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Abstract

A necessary and sufficient condition is given to reduce a non-stationary
random process {Z(t) : t € T C R} to stationarity via a bijective differen-
tiable time deformation ® so that its correlation function r(¢,t') depends
only on the difference ®(¢')—®(¢) through a stationary correlation function
R: r(t,t') = R(®(t') — ®(1)).
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1 Introduction

In most applications dealing with non-stationary processes, the first step in
classical approaches consists in removing expectation, dividing the residuals by
standard deviation and modelling the residuals as stationary processes (AR,
MA, ARMA, ... ). The process Z = {Z(t) : t € T C R} under study is of the
form
Z(t) = pu(t) + Vo (t)e(t),
where u(t) = EZ(t), o(t) = E(Z(t) — p(t))? and €(t) a centred and standard-
ised weakly (or strongly) stationary process. The non-stationarity of Z is then
understood as non-stationarity of both the first order moment u(t) and the
variance o(t).
Modelling €(t) as
e(t) = 6(2(2)),
where § is weakly stationary and ® is a bijective deformation, or equivalently
modelling the correlation function r(¢,t') of the process Z as

r(t,t') = R(2(t) — (1)), (1)

where R is a stationary correlation function, is a way to introduce further non-
stationarity. This is discussed by Sampson and Guttorp (1992) and is later
developed in Meiring (1995) and Perrin (1997).
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When a correlation function satisfies (1) we call it a stationary reducible
correlation function. Unlike the classical approaches, non-stationarity through
second order moments is thus taken into account and (1) gives opportunity to
enlarge the class of models for studying non-stationary processes.

According to proposition 7.1.4 in Samorodnitsky and Taqqu (1994) the cor-
relation function of any H-self similar process with parameter H > 0 indexed
by T = {t : t > 0} satisfies model (1) with ®(¢) = In(¢). However not every
correlation function can be reduced to a stationarity one.

This work appears closely related to the following question of Krivine (in
Assouad (1980))

“On a locally compact Abelian group (T,+), how can the positive Hermitian
kernels r which satisfy r(t,t') = R(®(t') — ®(t)) be characterised, where ® is a
transformation of the space T and R a positive definite function?”

In this paper we characterise stationary reducible correlation functions under
smoothness assumptions. The paper is organised as follows. In Section 2 we
give some properties of the model (1) and propose a characterisation for smooth
stationary reducible correlation functions in the form of a differential equation.
Further, we prove uniqueness of the deformation ® up to a translation and a scale
change. Section 3 contains two examples of stationary reducible correlations and
two counterexamples.

2 Properties, characterisation and uniqueness

2.1 Properties of stationary reducibility

So far we have considered correlation functions. However the model (1) can
be applied to covariance functions provided that the variance of the process is
constant. Moreover, when the mean of the process is also constant, the model (1)
generalises the notion of weak stationarity (or strong stationarity for Gaussian
processes); indeed, when the deformation ® is the identity function stationarity
and reducible stationarity agree.

2.2 Characterisation and uniqueness

Let the index space T be either R, {¢ : ¢t > 0}, {¢ : t > 0} or an interval [a,b] C R
and consider for the bijective deformation ® the following assumption

(A1) & is continuous and differentiable in 7" as is its inverse.

Note that if (@, R) is a solution to (1), then for any & > 0 and 8 € R, (®, R)
with ®(z) = a®(z) + [ and R(u) = R(u/a) is a solution as well. Thus, without
loss of generality we may impose the restriction that for some fixed point zg in
T

B(tg) =0 and ' (tg) = 1 2)



where @' is the derivative of ®. Consequently, when the non-stationary cor-
relation r(t,t') satisfying (1) and the deformation ® are given, the stationary
correlation function R is uniquely determined as

R(u) = r(tg,® (u)), Yu € {t' —t: (t,t') € B(T) x ®(T)}. (3)

We denote by 9;r(t,t'), i = 1,2, the first partial derivatives of r(t,t'). We
consider correlation functions r(¢,t') such that

(A2) r(t,t') is continuous and differentiable for ¢ # ¢'.
allr(ua tO)

(A3) the function u — Br(u, o)

is locally Lebesgue integrable in 7.

Assumptions (A2) and (A3) are satisfied by a large class of processes includ-
ing mth order iterated integrals of a Wiener process, non-degenerate fractional
Brownian motions (which are a particular case of H-self similar processes) with
parameter H €]0,1] and more generally processes with independent increments
provided the variance is continuously differentiable.

It follows from (A1) and (A2) that the stationary correlation function R(u)
is continuous and differentiable for u different from 0.

Here is the necessary and sufficient condition for stationary reducibility via
bijective deformation.

Theorem 2.1 Assume (A1), (A2) and (A3). A correlation function r(t,t')
satisfies (1) if and only if almost everywhere for t # t'

alr(tla tO)
azr(t',to)

81r(t t())
¢, t,t)—"—= =0. 4
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The pair (®, R) in (1) is uniquely determined with ® given by

_ ¢ 6ll’"(uatO)

() = to Oar(u,to)

du (5)

and R given by (3) and (5).
Proof. First we show that (1) is equivalent to

O (t, )@ (') + Oor(t,t')D'(t) = 0, Vt#£t. (6)
Indeed if (1) holds for ¢ # ¢’

{Glr(t,t’) = —9'(t)R (2(t) — @(t))
Gor(ty) = )R (2(t) - 2(),

so that (6) is satisfied. Conversely assume (6) holds, consider the bijective

coordinate change
u = o) —d(¢)
o= () + d(t)



and set I'(u,u') =1 (t(u,u’), ' (u,u')). Equation (6) then leads to

0ol (u,u') = 0.
Thus I' does not depend on the second coordinate. Therefore we may define
R(u) =T'(u,u’) and (1) follows. Further, under Conditions (2), we infer from (6)
that (5) holds and (4) now follows from (5) and (6). Conversely, if (4) holds,
we may define ® through (5), and this ® satisfies (6). Clearly, ® is uniquely

determined by (5) and R by (3).
|

3 Examples and counterexamples

3.1 Examples
3.1.1 Fractional Brownian motions

As already mentioned, non-degenerate fractional Brownian motions are a partic-
ular case of H-self similar processes with parameter H €]0,1]. Their correlation
functions are of the form for all £,# such that ¢t #0

(tQH + tl2H _ |tl _ t‘QH)

r(t,t') = e

(7)

As pointed out in the introduction, they satisfy (1) with ®(¢) = In(¢) (proposi-
tion 7.1.4 in Samorodnitsky and Taqqu (1994)). The corresponding stationary
correlation function R is

R(u) = cosh(Hu) — 2221 | sinh(|u|/2)|?#

where cosh and sinh denote hyperbolic cosine and sine functions.

3.1.2 A simple diffusion process

For a measurable function f on 7' = {t : ¢t > 0}, with f(¢) # 0, locally square
integrable with respect to the Lebesgue measure, and W the standard Wiener
¢

process, the process Z(t) = [ f(s)dW (s) is a centred Gaussian process with

0
correlation function defined for all ¢,# such that ¢’ # 0
] P (w)du

T 2 (u)du

Calculation of the partial derivatives of r(¢,¢') show that (4) is satisfied for
tt" # 0. Thus, it follows from (5) that the deformation ® which satisfies (2)
with tg = 0 and that makes Z strongly stationary is defined by

1 t
/f%Wt /ﬂwm
o(t) = Of2(1) In 01 .
2'U, u
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r(t,t) =




If f(u) = v? with 8 > —1/2, the same deformation ®(t) = In(t) as before is
obtained. The corresponding stationary correlation function R is

R = exp (-2 ).

3.2 Counterexamples
3.2.1 Smooth correlation function

Consider a stationary isotropic Gaussian random field Z(z) indexed by R? which
has the correlation function #(z,y) = exp(—|ly — z||3) where ||u||2 is Euclidean
distance in R%. Strolling along the parabolic path t — (t,¢2), we consider
the process Z(t) = Z(t,t?) indexed by R. Its correlation function is r(t,') =
exp{—(t — t)2(1 + (t + #')2)} and is infinite differentiable. Suppose there is
a continuous and differentiable deformation @ reducing r. Then with 5 = 0
(4) gives

(1426t +1')(1+2t%) = (1 + 28" (E+ 1)) (1 + 262), VE# ¢,

This equation implies necessarily that ¢ = ¢'. Therefore, Z(t) is not stationary
reducible.

3.2.2 Assouad’s counterexample

This counterexample constitutes a partial answer of Assouad (1980) to the ques-
tion of Krivine quoted in the introduction.

We endow R? with the canonical scalar product < .,. >3. The counterex-
ample is obtained as follows

1. consider six points X1,... , Xg on the unit sphere S5 of R? that meet the
always satisfied conditions

X1+ X9 =2Xgcosa, Xo+ X35 =2X,cosa, X1+ X35 =2X5cosa
for any a € ]O,g[;
2. build the Gram matrix (symmetric and positive definite)

(rij) = (< X4, Xj >3)1<i <6;

3. then construct a continuous (in the mean square sense) Gaussian process
7Z ={Z(t),t € [0,1]} with correlation r(¢,t") that satisfies for 1 <4,j <6

r((i =1)/5,(5 =1)/5) = ri;

4. finally Perrin (1997) proves that there is no bijective continuous deforma-
tion @ of R that makes Z stationary.
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