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Abstract

A (general) branching process, where individuals need not reproduce
independently, satisfies a homogeneous growth condition if, vaguely, one
would not expect the progeny from any one individual to make out more
than its proper fraction of the whole population at any time in the future.
This notion is made precise, and it is shown how it entails classical Malthu-
sian growth in supercritical cases, in particular for population size depen-
dent Bienaymé-Galton-Watson and Markov branching processes, and for
non-decreasing age-dependent processes with continuous life span distri-
butions.
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1 Introduction

It is easy to envisage general branching processes with possible interaction be-
tween individuals, instead of the classical independence. If the interaction sta-
bilizes during supercritical growth, so that in the limit individuals reproduce
independently, like members of a classical, general multitype and supercritical
branching population, then a coupling device can be used to establish Malthu-
sian, i.e. exponential, growth.

Indeed, assume that individual reproductions in the limiting infinite popu-
lation tend not to exceed those of finite populations. Then the coupling can be
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constructed through imaginary abortions so that the resulting, thinned repro-
duction process equals what would have been the case, had the population been
infinite (Jagers, 1997). The population of non-aborted individuals, from any
time onwards, must asymptotically grow exponentially (or die out), and if no
abortions occur after a finite (but random) time the same must be ultimately
true of the original, not thinned population.

A particularly lucid case is that of population size dependence in single-type
populations. If m(n) denotes the expected offspring per individual in an n-
size generation and m = m(oo) the same in an imaginary infinite population,
then in many cases the coupling will be successful — and Malthusianness thus

established — if
Z{m(n) —m} < oo.

However, as pointed out (ibid.) exponential growth can occur even in cases
where this coupling fails. In particular Klebaner (1984, 1985, and 1989) man-
aged to show that,

Z{m(n) —m}/n < oo
essentially suffices for Bienaymé-Galton-Watson processes to exhibit Malthusian
growth ~ m™.

For a binary splitting cell model Gyllenberg and Webb (1990) arrived at the
same type of main condition in a determinisrtic context.

The purpose of the present paper is to establish Klebaner type criteria for
simple and certain age-dependent branching processes, thus replacing the — in
that regard — rather preliminary attempts made in (Jagers, 1997).

Basic in this is the concept of symmetric or homogeneous growth (ibid.)
crucially linked to the factor 1/n in Klebaner’s formula:

Consider a general (possibly multitype) branching population. Its probabil-
ity space can be constructed explicitly in the traditional Ulam-Harris or Neveu
tree manner, only the probability measure is not required to have the (condi-
tional) independence properties of classical branching. But it must be required
that only finitely many individuals are born in finite time intervals, so that in-
dividuals can be numbered as they are born into the population, arbitrarily for
individuals born together but always so that a mother precedes her daughter,
X1, X2,X3,. ...

The population size at time ¢, zX, can be generally defined by some charac-
teristic x (cf. Jagers 1989), though a certain care has to be excerted in allowing
the population as a whole to affect the measure used. We shall only consider
simple size processes like those alive, {z:}, or {y:}, the total population of all
those born. In the specific cases we shall go deeper into, life spans of different
individuals will be presumed independent of one another and of everything else.
In a model where dependence is on population-size the latter may thus influence
reproductions but not life spans.

Denote the birthtime of an individual x by 7, and z’s daughter process, the
number of individuals stemming from z and alive at ¢ by z;(z). Further write



y¢(z) for all those stemming from x born by ¢, alive or not. For simplicity, write
7; instead of Tx,, even though that is ambigious with individuals labelled in the
Ulam-Harris manner. Let G, be the o-algebra containing all information about
matters that occurred up to 7, i.e. G, , and abbreviate Gx, further into G;.
Interprete 0/0 and 1/z as zero, and keep in mind that the latter convention
means that sums over elements divided by z,, will only be taken over those
where 7, < oo, finitely many in case of extinction. To avoid uninteresting
complications we assume that a daughter cannot be born simultaneously with
her mother.

Definition 1 A branching process with possible dependence between individuals
is said to grow homogeneously if there is a constant K such that

e ($)|g ] < K
—Zz
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K

for all individuals x and t > 7.

This means that the expected fraction of the future population, stemming from
anyone of the z; alive at any time ¢ is of the same order of magnitude.

The obvious example of such a process is a Bienaymé-Galton-Watson process
with population-size dependence. Since the reproductions of all individuals in
the same, say k:th, generation are affected by the same population size, and are
otherwise independent, symmetry implies that

E[Z";k(x)wm] _1

n

7

for any z with 7, = k. More about that in the next section.

Now we shall give the general result about Malthusianness for homogeneously
growing populations, whose reproductions approach those of an independent-
individual Malthusian population from above.

Thus, denote the reproductions of any individual z by &,. In the general
case this is a point process telling at which ages x begets children of what types
from a general type space S. For single-type, age-dependent or Galton-Watson
processes it reduces to a random variable, telling us how many children z splits
into at death. Similarly, let n, be the reproduction process of a general Malthu-
sian branching population with the finite reproduction kernel y (defining the
Malthusian parameter «, stable type distribution 7, and fitness h). Interpret
"Malthusian branching population’ to mean that the classical supercritical con-
vergence theorem should hold (Jagers 1989). Assume that for any measurable
set A of types and age interval B, &,(A x B) > n,(A x B) in distribution given
G-

Then, by Strassen’s theorem (Lindvall, 1992) the two processes can be cou-
pled through imaginary abortions: 7., can be thought of as arising from &,
through deletion of some children. Again abusing notation somewhat, we let



&z, Mz stand for a coupled version, and write 4, to indicate abortion or not of z,
so that §, = 1 if and only if z is an atom of &, but not of 17,,,, mz denoting
z’s mother in the Ulam-Harris tree.

We now think of G, as referring to the process as defined on this new space.
Note that in a splitting process &, € G, but generally this need not be the case.
But except for this general section we shall only deal with splitting populations
in ths paper, i.e. populations where child-bearing can only occur once in a
mother’s life, at her death. Therefore we refrain from further discussion of
the measurability aspects of the problem. However, we shall assume that the
coupling has been so constructed that the future of the actual process from any
T, onwards is independent of 7, given G, and &,,,.

Theorem 2 Let {2} be a general branching process with symmetric growth.
Assume that there is a general supercritical Malthusian branching population
with minorizing reproductions as above. Assume that w; = e~z is tight.
Then,

Z E[6; /2r;] < o0

implies that w; tends in probability to some finite w > 0, not identically zero on
the set of non-extinction.

Proof. The proof, is from (Jagers, 1997), where there is also more about
the coupling and general construction. It is reproduced here for completeness,
and since there are slight differences in setup:

Write twiddles over processes that count only imaginary individuals, i.e.
individuals born according to the n reproduction processes. Thus, %, (x)
stands for the imaginary process starting from the individual z in the actual
population at time 7,. Similarly, @;_,, (z) 1= e~*¢==)z,__ () etc.

For any u, 2{* records at time ¢ + u the number of all living individuals born
up to u but only living individuals not stemming from an aborted individual
after u. If §,, = 0 precisely if z stems from an z’ with 7, > u and §,» = 1, and
0zu = 1 otherwise, and x;(a) indicates whether z is alive or not at age a, thus

zy = Z OzuXe(t +u — 7z)-

To <t+u

In analogy with other notation wf := e~ (t+w) 72,
Clearly,
0< Rttu — Z;L < Z (szczt—i—u—‘raE (IE)

Te>U

and

Wetu — W] < Wipy Y 5mw_

Tz >U Fttu



Thus for any €',v > 0 the homogeneous growth condition yields

P(|wipu — w}'| > €, Wiy <0) < (v/€)KE] Y 0a/27,]

Te >U

for all ¢t and starting types s € S. But
[ Wty — Wotu| < Wity — wi'| + |0f —wii| + |wpr o — wii|.

Since, with I, := {2; Time <t < 7 < 0},
wy = Z e Wy gy, () = Z e “Tw(x),
z€l, z€l,

as t— 00, the twiddled daughter processes being independent individual super-
critical branching process with Malthusian parameter «, it follows that

lim P(jw —wj| >€') =0.
t,t'—o0

Hence,

lim sup P(|witq A0 — Wy gy Av| > €) < 2(v/e)KE[ Z 0z /2, -

t,t' —o0 T >U

Since u can be chosen so as to render the right hand side arbitrarily small, the
convergence in probability follows by completeness and tightness.

Now define the (conditional) abortion probability
€z = E[02|G,—],

where G, is G, _, the o-algebra of events strictly preceding 7,,. We write ¢; for
ex; and G;_ for Gx,_. If ¢, turns out to be a function of some population size
immediately before 7, 2, _, the process is said to be population-size dependent.

Corollary 3 The summation convergence condition of Theorem 2 can be re-

placed by
Z]E[e,-/zn] < 0.

Proof. Write m; for X;’s mother and r; for her rank among her sisters,
and let 7; & mp,, mean that the individual would not have been born, had the
population been infinite (and hence since she is born into the actual one that
she is aborted). With superscripts denoting conditional expectation then,

B9~ [8i/ 1] = P9~ (6; = DE%~[1/2,,]6: = 1] =



= ¢;F9%- [1/27|Ti < 00,73 & Nmg]s

Since z,, is independent of 7,,,, given G; and 7; < oo, and 1/z,, = 0if 7; = oo,
indeed

E9:- [(5@/271] = eiEg"_ [l/zﬂ. T < OO] = ei]Eg"_ [l/ZTi]/IPg"_(Ti < OO) =

= ei]Egi_ [1/z7],

as for any t, {r; < oo} N {r; < t} € G, so that 7; is measurable with respect to
Gi—, and thus PY%-(1; < 00) = 1 on the set 7; < co. But only such sets matter
in the expectations summed.

O

Corollary 4 Consider a single-type splitting population with continuously dis-
tributed life spans. Write T < Ta < ... for the successive splitting times,
mg = E&;|Gs—], & now simply denoting x’s number of children, and m :=
E[nwlng] = E[nz] Then,

> Elei/z] =Y El(mi —m)/zz),

m; being short for m indexed by the individual splitting at T;.
In particular, if the process is population size dependent, then m; = m(zr,).

The proof of this is straightforward (and the corollary can easily be gen-
eralized to cases where many mothers may give birth simultaneously, like the
discrete time situation below).

O

2 The Bienaymé-Galton-Watson case

A population-size (or state-) dependent (Bienaymé-)Galton-Watson process is a
discrete time branching process {z, }, where given the history A, during the first
n generations, 2,11 is the sum of z,, i.i.d. non-negative integer valued random
variables, whose distribution {py(2,)} is determined by the present population
size, z,. The minorization condition can be expressed as

> op(n) =D
k=i k=

for all j and n, pr, = pr(00) being thought of as the reproduction law ‘if the pop-
ulation were infinite’. The latter is supposed to define a supercritical Malthusian
Galton-Watson process,

m =m(o0) = kak > I,Zk(logk)pk < 0.
k !



Similarly, we use the obvious notation f(™, m(n), and g(n) for generating func-
tion, mean, and extinction probability as determined by {px(n)}, and also
v(n) == f™'(g(n)). We write m, ¢,y when n = oo.

In the present case &, is just a random variable, 2’s number of children, and
7, the number retained. Hence, if 2 belongs to the n:th generation, &;|A, ~
{pr(zn)} and n,| A, ~ {py}. Since

025 = Lig, >} — Lma>ih>

€zj = Zpk(zn) - Zpka

k>j k>j
and
Z €z = m(zn) —m.
J

Theorem 5 A population-size-dependent Galton-Watson process is symmetri-
cally dependent. Make the minorization assumption above, assume that m(n) \

m > 1 and
Z{m(n) —m}/n < .

Then {wy, := zp/m™} is tight. If further ym < 1 and ) klogkpr < oo, then
wy, has a non-trivial limit in probability.

The condition ym < 1 enters the proof in quite an intriguing way, in order
to bound E[1/zy; 2, > 0]. Recall that it is always true that v < 1 but certainly
not that v < 1/m. Indeed, for supercritical binary splitting ¢ = (1 — p)/p and
ym = 4p(1l — p) < 1, whereas for geometrically distributed offspring it can be
checked that ym = 1, (¢f. Athreya and Ney, 1972, p. 6-7).

Lemma 6 Let {z,} be a Galton-Watson process with the generating function
f, extinction probability q, f'(1) = m > 1, f'(1) < oo and v := f'(q) < 1/m.
Then, as n— oo,

oo
E[l/zn;2, > 1] ~ m_"/ Ele™™;w > 0]dt,
0

where w := lim 2z, /m™ and the integral converges.

This is due to Badalbaev and Muhitdinov (1990, p. 16-21). Their topic is
actually the variance of yn/Yn—1, Yn := Yo 2k, which behaves as 02E[1/z,; 25, >
1],0% = f"(1)—m?2+m. For our purposes the variance condition can be replaced
by > klogkpy < oo.



Proof of the theorem. With y; still denoting the total population, 7; =
k< yp—1 < i < yg. Thus, if Z; denotes the realized k:th generation, {z €
NF:7, < 0o} in Ulam-Harris notation, then

Yr
Zei/znzz Z Gi/sz
k i=yr—1+1
Z Z mef/zk = Z Z {m(zg-1) —m}/z, =
k z€2,_1 J k zEZ,_4

= Z Ze—1{m(zx—1) — m}/zg.
k
Writing g(n) := m(n) — m, we can conclude that

D Elei/zr] = Elzk_19(2k-1)/2k]-

But given Ap_1, 2, is larger than or equal to a variable U which is binomial
2k—1,1 — po(2x—1). Since if Z is Bin(n, p),
[ 1 ]_1_(1_p)n+1
Z+1  (n+lp
E[1/zk; 2k > 1| Ap-1] < E[1/U;U > 1] <
<E2/(U +1)] <2/(zk-1{1 = po(2k-1)}) < 2/(2k-1(1 — po))-

Further, by the assumptions on g, or rather m(n) — m, there exists a G > g,
which does not increase, the function zG(z) is nondecreasing and concave on
Ry, and Y G(n)/n < oo (Klebaner, 1989). In terms of such a G thus

Z]E[Gi/zn] < ZCE[G(zkflﬁzkfl > 1]

for some constant C'. Now, 2y g zi°, where the latter is Galton-Watson with
reproduction distribution {p}, ‘as if the population were infinite all the time’.
By G’s all properties, the negative correlation between increasing and decreasing
functions and finally Lemma 6:

BlG(zk); 2x > 1] S E[G(277); 25° > 1] =
=Elz° G(2p) /257 20 > 1] < Elep® G(2p7) [E[1/2°5 257 > 1] <
< Elz° |G (B2 DE[1/2¢7; 257 > 1] ~
~ cmkG(mk)m_k,

where ¢ is the integral from Lemma 6. It follows that > Ele; /2] converges,
if so does . G(m'). But comparison with integrals and a change of variable
shows that to be the case, since Y G(n)/n < co.



It remains to check the asserted tightness of {w,} = {z,/m™}. We shall
show that {E[w,]} is bounded.

n

Elwn |An—1] = wn_1 + 2n—19(2n-1)/m" < wn_1 + 2,_1G(2n—1)/m
for any n. Hence,
Elw,] < Elwn 1] + Ezp 1 G(2n-1)]/m™ <

< Efwy 1] + Elzn 1 G (Efzn 1)) /m" <
< Bwn—1 {1+ G(m" ") /m},

where we used in turn the concavity of zG(z), that E[z,—1] > m"™~!, and that
G does not increase. It follows that

Blun] < [[ {1+ Gm*)) < oo
k=1

as Y. G(k)/k < 00 & Y. G(mF*) < o0.

3 Markov branching

In continuous time the natural formulation of Markovian population size de-
pendent branching is to make the death intensity population size dependent —
call it u(n) — and the same for the reproduction distribution, py(n), as in the
Galton Watson case.

Since individuals do not age, there is complete symmetry between all those
present in a population at the birth of any new member, and like in the Galton
Watson case

E[zt—'rJE (.CE) |gw] _ 1

2t Zra

for all ¢ > 7. In other words,

Lemma 7 Population size dependent Markov branching processes grow homo-
geneously.

O

Now write p := p(00),m(n) := > kpg(n), m := m(oo) and introduce the cor-
responding Malthusian parameters a(n) := p(n){m(n)—1},n=1,2...00,a:=
a(00).



Lemma 8 Assume that u(n) — p > 0,m(n) > m,

S {m(n) —m}/n < o,
and that for oll n and k
p(n) Y pi(n) > Yy pi
i>k i>k
Then {e=%t2;,t > 0,} is tight.
Proof. With ;
A= / a(zy)du
0

the random variables
Wt = eiAtZt,t Z 0,

constitute a nonnegative martingale with respect to its natural filtration. Hence,
Weo := limy_, oo Wy exists almost surely and

E[Woo] < lim E[W,] = 1.
But ,
e—atzt — WteAt—at — Wtefo {a(zu)—a}du'

The last assumption of the lemma serves to ensure that the population grows at
least as fast as it would have done in an environment of an infinite population,

Zu g 250, if 25° denotes the size of the latter population, i.e. a Markov branching
process defined by parameters p and pj and no population size dependence.
Since the latter grows as e*¥, if it does not die out (and only this case needs
checking), it is enough that

| tatee) - atau

converges or equivalently

/Ooo{m(cea”) —m}du < oo.

But that follows from the the first assumption, after a substitution of variable.

O

Theorem 9 Let {2} be a continuous time, single type, population size depen-
dent Markov branching process, satisfying the x log x-condition Y k(log k)pr <
oo as well as the conditions of the preceding lemma. Then the process exhibits
Malthusian growth, z; ~ e** on the set of non-extinction, as t— oo.

10



Proof. It remains to check the convergence condition of Corollary 4. In terms
of g(n) := m(n) —m and Klebaner’s G > g of the preceding section:

> Elg(er) /21 < Y Bler, Gler)/23,] < D Bler, Gzn ) B[/ 27, ; 21, > 1],

since 2G(z) increases whereas 1/2% decreases. In the next step use that 2G(z)
is concave and that E[zr;] < ci for any ¢ > m(1) — 1 in order to conclude that

Elzr, G(21,)] < ciG(ci).

But by a large deviations argument it is easy to check that for an e < m — 1
— the superscript co denoting a process in the environment of infinitely many

d
individuals, 2§° < 2 —
E[l/2%,; 2, > 1] <E[1/(25)?% 2% > 1] <

< E[1/(23)% 25 > €i] + P(23 < €i) < C/i°.

The claimed convergence follows.

4 Binary splitting with quiescence and ageing

Consider (population-size dependent) binary splitting processes, where cells ei-
ther have i.i.d. cycle times (i.e. life spans) with a continuous distribution
function L, ending with a mitotic division, or else they are quiescent, i.e. re-
main and do not divide. Assume that cycling cells age in the sense that if T is
a typical cycle time, then

1— Lt + u)

P(T >t+u|T >u) = =)

<1-L{#) =P(T > t).

Loosely speaking, death intensity increases with age. Population size depen-
dence enters through the probability p(z;) with which a newborn cell embarks
upon the cell cycle, otherwise turning quiescent. The population (tumour) size
at ¢ is denoted by z;. Again we consider the supercritical case: p(n) \yp > 1/2,
and refer to this process as population-size-dependent supercritical splitting with

ageing. It is an age-dependent version of the Bell-Anderson cell-size dependent
tumour model considered by Gyllenberg and Webb (1990).

Lemma 10 The population-size-dependent supercritical splitting process with
ageing displays homogeneous growth.

11



Proof. At each split one mother cell disappears and two new cells are added.
Therefore, starting from one ancestor, z,, = [n/2]+1,n=1,2,3,... as long as
Tn < 00. By the ageing assumption the expected contribution from a newborn
cell to the population later will not exceed that of an older cell. If £} denotes
the set of cells cycling at 7, then by symmetry it is even true that

]E[z‘rn —Tk (Xp);ma <t < Tn+1|gk] < E[zrn —Tk (z);Tn <t < Tn+1|gk]

for any z € L. Hence,

E[zt ‘rk( ) |gk]

Zt—r
_ZE[ = k 7Tn<t<Tn+1|gk]
n>k

= Z IE:[ 7Tk ) iTh St < Tn+1|gk]
:Z#E[z (Xk)T <t<m 1|gk]<
— [’I'L/2] + 1 Tn —Tk yin > n+ =

S Z [_ Z Zrp— ‘rk Tn S t< Tn+1|gk]
n>k

Tk zELY

Z | TnaTn§t<Tn+1|gk]
= n/2]+1

= Z]P’ Tn <t < Tng1|Gr) < 1/21,.
7 n>k

Define « as the Malthusian parameter of the limiting, infinite population,
2p/ e “L(dt) =1
0

If {25°} denotes an independent individual, binary splitting branching process,
whose probability law is defined by p and L, then clearly e=*'2{° has a non-
trivial limit, as t— 0co. Write y; for the total population at ¢, i.e. all those born
up to t and let the superscript ¢ indicate that we only count cycling cells in zf
or yi.

Lemma 11 The process {e~ %'z} is tight, provided E[T] < oo and n{p(n) —
p} = 0, as n— oo.

12



Proof. Note that for any fixed to, e %'z < y;, < oo for 0 < t < to.
Therefore it is enough to check that lim sup e ®!z; is a finite random variable,
and indeed since each quiescent cell had a cycling mother that lim sup e=®*y¢ is
finite.

Define o, by
oo
2p(n)/ et L(dt) = 1.
0
Then o, \, a. It is easy to check that indeed
0 <an—a<a{p(n) - p}

for some a > 0. For any individual z, let bz denote its mother, bz grandmother
etc., gz its generation and T its life span (cell cycle duration). Define r, := a
and write

Tn =TXn = Oz, = Q(nt2)/2]
as before. Further, for any z, besides the ancestor, define

gz
Ay = 1, Ty, and Ay = Ax,
k=1

Adapted to varying Malthusian parameters, and considering only cycling cells,
Nerman’s (1981) martingale then takes the form

n

R,:=1+ Ze*A’“ (épe e Te — 1),

k=1

where again somewhat cavalierly T}, stands for T'x, and & gives the number of
cycling children of Xj. Since it is non-negative, it has an almost sure limit, Ro.
Following the approach from the paper quoted, N (¢,u), the number of births
between ¢t and ¢t + u from mothers themselves born before ¢, satisfies

c

Yi Y
N(t,u) > Z{&cl[o,u](Tk) -1} > Z{nkl[o,u](Tk) -1},

k=1 k=1

the 7 in place of £ indicating that some individuals may have been removed so
that the limiting branching process is obtained. But the martingale M; := R,
and the function r(t) := 7, on 7, <t < 7,41 in their turn satisfy

M > e*r(t)(t+u)N(t’u) > efa(t+u)N(t, u)efa(t+u)g(zt)

in terms of g(n) := p(n) — p.

To investigate (t + u)g(z:), as t— oo note that z,, = [n/2] + 1, whereas
E[r,] < nE[T] on the set of growth (by induction e.g.). Hence E[r, g(2,)] — 0
and the same must be true a.s. for (¢t + u)g(z;), as t— oo. By martingale

13



convergence further M; — Ry (on the set where y;— 00), and by the law of
large numbers

v;

> {mklio,u(Tk) — 1}/ye — 2pL(u) — 1> 0
k=1

for a suitable u. It follows that

lim sup e~ %'y <

N(t,u) <
ZZ;l{nkl[o,u] (Ty) =1}
< Climsupe™®N(t,u) < C'limsup M; = C'Ry < 00.

< limsup e *'yf

Here C' and C' are positive constants.
O

The main result is rather direct from these lemmas and the basic Theorem
2:

Theorem 12 Let {z;} be a binary splitting population-size-dependent process
with ageing and a continuous life length distribution L with a finite mean, as
defined. Assume that the probability of a newborn cell in an n-size population
entering the cell cycle satisfies p(n) \y p > 1/2 and > {p(n) — p}/n < co. Let
a be the root of

2p/ e ' L(dt) = 1.
0

Then, e~ %z, converges to a non-zero limit in probability on the set where the
population does not die out.

Proof. With ¢; = g(2-;) = p(2+,) — p, we must only check that
Z]E[e,/zT] < 00.

But this is clear since, as we have seen repeatedly, z,, = [i/2] + 1 on {r; < 00}.

O

5 Bellman-Harris type processes
The crucial step in Lemma 10 was the monotonicity: when a process is delayed

splittings occur later and therefore the process tends to be smaller, provided
the probability of dying without children is nil. This makes it plausible that

14



results from the preceding section can be extended to general population-size
dependent splitting processes with a probability pg(n) of begetting & children if
you die when population size is n, at least provided life-spans are i.i.d., ageing
is there, and po(n) = 0 for all n.

We refer to such processes as population-size dependent Bellman-Harris pro-
cesses, and keep the notation from the preceding section wherever suitable.
Without mentioning we also assume that reproduction decreases in distribuition
with increasing population sizes (as in the Galton-Watson case) and that in the
limit py, := pg(00), together with the continuous life span distribution L, defines
a supercritical process with the Malthusian parameter a.

Lemma 13 Population-size dependent Bellman-Harris processes as above with
ageing and po(n) = 0, for all n, exhibit homogeneous growth.

Proof. Let Z, denote the set of individuals alive at 7, besides z herself.
(We regard her mother but not possible sisters as dead.) Define a new branching
population starting at 7, by replacing the remaining life spans by i.i.d. L life
spans A7, &' € Z, but making no other changes. By the ageing assumption the
new initiating life spans are longer in distribution than the original ones, and
we can construct them on a sutiably enlarged probability space so that indeed
Aot > Ayt — Ty + Tar

Let Z; denote the resulting process, and write Tl < Tg < ... for its successive
splitting times after start at 7,. 71,7%,... are the corresponding times in the
original process. By construction T; < T;. Clearly the probability distribution
for the number of children born in the original population at 7; is the same
as that ruling the number in the new population at 71, namely {pi(z,,)}. By
induction, this equality of reproduction distributions holds also later and we can
make the construction so that zr, = Z, for all <.

But since the processes z; and Z; both increase, the postponed version must
be smaller. We conclude that

Elzi—r, (2)/2|Ge] < Elzi—r, (2)/%Ge].

But since Z; < z;, the number of children being added to x’s daughter pro-
cess according to {py(z;_)} is smaller in distribution than if {pg(Z;_)} governs
possible reproduction at t. We conclude that

Blzt—r, (2)/311Gs] < Flf-r, () [2Gs] = 1/21..

O
Lemma 14 Consider a population-size dependent Bellman-Harris process with
continuous life spans, m(n) \ym > 1, and Y {m(n) —m}/n < co. Then, in
terms of the splitting times T\ < T ..., Y E[(m(z1,) —m)/z1,] < co.

Proof. As in the Markov case.
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Finally tightness follows like in Lemma 11.

Theorem 15 Consider a Bellman-Harris process with population-size depen-
dence and i.i.d. continuously distributed life spans with ageing and finite ex-
pectation. Denote the life span distribution by L. Assume that reproduction
distributions, {pr(n),k = 1,2,...} if population size is n, distributionally ma-
jorize a reproduction {py,k =1,2,...} with mean m > 1 and )", prklogk < oo,
that m(n) \ m, and that

Z{m(n) —m}/n < .

Then, as t— 00, e~z has a non-trivial limit in probability for o the Malthu-
sian parameter of the imaginary process in an infinite population environment,
m [y e ' L(dt) = 1.

O

Do not overlook that we have, alas, had to require that po(n) = 0 for all n.
It remains open to extend the symmetry argument from Lemma 10 to more
general population processes

Acknowledgement. Thanks are due to Mikael Andersson and Serik Sagi-
tov for their helpful comments.
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