshev’s inequality gives
Cl CII

Pll|&n+ill > €Xn| ] < @E[Znﬂ'\fn] < aox,

Therefore we can claim that for large ¢

Pl|| Zpyi — 0X,|| > 2eX,|F] — 0, X,, = o0
and consequently

P[| X4i — Xn| > 2eX,|Fn] = 0, X, — oc.

The asserted convergence follows from the last two convergences.

4 A supermartingale inequality

Lemma 4.1 Under the conditions of Theorem 2.1 there exist such natural
k =k, and T, that for all e >0

1
|EE[Xn+k - Xn|fn] - d| <e if Xp > T

1
kX,

|E[(Xn+k - Xn)2|fn] - 7| S €, Zan > Te;

1 .
kTEHXn—Hc - Xn|]|~7:n] S C, Zan > Te; .7 Z 3.



Proof. We estimate the moments of (X, x — X,,) using the equation
Xn—|—1 = Xn + g(Zn) + §n7
where
g(Zn) = Zn[M(Zn) - M]ﬂ,, é-n = gnﬂ-
This equation comes from (8) after multiplying both sides by @. After iter-
ating it £ times we find
n+k—1 _

Note that under (5) the values g(Z,) are uniformly bounded and accord-
ing to the definition of &, and &,

E[€n|fn] = 0; E[fﬂfn] = Z Zn(s)ﬂ'r(sv Zn)ﬂ"

ses
To prove the first asserted estimate turn to (10) and get
k-1
E[Xn—Hc - Xn|fn] = Z E[Q(Zn+z)|fn]
i=0
Thus the point is to observe that due to (5) and Lemma 3.1
|Elg(Znsi)| Fn] — d] < €, i > ke, Xn > TE

Similarly it is proved that the second asserted estimate follows from (3) and
Lemma 3.1. Finally, the third estimate follows from

E[|£n|]|Fn] < CjZna ] Z 3
which holds because the reproduction is bounded.

Lemma 4.2 Put f(z) = 1/log(x+3). Under the conditions of Theorem 2.1
there exist such natural k and T that



Proof. As it was shown by Kersting (1986) there is such a positive con-
stant C that forallz >3 and h>3 —x

1
fx+h) < @)+ ['(@)h+ 5" (@h* + Clf"@)||h + H{h < —g}-
Therefore for large values of X,

() — f(Xp) > mth —Xn 1% €

— Xk — Xn)?
=~ X,In’ X, 2X,31H2Xn( * )

C

X
3 n
—m\){mk — X" = H{ X — Xn < —7}-

Apply the Chebyshev inequality

X
P[Xn—l—k: - Xn < _7n|fn] < 8Xn_3E|Xn+k - Xn|3

to see that
X, In’ X, 1
SR B — £ (X )] 2 3B Xk — Xl
1+e 9 ' 3
_QanE[(Xn+k - Xﬂ) ‘]:n] - X_73LE[|X7L-HC - Xn| |]:n]

Now in view of Lemma 4.1 it becomes clear how the threshold parameter for
d comes out. If d > 7/2 then we can pick up such a small € > 0 that the
RHS of the last inequality is positive for £ = k. and X,, > T..

5 Proof of Theorem 2.1

Our proof of the strict inequality () < 1 is based on the ideas of Kersting
(1986). It hinges on the supermartingale inequality from Lemma 4.2.

Let the conditions of Theorem 2.1 hold and suppose that our branching
process degenerates with probability Q = 1. This entails that the conver-
gence

Elf(XptiVT)] — f(T), n— o0 (11)

holds for any fixed natural 4, 7. Here z V y stands for max(z, y).

8



To arrive at a contradiction observe first that since the function f(z) is
monotone we have

E[f(Xpsx VT) — f(Xn vV T)I{X, <T} <0.
On the other hand, due to Lemma 4.2 for all n
Elf(Xpse VT); X, > T) < E[f(Xngr; Xn > T
< Blf(Xn; X > T] = E[f(Xn VT); Xp > T1.
Thus for all natural n
Ef(Xpx VT) < Ef(X,VT),
and for all natural [, n
Ef(XpmVT) < Ef(X,VT).

After letting I — oo under the assumption (11) we get Ef(X,, VT) >
f(T'), and therefore P[X,, < T] =1 for all n. Since the last is obviously false
for any finite 7', we conclude that Q) < 1.

We prove the weak convergence of Z,/n by the method of moments used
in Klebaner (1989a), (1989b), (1991). Note that the bounded reproduction
case under consideration perfectly suits the method of moments.

Let  be a random variable with the distribution function (7). Due to
Lemma 3.1 it suffices to show that

P[X, < nzx] = Plp <], n — oo.

Since the set of moments

i—1 :
En’ :QH(dJrv%), i>0
7j=1

uniquely determines the distribution of 7, the weak convergence under the
question is equivalent to

E[X,/n]' = En', n =00, i=0,1,.... (12)



This is proved by induction over . The case ¢ = (0 easily comes from the
equality EX=P[X,, = 0]. Assume that

E[X,/n) — En’, n — oo, j €[0,i—1].

Take an arbitrary ¢ > 0 and k£ = k. introduced in Lemma 4.1. Present the
binomial expansion for

li—l—lc(n-',-l) = [Xigwn + (Xigk(ner) — Xiin)]'

in the form

EIX] jnin) | Frokn) = X + X7 i BIX 1 kn11) — Xigkn| Fiskn]

(2 —1
+ ( )Xlqu—lgnE[(Xl—Fk(n—H) - Xl+kn)2|ﬁ+kn] + Bn,i-

Accordlng to Lemma 4.1

Cii—1),
EIX] e Frern] = Xiipn + Kldi + 2 1 X in + B, .,
where
|B’:'L,i| < Clele+an{Xl+kn>T} + C”k[T]Z I{Xl+kn<T}
Therefore

- ‘ ) it —1 ; i
EX[ ki) = EX[ipn + kldi 4~y ( 5 )]EXH,in + Ole(kn)" 1], n — .
After iterating over n we obtain

z—l

EX] y(ns1y = kldi + - ] Z EX[ i+ Ole(kn).

Divide both sides by (I+kn)* and use the induction assumption. This results
in

Xl+kn
E
e
In other words, for any [ € [0,k — 1] there exists such n; that

] [d+’y—]E77’ L1 0(e), n— o0, L€ [0,k —1].

Xitkn ]’ :
|E [l—%l;/];] — En'| < Ce¢, n>mny.
n

It follows that
|E[X,/n]" — En'| < Ce, n > k(mlaxnl +1).
which means (12).

10



6 Linear growth in presence of absorbing types

The positive regularity condition of Theorem 2.1 becomes a restriction for
biological populations with old individuals having zero fertility. Responding
to this we consider a decomposable case when the type set S could be splitted
in two parts S = Sy + 57 such that S; types particles have no progeny of
types So. The Sy types particles form an irreducible subprocess and in the
particular case when the class S; is empty we arrive at the previous section
setting.

Denote by M;; the S; x S; sub-matrix of M so that the following diagram
holds

(13)

M = [MOO MOI]

0 Mll
In this section we assume that:

(A) the matrix My is positively regular with the Perron eigenvalue py = 1;

(B) [My;]* = 0 for some natural number k;.

ditions (B) and (C) ensure that a process started by a Sj-particle dies
out in k; years. Thus the class S; corresponds to the set of the life-stages
with zero fertility.

Let 9y and 7, be positive eigenvectors of My, corresponding to the Perron
eigenvalue. Introduce such S-vectors v and u that

a) their Sy-subvectors coincide with 7y and %, respectively,
b) the S;-components of the vector @ are all zero,

c) the Si-subvector of the vector v equals 1o My, EiZO[MH]i.

It is not difficult to check that tM = ©; M4 = u and therefore we can
choose such 7 and @ that (4) holds with p = 1. This allows us to extend the
Perron-Frobenius theorem (9) and thereby Theorem 2.1.

Theorem 6.1 Consider a MGW process with bounded reproduction under
the reproduction stabilisation conditions (5) and (3). Let the type of the
initial particle belong to Sy. If M satisfies (A), (B), and (6) is valid, then
the extinction probability Q = lim,, P[Z, = 0] is strictly less than one, and
Z,/n converges in distribution to nv. The limit distribution is (7) with a =

2/, b=2d/y.

11



7 Application to age-structured branching pro-
cesses

The major motivation for Theorem 6.1 was the possibility to apply it to
discrete-time reproduction models with overlapping generations where indi-
viduals can have random life-lengths. The idea is to focus on yearly ! per-
formances of individuals and think of individual’s life as a chain of particle
transformations. The single type setting on the individual level translates
into a certain multitype setting on the particle level. In this sect ion we
treat a relatively simple age-dependent branching process and discuss the
conditions of Theorem 6.1 in the light of this model. The purpose of this
discussion is to simplify understanding of the next two sections devoted to
a density-depen dent version of the CMJ process. All formulae given here
without proof follow from their more general counterparts obtained later on.

Consider a one-sex population of individuals that live random number
of years and are able to give multiple births through their lives. Assume
that the random number of daughters produced by any individual in the
population at time n can depend only on the current population size and the
individual age. This branching process has a well-established counterpart in
the Population Dynamics literature (cf. Tuljapurkar and Caswell (1997)).

Such a population can be described by a MGW-particle system with the
particle type set S = {0,1,...,J} listing all possible age-stages for an indi-
vidual. Particles of the type s € S giving birth to v particles of type 0 and
one particle of t ype (s + 1) correspond to individuals of age s giving birth
to v daughters and surviving another year.

Let an individual of age s € S survive another year with the probability
qo(s,2) = Plv(s,s+1,2) = 1],
and produce k£ daughters with the probability
pi(s, 2) = Plv(s,0,2) = k|

independently of the survival event. Since J stands for the maximal life-
length, we take gy(s, z) > 0 for all s except for go(J, z) = 0.

lwe write “a year” in stead of “a unit of time”

12



Using the moment functions
m(s,z) = kak(s, z); h(s,z) = ZkZpk(s, z).
k k
we can write the reproduction stabilisation conditions (2) and (3) as:
m(s,z) = m(s), qo(s,2z) = qo(s);
h(s,z) = h(s), z — o0, s € S.

The corresponding limit matrix M is a Leslie matrix

m(0) q(0) 0 ... 0 0
m(1) 0 @) ... 0 0
M = e
m(J—1) 0 0 0 q(J-1)
m(J) 0 0 0 0

and the condition (5) is equivalent to
z[m(s,z) — m(s)] = d(s), z =00, s=0,...J;
2[qo(s,2) — qo(s)] = d'(s), z = 0, s=0,...J — 1.

The corresponding matrix D has the elements d(s) at places (0,s), s =
0,...J, the elements d'(s) at places (s,s + 1), s = 0,...J — 1, and zero
elements elsewhere.

Observe that if old individuals can not have children:

the matrix M has the decomposable structure (13) satisfying the condition
(B) of Theorem 6.1. To ensure the condition (A) of Theorem 6.1 we should
consider only non-cyclical individual reproduction laws. In other words, we
exclude cyclical type-transformations when, for example, at even years only
individuals of age 0, 2, 4, ...are present. In particular, the reproduction law
is non-cyclical if m(j) > 0 for all j € [0, Jy].

As to the condition p = 1 in Theorem 6.1 it is equivalent to the require-
ment that the limit (as the population size tends to infinity) of the average
offspring size per individual equals one. To express this limit, say p, in terms

13



of qo(s, z) and m(s, z) note first that the average offspring size in a population
of size z is

z) = Zoqo((), 2)...qo(s—1,2)m(s, z).

Thus g = Y7_,q(s)m(s), where q(s) = qo(0)...qo(s — 1), j = 1,...J and
q(0) =0.
It turns out that the vectors ¢ = (¢(s),s € S), w = (w(s), s € S) where

Zq

z>s

satisfy

Mw=w+ (p—1)m, m = (m(s),s € S).
When g =1 it follows that § and w are a left and a right Perron eigen-

vectors of the matrix M. Therefore, in this case we can use the parameters
A =Y ,csq(s) (the limit average life-length) and

B=qw="> sq(s)m(s)

sES

(the limit average age at childbearing) to calculate the normalised Perron
eigenvectors ¥ = §/A and @ = %U_}.
Now we can turn to the key condition (6). For the given D, v and @ we

get df = ¢, where the parameter

J J—1 dl S '
c=> q(s)d(s) + Z Z i)m(i)
s=0 =0 do S) i>8

happens to be the limit for z[u(z) — 1] as 2 — oco. It can be shown also that
= ’\6%2, where

o =3 q(s)[h(s) + 2m(s — Dw(s)] — 1
s€S
is the limit for the offspring size variance. Thus (6) is equivalent to 0 < 02 <
28
=,

14



8 The MGW representation of the discrete
time CMJ process

The CMJ process develops the basic Galton-Watson model by allowing for
the general reproduction law on the individual level. An introduction to
the theory and applications of the CMJ processes could be found in Jagers
(1975), where the CMJ processes are named “general branching processes”.
In the discrete time setting the life law for a CMJ-individual is described by
a point process

!
E(dt) = 30 vioi(dt),
i=1
where [ stands for the life-length and v; gives the number of daughters born
at the age . These random variables may depend on each other but for
different individuals the reproduction point processes are i.i.d.

Given the distribution of the bounded point process £ we can introduce a
MGW particle process fully describing the corresponding discrete time CMJ
process with bounded reproduction. A particle is meant to follow the fate
of an individual during a cert ain year. In the next section using the MGW
representation of the CMJ process we introduce a density-dependent version
of the CMJ process and apply Theorem 6.1.

First, we label all possible life-stages for an individual with the reproduc-
tion point process £. Let 0 label the new born individuals and the vector
s" = (0, s1,...,8,) stand for the individuals of age n with s,, daughters born
presently, s,_; daughters born a year ago, and so on. We see that the set
S of all individual life-stages is the set of vertices in a finite tree. This tree
not only gives us the type set S for the MGW process but also shows what
kind of particle transformati ons can happen in the MGW process behind
the CMJ process. (Figures 1 and 2 give an example of the type tree S and
the corresponding CMJ reproduction picture.)

If s"*1 belongs to S then a particle of the type s® may transform into
5,41 O-particles plus at most one s"*!-particle. This reflects the fact that an
individual with the past record s" in the coming year with positive probability
p roduces s,1 daughters and either dies or stays in the population. In the
language of the MGW model, for any pair (s",s""!) € S x S the joint
distribution of v(s",0) and v(s", s"*!) coincides with the conditional joint

15
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Figure 1: The type set S

0 0 0
0 0 [o1 0 00
0 00 [001 0 [02 020
0 02 022 0 [o1 o011
0 0 [0

0 00 002

Figure 2: CMJ reproduction

distribu tion of v,4; and Iy, 5. .1 Tusny1) given that vy = sq,...,1, =
Sny ! > n. For all other pairs (s,t) we have P[v(s,t) =0] = 1.

Sometimes instead of s” and s"™! we write s and sk if 5,1 = k. We may
even write st instead of "% assuming that s = s and t = (S,41,. ., Snii)-

9 The matrix of the first moments for the
CMJ reproduction

Denote r(s) = Ev(s,sk) and m(s) = Ev(s,0). These are the following
characteristics of the point process &:

rk(s") = Plvpii =kl >n+1|vy = 81,...,0n = Su, L > nl,
m(sn) = E[l/n+1|l/1 = S81,...,Vp = Sn’l > n]

The first moment matrix M = {Ev(s,t)}syesxs belongs to a class of
matrices somewhat wider than the Leslie class and looks like

m(0) 70(0)...7%,(0) 0...0 0 ... 0 0...0
m(s) 0 0 00 ro(s).'.'.‘rks(s) (](]

16



To be precise, the row s of M has m(s) for the component 0, while its
component sk is equal to 7(s), £ > 0 and all other components in the row
S are zeros.

Let p = E[v;+...4 ] stand for the average offspring size. In the critical
case when y = 1 the Perron eigenvector of M equals one. Moreover, in the
critical case we can explicitly calculate both the left and the right Perron
eigenvectors of t he matrix M. Note that we deal here with the situation
described in Section 6 when the Perron-Frobenius result holds for a certain
class of decomposable matrices.

Observe that the vector ¢ with the components

q(0)=1, g(s") =Plv1 = $1,...,Un =8, L >n], s" €S, n>1
satisfies

(GM)(0) = Z Elvpi1;v1 = 81,y Vp = Spy 1 > 1
snes

=Y Elvgl>n]=En+...+u]=pn,

and
(qM)(sk) = q(s)ri(s) = q(sk).
Therefore, gM = ¢ if 4 = 1. Furthermore,
gl= > Plvi=5s1,...,vp =58p,0>n] =) Pll>n] =),

snes n>1

where A = El is the average individual life length.
Next, put

w(sn):E[Vn+1+...+Vl|l/1:Sl’,._,]/n:sn’l>n]

and in particular w(0) = p. Since

1
FElvgiivi =81,...,Vp = S, 1 > )
q(sn)bzn [ n+is V1 S1 Up Sn TL+Z]

w(s") =

1

Z Z ElUnti;v1 = 81y« oy Vnti = Snaiy L > n 4+ 1]

Q(Sn) I>N Snt1s--8nti

17



we conclude that in terms of the functions ¢(s) and m(s) the formula for
w(s) will be

s) ze:
The vector w = (w(s), s € S) satisfies the relation

(Mw)(s) = m(s)w(0) + ; rr(s)w(sk)

> q(skt)ym(skt)

k Q(S )tskteS

m(s)p + T[ > a(st)m(st) — q(s)m(s)] = m(s)(n— 1) +w(s).

t:stesS
Thus
Mo = (p—1)m+w, m=(m(s),s €S),

and Mw = w if p = 1.
The scalar product 8 = qw can be computed in two ways:

qu = Z Elvpi1+ ...+ v501 =81, ., Up = Sp, L > 1

sneS
n>0 i>n+1 i>1

and

s,s5t)ES
= Z q(s")m(s") = Z ng(s")m(s").
(st,sm)ES X S,0<i<n s"eS

The first result demonstrates that § is the so called average age at childbear-
ing. The equalities gw = 8 and g1 = ) show that the vectors v = icj and
U= §u‘; provide with the pair (7, %) ensuring (4) with p = 1.

18



10 The second moments for the CMJ repro-
duction
Turning to the second moment characteristics put

h(s") = Ev?(s",0) = E[v, +1|1/1 = 81,..ey Uy = Sp, 1 > nl;

Zq +2Sn ( )]_1'

s"ES
Observe that

E(V1 +...+ Vl Z E[V + 2Vn(l/n—|—1 +. )]
n>1

= Y [A(s™)q(s") + 2s0q(s")w(s")] = o + 1.

snes

This implies that in the critical case o2 is the individual offspring variance.
Introduce the second moment matrices I'(s), s € S with the elements

L(t,t") = Covly(s,t),v(s,t')], t€ S, t' € 8.
It is easy to see that for the MGW representation of the CMJ process
[,(0,0) = h(s) —m?*(s); T(0,sk) =T,(sk,0) = (k —m(s))ri(s);

Ds(sk, sk) =ri(s)(1 —rk(s)); Ts(sk,sg) = —ri(s)rj(s);

and all other elements of I'(s) equal to zero.
We finish this section by proving that

Z q(s)wl(s)w = o?, if p = 1. (14)

sES

(Recall that all the sums appearing here have a finite number of summands
due to the bounded reproduction condition.) Since

ol (s)w = w?(0)(h(s) — +22 )(k — m(s))rk(s)

+ zk:wQ(sk Te(8)(1 — 7rx(s) —22 w(sj)rk(s)r;(s)

k<j

19



and w(0) = 1 we have

u‘;F(s)u_} _ h,(S) _mZ(S) +22 Sk‘)k‘?”k( )—2m Zw Sk Tk( )

+Zw (sk)re(s [;wskrk r
- +2Z k)kry s)-i—Zw (sk)ri(s) — w?(s).

The last equality is due to

m?(s) + 2m(s) > w(sk)rg(s) + [Z w(sk)rk(s)l

k k

=|m(s)+>_ w(sk)rk(s)] = w?(s).

k

It follows
Y gs)yal(s)m = > q(s)h(s) +2D_ > kq(sk)w(sk
SES s€S sES k
+ > q(sk)w = > q(s)
skeS s€S

and to arrive at (14) it remains to see that

S a(s)h(s) +2)° > kq(sk)w(sk) = > q(s")[A(s™) + 2s,w(s™)] = 0” + 1,

sES sES k sneS

and

Y a(sk)w’(sk) — > q(s) —q(0)w?(0) = —1.
skeS seS

11 Linear growth theorem for the density-
dependent CMJ process

Jagers (1997) introduces a general density-dependent branching process via
a sequence of point processes: the point process indexed by z gives the life-
law to individuals born into the population of size z. With the discrete-time
setting under the ass umption of bounded reproduction we are in a position
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to give a more flexible definition of the density-dependent CMJ process which
takes into account the fact that at various ages the same individual belongs
to populations of different sizes.

Take a sequence of uniformly bounded point processes

I(z)
E(dt, z) = vi(2)di(dt), z=1,2,...
i=1
In view of Section 8 and the introduction we can speak about a density-
dependent MGW process Z,, = (Z,(s), s € S) corresponding to the sequence
&(dt, z). The resulting population size process Z,, = Y ,cs Zn(s) is called here
a phdensity-dependent CMJ process.

The following theorem is Theorem 6.1 applied to the density-dependent
CMJ processes. We use the notation of Sections 8, 9, and 10 just adding an
ertra parameter z when necessary.

For the density-dependent MGW process governed by the sequence of point
processes £(dt, z) we can write the reproduction stabilisation conditions (2)
and (8) as:

m(s,z) = m(s), ri(s,z) = 1x(s), 2z > 00, s€ S, k>0
plus
h(s,z) = h(s), z > o0, s € S. (15)

Given the three limit functions m(s), rr(s), and h(s) we can introduce a
number of functions and parameters whose clear interpretations are presented
in Sections 9 and 10:

"—nr st ws:L st)m(s
q(S)—i:H1&»( ), w(s) q(s);q(t) (st),

p=Y ms)a(s), A=Y a(s), f= 3 na(s")m(s"),

SES SES sneS
o? = Z q(s™)[h(s") + 2s,w(s™)] — 1.
s"ES

1t follows from Section 9 that if p = 1 the limit matrix M consisting of
elements m(s) and ri(s) has the Perron eigenvalue 1 and the normalised
Perron eigenvectors v = %cj, U = gu_;.
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Further, the condition (5) of Theorem 6.1 transforms into
zlm(s, z) — m(s)] = d(s), z = o0, s € S; (16)
and
2[ri(s, 2) — re(s)] = di(s), z = o0, sk €S. (17)

The corresponding matriz D has the elements d(s) at places (0,s), s € S,
the elements di(s) at places (s, sk), sk € S, and zero elements elsewhere.
Thus the parameter d = vDu is equal to < 5 where

c= gD =Y q(s)[d(s) + 3 di(s)u(sk)]

seS

Next we show that the parameter ¢ has a clear interpretation in the CMJ-
population terms as the convergence rate for the average offspring size:

z[pu(z) — pl = ¢, z — oc.

Observe that the LHS equal

A als, z)m(s, 2) = 3 a(s)m(s)]

=z 2[@(8, z) = q(s)Im(s, 2) + 2 2@(3) [m(s, 2) — m(s)].

We should verify that

zZ[q(s,z)— —>Zq Z Jw(sk), z — oo.

SES SES k
The LHS equals

n n

> 2 (Il 2) = [ a5 | m(s™)
s"ES 1=1 i=1

which converges as z — oo to

n j—1 n

gszll_[lrsz 8 1 8.7 SJ 1 Hrsz "~ 1 )
= ; §1 §1 @m s"
- sgsjglq( it )(Z(Sj) (")
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—S4ls) Y (s (’Z)) (k) = 3" a(s) 3 dy(s)w(sh).

seS kt:skteS seS k

Now we can turn to the key condition (6). Since d = § and, due to (14),

ﬂ2 , the inequality (6) is equivalent to 0 < 02 < —’Q

Theorem 11.1 Consider a density-dependent CMJ process with bounded
non-cyclical reproduction satisfying stabilisation conditions (16), (17) and
(15). If u =1 and 0 <o?< %, then with the positive probability (1 — Q) the
branching process never dies out and %Zn has the limit distribution (7) with
262 p— 28

a= oZ\? o\’
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