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Abstract

Take a sample of individuals in the fixed size population model
with exchangeable family sizes. Follow the ancestral lines for the sam-
pled individuals backward in time to observe the ancestral process.
We describe a class of asymptotic structures for the ancestral process
via a convergence criterium. One of the basic conditions of the cri-
terium prevents simultaneous mergers of ancestral lines. Another key
condition implies that the marginal distribution of the family size is
attracted by an infinitely d ivisible distribution. If the latter is normal
the coalescent allows only for the pairwise mergers (Kingman’s coales-
cent). Otherwise multiple mergers happen with positive probability.
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1 Introduction

Consider a one-parent population model with non-overlapping generations.
Let each generation be of size N and allow no further dependence between
different generations. Assume that the family sizes v4,..., vy are exchange-
able random values wit h the fixed sum v; +...+vy = N.

Sample n individuals from the current generation and trace their ancestral
lines back in time. The resulting ancestral tree is described by the Markov
chain {R,,r > 1}. The chain state R, is the following equivalence relati on
for the sampled individuals: (7,j) € R, iff the i-th and the j-th individuals
have a common ancestor in the r-th generation backwards in time. Denote
by

Pg,n(N) = P[R,11 = n|R, = ¢]
the transition probabilities of this chain and put
o?(N) = E(v; — 1)%; Ty = No%(N).
According to Kingman (1982b) the moment condition
supyE[F] < 00, k>1 (1)

implies that the asymptotic relation (all asymptotics throughout are meant

to hold as N — o0):

pﬁ,n(N) = 0¢gy + Tﬁlqﬁ,n + O(Tﬁl) (2)
holds with
& )
~(E1) st =m
= . 3
SO it €] = Iy + 1 @
0 otherwise.



The symbols |£| and || stand for the number the equivalence classes produced
by the equivalence relations £ and 7. The equality || = |n| means that & = 7,
while the equality |£| = |n| + 1 implies that the state n is t he result of a
2-merger happened at the state &.

Definition. The pair (§,n) is called a k-merger if all but one equivalence
classes of 1 are inherited from ¢ without a change. The exceptional class of
n is the union of k classes of &, so that || = |n| + k — 1.

The formula (2) was used by Kingman (1982a) to establish an asymp-
totic structure describing the ancestral lines merging pairwise when followed
backwards in time. Recently M&hle (1998) extended this convergence result
to a wider class of models .

We take up the issue and prove a convergence criterium involving two
major conditions on the joint distribution of the family sizes (cf. Sections 2
and 3). This criterium leads to a wider class of the parameters ge,. It is char

acterised by an arbitrary probability measure F'(dz) on the interval [0,1]:
—Joll = (1 = 2l = Jg[z(1 — 2)I"1272 F(da), if & = n;

Gen = fol rF2(1 — :U)|'5|_kF(d:v), if (¢,7) is a k-merger;  (4)

0, otherwise.
Notice that the equality (3) is the particular case of (4) with F(dz) = d¢(dz).
Section 4 presents a transparent illustration of the multiple coalescent
structure corresponding to (4). It is shown how de-Finetti’s theorem could
be used to explain the role of the probability measure F'(dz). A special case

with
F([0,2]) = 2%, a € (0,1)

is discussed in Section 5. A close link with the reduced branching process

with infinite variance is established.



2 Three necessary conditions for the conver-
gence to the coalescent

We start this section by recalling the Kingman formula for the transition
probability pe,(N). The computation of the transition probabilities for the
ancestral process is done in two steps. Let the equivalence relation 7 split
the set of s ampled individuals in a classes and suppose that the j-th class
of 1 covers b; equivalence classes produced by £. Denote by b =b, +...+ b,
the total number of equivalence classes for the relation £. Conditional on the
family sizes (v, ..., vy) forming the generation r this transition probability

> Wby - - (Wia)ea/ (N,

where the summation extends over all distinct vectors (j1,...,7,) € [1, N]°
and (N), stands for the product N(N —1)...(N — b+ 1). Taking the ex-

pectation and using the exchangeability property we obtain the Kingman

formula
(NV)a
Peq(N) = (T)I)E(Vl)bl - (Va)b- (5)
This formula is the starting point of our analysis of the asymptotic rela-
tion
Pen(N) = 0¢n + Vngey + o(Viv), (6)

with arbitrary Vi and g¢, satisfying Viy — 0 and }°, g¢,, = 0. Due to (5)
the relation (6) with £ # n says that

NaibE(l/l)bl e (Va)ba ~ Vng’". (7)
For a = 1 rewrite (7) as

NY* E()p ~ Vg, k> 2. (8)



Put k£ = 2 in (8) to see that N~'0?(N) ~ Vy¢e. Without loss of generality
assume that ¢, = 1 and get Viy ~ Ty'. This says that Ty is the proper time
scale factor for the asymptotic analysis of the ancestral proce ss. Our first

necessary condition:
o*(N) =o(N), Vy ~ Ty’ (9)

ensures that with this choice the condition Vy — 0 is satisfied.

Now we can further transform (8) into
N TNE(n), — ¢x, k> 2.
Together with the decomposition
= =)+ =D+ (= 1)
this gives
N *TyE(v — 1) — ¢y, k> 2
or in terms of Wy = (v, — 1)/N:
NTNEWE — ¢y, k> 2. (10)

We claim that (10) is equivalent to the weak convergence for the sum of
i.i.d. copies of Wy:
1 NIn
v Z; Wy — W. (11)
Indeed, due to the theory of infinitely divisible distributions (cf. Feller(1966),

chapter 17, section 8, Theorem 2) the last convergence is equivalent to the

weak convergence of measures on [0,1]:

NTnz?P"N (dx) — F(dz),



where the limit measure is necessarily a probability measure on [0,1] due the
choice of the summands number NTy. It is known also (cf. Feller(1966),
chapter 8, section 1) that for such limit measure the weak convergence is

equivalent to the convergenc e of moments (10). Thus we conclude that
1
N'"*FTy B — 1) — / 2 F(dx), k> 2. (12)
0

Our second necessary condition is equivalent to (11) and reads: there is

such a probability measure F'(dz) that the convergence
1
NTyPln > Nz] — / y 2F(dy), (13)

holds at all points z € (0,1) where the limit function is continuous. Notice
that the limit W has the standard normal distribution if F(dz) = do(dz).
Otherwise the limit distribution is infinitely divisible with a non-trivial Pois-
son component.

The third necessary condition controls the correlation between family sizes

within a generation:
N % *(N)E(v; —1)*... (v, —1)> =0, a > 2. (14)

It comes from the requirement excluding simultaneous mergers of ancestral
lines. In terms of the parameters g¢, this requirement means that g¢, = 0
for all pairs (§,n) with a > 2, by > 2, by > 2, b3 > 1,..., b, > 1. With this

agreement it follows from (7) that
N TNEWy)p, - (Wa)s, = 0, @>2, by,by > 2, bs,...,b, > 1. (15)
To deduce (14) we use the representation
E(vi =12, . (va =1 =E()s... (V)2

D 3 G L A N
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resulting from the substitution (v; —1)? = (v;)2 —v; + 1. This representation

in view of (15) reduces the problem down to

N TNE(1n)a(ve —1)... (v, —1) =0, a > 2; (16)
plus

N TyEw —1)...(va—1) = 0, a > 2. (17)
It is easy to see that (16) follows from (7) with by = 2, by = ... = b, = 1,
a>1.

We prove (17) by induction over ¢ using the equality
m—-1)+...4wn—-1)=0 (18)

and the exchangeability of v,...,vy. Notice that the exchangeability and
(18) give

(N = DE(@w — 1) (1 — 1)
=Ewnm-D[w-1)+...+(uvy—1)]=-E(n - 1)~

Thus
TvE(r — 1) (o — 1) — —1 (19)

which proves (17) for a = 2. Now suppose (17) is proven for 2 < a < [. For

a=10+1 we have
(N=DE@w —1)...(, — V(w1 — 1)
=Ewi—1)... = D[ — 1) +...+ (vy = 1)]
=—Ew—-1)... =D =1 +...+ 1)
= —1E(v; — 1)’ —1)...(y—1).

Apply (16) to finish the prove of (17) and the deduction of (14).

7



3 A convergence-to-coalescent criterium

In the previous section we proved the “only if” part of the following convergence-

to-coalescent criterium.

Theorem 3.1 The asymptotic relation (6) holds with Viy — 0 and 3, qe, =
0 only if the conditions (9), (13), (14) are valid.

On the other hand, the conditions (13) and (14) imply (2) with (4). If,
furthermore, 0*(N) = o(N), then Ty — oo and (6) holds.

Remark 1. Notice that under the Kingman condition (1) all three condi-
tions (9), (13) and (14) hold. The condition (13) is due to the central limit
theorem and the condition (14) follows from Hoélder’s ine quality.

Remark 2. If b = a = 2, then ¢¢, = 1 for any probability measure F'(dz).

Lemma 3.1 If (14) holds, then

N "TNEw — 1) .. (v, — 1) =0

foralla>2, by >2 by>2 bs>1,..., by >1.
Proof. For a > 2, by > 2,..., by > 2 the assertion follows from the
inequality

E(vi — 1) .. (v — 1)
<E(n —1)7..  (vg— 1) — 1172 |y, — 1] 2
< N2E(w —1)2... (v, — 1)

and the condition (14).
When some b; are equal to 1 we use the equality (cf. (18))

(N —K)E(vy — 1) .o (v — D)% (g1 — 1) (20)

8



= E(l/1 — 1)b1+1 ... (I/k — 1)bk + ...+ E(I/1 — l)bl . (Vk _ 1)bk+1_

After applying (20), possibly several times, we end up with terms that can

be handled as previously.

Lemma 3.2 If (13) and (14) hold, then

1
N TyE(n — 1) —1) ... (va — 1) — / 2* L F (d)
0

fork>1anda>4—k.

Proof. Transform the last expectation iterating (20) until no linear com-

ponents (v; — 1) are left. Due to Lemma 3.1 we obtain that
Nl_kTNE(Vl — 1)k(l/g — 1) e (I/a — 1)
= N>7F 0Ty E(v; — 1)P7 4 0(1).

This and (12) prove the assertion.
Proof of the “if” part. It is enough to verify that (13) and (14) imply
(15) and

1
NPTV B wvs . . . Ve — / 221 — 2) R (dz), k> 2, a>1; (21)
0
Turn to the representation
(1) - - (Va)b, = Z(Vl — 1) (v — 1)

involving terms with 1 <i; <b;, j =1,...,a. Apply Lemma 3.1 and (19)
to prove (15).

The convergence (21) is proved by induction over a. Since (21) for a =1
coincides with (12) we can proceed by assuming that (21) is true for all

1<a<l, k>2 Take a =1+ 1 and turn to the equation

Ewn)g(va—1)...(vz1 = 1)



l

l
= E(l/l)kVQ R ] + Z(—l)l+1_] < _7 1 ) E(l/l)kl/g E
7j=1

After applying Lemma 3.2 and the induction assumption we arrive at

NlikTNE(Z/l)kl/Q R (S}

o [lareran - e (L) [ )

i=1 J—1

This proves (21) in view of the equality

l
M= (=) ( : ) P = 2R (1 — )l

j=1 g—1

4 A simple model illustrating the multiple

coalescent

Let I*® = {I,,,m = 1,2,...} be a collection of exchangeable random variables

taking value 0 and 1. Imagine an infinite set of clusters merging together in

the following discrete-time setting. Each time we draw an independent copy

of the collection I*° and treat the indicators as the current cluster labels. All

clusters labelled “1” by the next time form a single cluster.

Sample n clusters at the time ¢ = 0 and denote by Z; the number of

clusters formed by the time ¢ out of the initial n clusters. We can calculate

the transition probability
p(i,J) = PlZp1 = jlZy = 1]
of the Markov chain {Z;} using de-Finetti’s theorem:

1

ploi=k+1)= ( k ) [ a1 - oy rGtdn), 2 <k <

p(i, i) = /01[(1 — ) tin(l— 2) Y G(dx), i > 2.

10



Here G(dx) is the probability measure characterising the dependence struc-
ture in the set I*° of exchangeable indicators.

To get a continuous-time approximation from this assume that the expec-
tation E1,, is small, in that G(dz) = Gy(dz) and Gy(dz) — do(dx). Suppose
that for some infinitely increasing sequence By there is such a probability

measure F'(dz) on [0,1] that the weak convergence holds
Bn1?Gy(dz) — F(dz). (24)
Under the condition (24) the probability (23) has the asymptotics

pn(i,i) =1 — By'gi + o(By')

v — /01 1—(1—2) —iz(l — x)i_lF(d:v). (25)

2
On the other hand, the transition probability (22) has the asymptotics
. 1 .
pn(iyi—k+1) = By' < ]Z ) / 2*72(1 — 2)7FF(dz) + o( By").
0
We conclude that the merger size distribution (the probability of having

(i — k + 1) clusters after a merger in a system of ¢ clusters) is

(i) = - ( . ) | "1 )R P (da). (26)

This formula perfectly agrees with the limit distribution of Theorem 3.1.
Ezample. If I* is a system of i.i.d. indicators, then Gy (dz) = dp(n)(dzx)
and p(N) — oco. For By = 1/p(N) the condition (24) holds with F(dz) =

do(dx), ¢; = ; , mo(4) = 1 and we arrive at Kingman’s coalescent (cf.

Kingman (1982c)).

11



5 A link to the reduced branching process

In the classical theory of the Galton-Watson processes the counterpart struc-
ture for the coalescent is called the reduced branching process (RBP). Losely
speaking both the coalescent and the RBP address the same phenomenon.
The crucial difference is that the branching process framework is future-
oriented and the asymptotic results comes after scaling by the population
age while the coalescent presumes that the past population sizes are known
but the population age is unknown and the scaling factor is the current pop-
ulation size.

The RBP with finite variance discovered by Fleischmann and Siegmund-
Shultze(1977) is a time inhomogeneous splitting process on the unit time
interval [0,1). It starts with one particle which splits in two particles at a
random time uniformly distributed o ver [0,1). These new particles inde-
pendently of each other mimic the life career of the initial particle: split in
two after a random time uniformly distributed over the interval [the birth
time,1). Each new generation of particles split faster on average than the
previous one and as a result by the time 1 we get the infinite number of
particles. We emphasize that as with Kingman’s coalescent in the RBP with
finite variance the ancestral lines merge pairwise.

The corresponding RBP with infinite variance was found in Yakymiv(1980),
where the critical Galton-Watson process under the Zolotarev-Slack condi-
tion was considered (cf. Zolotarev (1957) and Slack (1968)). The infinite
variance case differs from the finit e variance RBP only in the offspring size
of a particle: now after the uniformly distributed lifetime each RBP-particle
transforms into a random number of new particles p with the generating

function given by the formula

1
Els=1- ¢

(1—3)+$(1—s)1+a, o€ (0,1). (27)

12



The case a = 1 corresponds to the finite variance case.
Remark. By taking derivatives of the generating function in (29) we
calculate that
l+a)(l-—a)...(k—2—«)
k!
Notice also that E[u] = 122 and Var[u] = oo for 0 < o < 1.

Plp =k =

 k>2. (28)

It will be shown here that for the coalescent with
F(dz) = dz'™* (29)

the merger size distribution is closely related to the RBP offspring size u

distribution:
(1) = Plu=k|lp <i], 2 <k <i. (30)

It is also shown that given (29) the formula
! (1—a)(i—«)

i = - — - ,12>3 31
T lr)2-a)..(i-1-a) (I+a)it+]) (31)
holds and the following series converges
D 1/gi < o0. (32)
=2

The last inequality demonstrates that the total coalescent time has finite

average.
Proof of (30). Under (29) we have

Wk(i)qiz(l—oz)<;€>B(k—1—oz,i—k+1), 2<k<i.

Since

(i — k)!

B%—l—aJ—k+D:(k_l_@.n@—1—®

13



it follows that

l-a)...(k—2—-0a) !
klg; 2-a)...(1—1-a)

7Tk(7;) =

and therefore

i'Plp = k|
l+a)2—a)...(i—1—-a)

Summing the last equality over k£ we obtain that

ﬂ'k(’i) =

- ilP[p < 1]
g(l+a)2—a)...(i—1—a)

The last two formulae imply (30).
Proof of (31) and (32). Due to the equality

S sPluz il =5 Y Plu=H

i=0 =0 k>i

> 1—s* 1-h(s) 1+« 1
= Plu=k = = 1—38)— =(1 —3s)®
Y Plp=HT— = = A= )

we can compute explicitly the tail probabilities

(i—l—a).

Plu> il = 1-a)...

Put this into (33) to arrive at (31).
To derive (32) we apply (33) :

00 2 ¢(l+a)2—a)...—1—«
gu%:;q< )2@&24 )

< ciP[,u:i](z’— 1—a) < cEp.

i=2
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