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WEAK FUNCTIONAL CONVERGENCE OF QUADRATIC VARIATIONS
FOR A LARGE CLASS OF GAUSSIAN PROCESSES WITH APPLICA-
TIONS
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Abstract

We are interested in the weak functional convergence of the process of quadratic
variations taken along a regular partition for a large class of Gaussian processes
indexed by [0, 1], including the standard Wiener process as a particular case.
This result is applied to two topics: estimation of a time deformation model
for non-stationary Gaussian processes and test on the diffusion coefficient in a
diffusion model.

keywords: diffusion, Gaussian process, quadratic variations, time deformation

AMS 1991 SUBJECT CLASSIFICATION: PRIMARY 60G15,60G17
SECONDARY 60F17,60G12,60J60

1. Introduction.

We are interested in the weak functional convergence of quadratic variation process
for a large class of Gaussian processes indexed by [0,1]. This convergence result is
obtained assuming smoothness of the covariance function outside the diagonal.

The quadratic variations were first introduced by Lévy (1940) who showed that if
Z is the standard Wiener process on [0, 1], then almost surely (a.s.) as n — oo

D22 = Z((k - 1)/2") — 1. (1)
k=1

Baxter (1956) and further Gladyshev (1961) generalise this result to a large class of
Gaussian processes under assumption on the second derivatives of the covariance.

Guyon and Ledn (1989) introduced an important generalisation of these variations
for a Gaussian stationary non differentiable process with covariance function r(u) =
1 — uPL(u), where 8 €]0,2[ and L is a slowly varying function at zero. Let H be a
real function. The H-variation of process Z indexed by [0, 1] is defined by

" (Z(6/n) = Z((k = 1)/n)
21 (e =)

They studied the convergence in distribution of the H-variations, suitably normalised,
for non-differentiable Gaussian processes.
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The generalisation of these variations for Gaussian fields is studied in Guyon (1987)
and Leén and Ortega (1989). Another generalisation for non-stationary Gaussian
processes and quadratic variations along curves is done in Adler and Pyke (1993).

For Gaussian process Z with stationary increments, Istas and Lang (1997) define
general quadratic variations, substituting a general discrete difference operator to
the simple difference Z(k/n) — Z((k — 1)/n). They give conditions on the discrete
difference and on the covariance function of Z that ensure the a.s. convergence and
the asymptotic normality of these quadratic variations, suitably normalised. Then,
they use these quadratic variations to estimate the Holder index of the process.

For non-stationary Gaussian processes, with stationary increments or not, we give
in this paper a general result concerning the functional asymptotic normality of the
process of the quadratic variations which corresponds to the linear interpolation of the

points (p/n, Va(p/n)) with Va(p/n) = S [Z(k/n) = Z((k = 1)/n)%, p = 1,2,... ,n.
k=1

Where do quadratic variations appear? We point out two cases which involve
quadratic variations.

The first case is the estimation of time deformation for non-stationary models of
the form

r(z,y) = R(®(y) — &(z)) (2)

where 7 is a correlation function, ® a bijective, and in general continuous, deformation
of the index set and R a stationary correlation function. Model (2) appeared first in
Sampson and Guttorp (1992) to give a class of non-stationary correlation functions
for random fields. In the one-dimensional case, Perrin (1997) gives different methods
for estimating ®. Perrin and Senoussi (1998, (a) and (b)) exhibit under smooth-
ness assumptions a characterisation for correlation functions r satisfying (2). When
the process Z under study is Gaussian, we show it is possible to construct a non-
parametric estimator of ® from one realisation of Z observed at discrete times k/n,
k =0,1,...,n and give the asymptotic normality of this estimator as the number
of observations n grows to co. Testing the stationarity of Z, i.e. testing if ® is the
identity or not, is also considered.

The second case concerns a test on the diffusion coefficient o(z) in the diffusion
model dY (z) = m(z,Y (z))dx + o(x)dW (), Y (0) = yo, = € [0, 1], where W (z) is the
standard Wiener process, yo is a known real parameter and the functions m(z,u) and
o(x) are two deterministic unknown functions. A problem is to estimate the diffusion
coefficient o(z) from discrete observations of Y at points k/n, k = 0,1,... ,n. This
problem is of major interest in financial markets and has recently been investigated
by Brugiere (1991), Soulier (1991), Genon-Catalot et al. (1992) and Istas (1996)
where quadratic variations (smoothed by convenient kernels) are applied to this
estimation. This diffusion process Y (z) is generally non-Gaussian. Nevertheless,
under smoothness assumptions on m, Istas (1996) proves that the estimation of the
diffusion coefficient o(x) reduces to the estimation of the singularity function of the

T

process Z(z) = / o(u)dW (u). We use this to test if o(z) is constant or not.

0
The paper is structured as follows. The following section sets up notations, assump-
tions and definitions, describes quadratic variation process more carefully and gives



Weak functional convergence of quadratic variations 3

preliminary results needed to prove in section 4 our main result, theorem 4.2, dealing
with the weak functional convergence of the process of the quadratic variations. Then
we apply the asymptotic result of theorem 4.2 to the related problems: estimation of
time deformation and testing if the diffusion coefficient is constant or not.

2. The process of quadratic variations

Let Z = {Z(z),z € [0,1]} be a centred Gaussian process of real-valued random
variables with covariance function r(z,y). Assume that

(A1) r is continuous in [0,1]? and its second derivatives
are uniformly bounded for z # y.

Assumption (A1) is satisfied for a large class of processes including: (i) standard
Wiener process; (ii) processes with independent increments with function z
r(x, ) of class C'; (iii) stationary processes with rational spectral densities.

We denote by r(mm’) the m, m'-partial derivative of r with respect to z and y and
set

r®OY(z,27) = lim rOY(z,y), = €]0,1],
y 'z

POV (g, 54) = liin,«(o,l)(gc,y)7 z €[0,1[.
Yy ¢

Those limits exist because the second order derivatives of r are uniformly bounded.
So, let us define the two following functions

D-(@) = 1OV, z€o,1],
Dt(z) = rOY(z 2t), z€[0,1].
Then we have the following result whose the obvious proof is given in Appendix A.
Lemma 2.1 Assume (A1). Then D~ and D" are continuous in [0,1].

Let us now introduce the singularity function a of Z.
a(z) =D (z) — D" (z), = €]0,1].

It follows directly from lemma 2.1 that « is uniformly continuous in [0, 1]. Note that
the existence of the first derivative of r(x,y) at x = y is not assumed. Indeed, the
existence of this derivative would make a(z) = 0 for all z € [0,1].

Let n be a positive integer. We set for k =1,2,... ,n

AZy = Z(k/n) — Z((k — 1) /n).

1
We will now define the process of the quadratic variations of Z. Let II,, = {0 < =<
n

2 n—1
_<...<
n

< 1} be the regular partition of [0,1] at constant scale 1/n. Then
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we define the quadratic variations V,,(z) of Z along II,, truncated by z € [0,1] as

follows
[nz]

Vn(m) = Z (AZk)2

k=1
where |nz]| denotes the greatest integer smaller than or equal to nz. We take the
0
convention Z (AZ)? = 0.
k=1
Definition 2.1 The process of the quadratic variations of Z, vq, = {vgn(z),z €
[0,1]}, is defined by

{vqn(x) = Vo(@) + (nz — [nz]) (AZ ey 11)”, @ €[0,1],
vg, (1) = V,(1).

Thus, vg,(z) is a continuous version of V,,(z) and corresponds to the stochastic linear
spline with mesh II,, that interpolates points (p/n,V,(p/n)), p = 1,2,... ,n. From
now, we do not distinguish anymore the case z € [0,1] from the case z = 1 in the
definition of vg,(z).

3. Related problems

Let us mention two statistical problems related to quadratic variations.

3.1. Estimation of a deformation model Let Z be a centred Gaussian process with
correlation function satisfying (A1). Consider the problem of estimating the bijective
and continuous deformation @ : [0,1] — R from one realisation of Z observed at
discrete times k/n, k =0,1,... ,n, in the model

r(z,y) = R(®(y) — ®()) 3)

where R is a stationary correlation function. We assume that the deformation ®
satisfies the following assumption

(B) @ is bijective and continuously differentiable in [0,1], as is its inverse,

Note that if (@, R) is a solution to (3), then for any b > 0 and ¢ € R, (®, R) with
®(t) = b®(t) + ¢ and R(u) = R(u/b) is a solution as well. Thus, without loss of
generality we may impose the restriction that

®(0)=0 and ®(1) =1 (4)
Consequently, the stationary correlation function R is uniquely determined as
R(u) =7(0,2 ' (u)) and R(—u) = R(u). (5)

We note @’ the derivative of ® and R’ the derivative of R. It follows from (A1) and
(B) that the stationary correlation function R(u) is continuous and differentiable for
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u different from 0, and that its derivative to the left and its derivative to the right at
0 exist and satisfy

R(07) = D™ (2)/% (),

R(0%) = D¥(2)/'(x).

Thus, the singularity function a satisfies the following relation
a(z) = 2R'(07)¥' ().

Finally, under Conditions (4), we get for all z € [0, 1]

Therefore, the estimation of & requires an estimation of the primitive
xr
of a: z —» / a(u)du. Once an estimator of & will be built, we will give the

0
asymptotic normality of this estimator suitably normalised as the number of obser-
vations n grows to oo.

3.2. Testing the diffusion coefficient of a diffusion process Consider the following
stochastic differential equation

{ dY(z) = m(z,Y(z))dz + o(z)dW (z),
Y(O) = Yo,
where W (z) is the standard Wiener process, yo is a known real number, and the
functions m(z,u) and o(z) are unknown. Set Z(z) = / o(u)dW (u). The problem
0
is to test if the function o : £ — o(x) is constant or not. The covariance of the
TNy

process Z is given by r(z,y) = / o?(u)du. If 0 have a bounded first derivative in

[0,1] then Z satisfies (A1) and (:1(13) = 0%(x). The diffusion process Y is generally
non-Gaussian and cannot satisfy our framework. Nevertheless, under smoothness
conditions on the function m(z,u), it is well known (e.g. Genon-Catalot et al. (1992)
and Istas (1996)) that the quadratic variations of Y are asymptotically equivalent to
those of Z. We use this result to build our test.

4. Weak functional convergence

Consider the centred Gaussian vector

= (o (2) #(2) (20"
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Its covariance matrix is

r(0/n,0/n) r(0/n,1/n) --- r(0/n,|nz]/n)
r(l/n,1/n) --- r(l/n,[nz]/n)
r(lnz]/n, [nx]/n)

Let L|,,) be a matrix with [nz] rows and [nz] + 1 columns defined as follows

-1 1 0 -+ 0
0 -1 41 -~ 0
Ling) =
0 0 - -1 +1

Having V,(z) = WLT;WJ LT Ling)Wins), we deduce (e.g. Johnson et Kotz (1970),

[nz]
pp. 149-151).
Proposition 4.1 For all x € [0,1]

[nz]
L
Vn(x) ~ Z )‘k,l_nmj Xi’anJ

k=1

where A1 |nz| = A2, |ne] = "' 2 Ajna),|nz) = 0 are the eigenvalues of the covariance
matriz Ly | ELM‘JLLmJ and the Xk, |nz) OT€ independent chi-square variables with one
degree of freedom.

The following theorem gives an uniform upper bound for the largest eigenvalue Ay | |-

Theorem 4.1 Assume (A1). Then

sup )‘I,anj = 0(1/”)
z€[0,1]

Proof. For (j,k) €[1,...,n]?, let

, 1 k-1 k1 4
aj’k:'f'(l,ﬁ> +r<'7—,k—) —r(l,k—) —r(J—,E>. (6)
n’'n n n n’ n no'n

When j = k, a Taylor series expansion of order one with Young remainder gives

Qg = % (D <5> _ Dt (%)) +o(l/m), k=1,2,...,n, (7)

n

where o(1/n) is independent of k. According to lemma 2.1, D* is uniformly contin-

uous in [0, 1]. Thus
Dt (k — 1) =D+ (E) +o(1)
n n
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where o(1) is independent of k. Therefore
g = loz k +o(l/n), k=1,2 n (8)
k,k — n n ’ — L4yl

where o(1/n) is independent of k. a being uniformly bounded in [0, 1], we have
lakkl =0(/n), k=1,2,...,n

where O(1/n) is independent of k.
When j # k, a Taylor series expansion of order one with Lagrange remainder gives

|aj.k| = O(1/n%) (9)

where O(1/n?) is independent of (j, k).
To give an upper bound for the largest eigenvalue A, |, |, it is sufficient to use the
following inequality (e.g. Horn and Johnson, p. 33).
|nz | n
Aty|ng < max Z lajr| < max Z|aj,k| =0(1/n).

T 1<k< 1<k<
<k<|nz| - < _nj:1

We assume the following assumption for the singularity function a.
(A2) a has a bounded first derivative in [0, 1].

For instance, assumption (A2) is satisfied: (i) for processes with independent incre-
ments if the function z — r(z,z) is C?; (ii) for stationary processes with rational
spectral densities.

The following lemma gives a property of the trajectories of Z.

Lemma 4.1 Assume (A2). Then for any constant v €]0,1/2]

lim A= sup |Z(y)—Z(z)| =0 a.s.
h=0 |y—a|<h

It follows that Z is continuous (in the sense that a.s. Z has continuous trajectories).

Proof. A Taylor series expansion of order one with Young remainder gives for all
(z,y) €[0,1]

E(Z(y) - Z())* = r(z,z) + r(y,y) — 2r(z,y) = O(|y — =)
Therefore, for any constant v €]0,1/2[

lim h™ sup |Z(y) — Z(z)| =0 a.s.
h=0 |y—z|<h
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(e.g. Neveu (1980), p. 93).
O

€T
We now from Baxter (1956) that V,,(z) is a consistent estimator of / a(u)du. The
0

following lemma, gives an upper bound for the bias of V;,(x).

Lemma 4.2 Assume (A1)-(A2). Then, the following holds

sup |E(V,(z)) —/ a(u)du| = O(1/n).
z€[0,1] 0
Proof. Observe from proposition 4.1 that
[nz]
k=1
Recall (8)
1 k
Z Gk = = Z a (ﬁ) +o(1/n).
k=1 k=1
We have
il LAY < E\ |
n ;a (n> /0 a(u)du| < ;/““%” a(n> a(u) du-{-/tnn_mJ |a(u)|du

Since a is continuous (direct consequence of lemma 2.1) and has a bounded first
derivative in [0, 1] (assumption (A2))

sup / la(u)|du = O(1/n)

z€f0,1] J lzel

n

o) (%) — a(u)

and
[nz]

k
sup / du = O(1/n).
el0,1] 3 JETH /

Remark 4.1 When only assuming (A1) we have

sup =o(1).

z€[0,1]

BE(Vi(z)) — /0 " a(u)du
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We set for k =1,2,...,n
k() = VN, [ na | (Xi,mj -1), z€[0,1],
and we define the corresponding truncated variables & , (z) as follows
En(T) = fk,n(w)]l\gk,n(:cﬂge + e]lgk,n(w)>€ — e]lgk,n(w)<—e> z €[0,1] and € > 0.

Before giving our main theorem, we need first to establish the following result whose
the technical and fairly arduous proof is given in Appendix B.

Lemma 4.3 Assume (A1)-(A2). Then, for all x € [0,1] as n becomes infinite

[na]
@) Y P(I€rn(z)] > €) — 0, Ve > 0.
k=1

and for some € > 0

na |
(i) Y E(& n(x) — 0,
k=1

iy

(i) > E*(& .(z)) — 0,
e .

(i) Y B((n(@)?) — 2 / o (u)du.
k=1 0

Here is our main theorem.
Theorem 4.2 Assume (A1)-(A2). Then {\/ﬁ(vqn(x) —/ a(u)du),z € [0, 1]}
0

converges weakly in C ([0, 1]) to the centred Gaussian process { / V2a(u)dW (u),z € [0, 1]}
0
as m — 00.

Proof. For any z € [0, 1] we have the decomposition
Vn (vqn(m) - /0z a(u)du)
— Vi van) = Bloa (o)) + Vi (Blean(@) - [ alwau). ()
The second term in the right-hand side of (11) can be decomposed as follows

Vit (Bloaa@) - [“atas) = Vi (BW@) - [ ata)

+ Vn(nz— [an)E(AZLmHl)z. (12)
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According to lemma 4.2, the first term in the right-hand side of (12) converges

uniformly in [0,1] to 0. We have sup |nz — |nz|| < 1 with |nz — |nz|| = 0 for
z€(0,1
z = 1, and for z € [0,1] there is (Ene]k € [1,2,...,n] such that |nz| +1 =k
and E (AZLMJH)Z = ay as defined by (6). As we have seen that ay, = O(1/n)
uniformly in k (theorem 4.1), the second term in the right hand side of (12) converges
to 0 uniformly in [0, 1].
It remains to study the weak convergence of \/n (vq,(z) — E(vg,(z))). We have

Vi (04a(2) = B(vgn()) = Vi (Va(@) = E(Va(@)
+ \/E(TLSL' - I_an) (AZLna:J-i-l)z
- Vi(e—n2]) B(AZjy)’ . (13)

As previously, the third term in the right hand side of (13) converges to 0 uniformly
in [0,1]. From lemma 4.1 it follows that the second term in the right hand side of (13)
converges to 0 uniformly a.s. in [0, 1]. Finally, it follows from lemma 4.3 and theorem
7.4.28 in Dacunha-Castelle and Duflo (1986) that {v/n (V,(z) — E(V,(z))), = € [0,1]}
converges weakly to the centred Gaussian process with independent increments

{/0 V2a(u)dW (u),z € [0, 1]}.

5. Applications

We come back to the statistical problems related to the quadratic variations.

5.1. Estimation of a deformation model We want to estimate the deformation ®
in the model

r(z,y) = R(®(y) — &(2)) (14)

where R is a stationary correlation function. Under assumption on r ((A1)) and on
® ((B)) we showed in section 3.1 that for all z € [0,1]

An estimator of ® is

B () = VInl2). (15)

Perrin (1997) showed the following result.
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Theorem 5.1 Assume (A1) and (B). Then

lim sup |®,(z) — &) =0 a.s.

N0 2¢0,1]

Proof. Since ((i)n) N is a sequence of increasing functions in C([0, 1]), it suffices to
n>1

show the pointwise a_.As. convergence instead of the uniform a.s. convergence. Thus,
by definition (15) of ®,,, we must show that for all z € [0, 1]

lim vg,(z) :/ a(u)du a.s.
0

n—oo

For all z € [0, 1] we have

v4n (@) = Vo (@) + (n& — |n2]) (AZ ey 1) (16)

It follows from lemma 4.1 that the second term in the right-hand side of (16) converges
a.s. to 0. It remains to study

Va(z) = EVy(2) + Va(2) — EVy (). (17)
According to proposition 4.1

Lnz]
Va(z) — EV,(2) = Z /\k,Lna:J (X%,anj - 1).

k=1

If we set My = E(X}, |, — 1), then

k=1 9 k=1 k'=1
[nz]

My | Y A% na)
k=1

IA

Thus, it follows from theorem 4.1 that E(V,,(z)— EV,,(z))* = O(1/n?). Using Markov
inequality and Borel-Cantelli lemma, we obtain that V,,(z) — EV,,(z) converges a.s.
x

to 0. As remark 4.1 shows that EV,,(z) converges to / a(u)du, the left-hand side
0

of (17) converges to / a(u)du a.s.
0

Hereafter, we prove the weak functional convergence.
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Corollary 5.1 Assume (A1)-(A2) and (B). Then
{VA(@a(2) - 2()),2 € [0,1]}
converges weakly in C([0,1]) to the centred Gaussian process

x 1
/ V2a(w)dW (1) / VZa(w)dW (u)
0 —@((E) 0

/01 a(u)du /01 a(u)du

, €[0,1]

as n — o0.

Proof. For all z € [0,1] we have the following decomposition

wal@) = [Catids  vga) = [ el
(i)n(x) — o(z) = 1 . - (i)n(m) 1 : :
/0 a(u)du a(u)du

The result follows directly from theorems 4.2 and 5.1.

We can now propose a test of stationarity for Gaussian processes satisfying model (14).
For this, we simply test ® is the identity function against ® is not the identity function.
The former is equivalent to a(x) is constant for all = € [0,1], more precisely a(z) =

2R'(07) (cf. section 3.1). In this case we have {\/ﬁ(‘i’n(.’ﬂ) —z),z € [0, 1]} converges
weakly in C([0,1]) to the Brownian bridge {\/i(W(a:) —zW(1)),z € [0, 1]} asn —
0o. Thus, /n sup |<i>n(;c) — z| converges weakly to the Kolmogorov distribution

z€[0,1]

(e.g. Dacunha-Castelle and Duflo (1986)) /2 sup |W(z) — W (1)|. We set D =
z€[0,1]

sup |W(z) — W (1)| and we recall that P(D < y) = 1 + Zexp(—2k2y2) for all
z€[0,1] k=1
y > 0. Therefore, we reject stationary hypothesis at the level of significance a if

V/n sup |<i>n(rc) —z| > V2Q1_, where Q1_, is the quantile of order 1 — a of D.
z€[0,1]

5.2. A test on the diffusion coefficient of a diffusion process We come back to
the diffusion model dY (z) = m(z,Y (z))dz + o(x)dW (z), Y(0) = yo of section 3.2.
Assume the following

(C1) m(z,u) € C*([0,1] x R).
(C2) IAN>0,Vxe[0,1],Vu e R, |m(z,u)| <

| < AL+ Jul).
(C3) o has a bounded first derivative in [0, 1].



Weak functional convergence of quadratic variations 13

Assumptions (C1)-(C2) ensure the existence and uniqueness of the solution of the
diffusion (e.g. Ikeda and Watanabe (1989)). We recall that under assumption (C3)
Z satisfies (A1) and a(z) = 0?(x), and under assumptions (C1)-(C2) the quadratic
variations of Y are asymptotically equivalent to those of Z (Genon-Catalot et al.
(1992) and Istas (1996)). Thus, we can use the same test as before to test if o is
constant or not. More precisely, we reject that ¢ is constant at the level of significance

a if /n sup ‘an(x) - x‘ > v/2Q:_, where Q_, is the quantile of order 1 — a of
z€[0,1] vgn(1)

Appendix A. Proof of lemma 2.1

We set A = {(z,y) € [0, 1%,z # y}. Firstly, we show that D~ is continuous in
]0,1]. The decomposition for all = €]0,1] and all A >0

D™ (z+h) =D~ (2)] < [rOV(@+h,(z+h)7) =rOD (@ +hz7)|

+ [rOY(z + hyz7) — OV (z,27)]
leads to the inequality

ID-(+h)—D (z)| <h sup [rOD(z,y)|+h sup [rV(z,y)|
(z,y)EA (z,y)EA

from which we deduce the continuity of D~ in ]0,1].
Then, it remains to prove that li{% D™ (z) is finite. For that, we write
xr

lim D~ (z) = lim lim 7%V (z, 2 — h)
N0 z\0 h\,0
= lim lim (r(o’l) (z,2 — h) — r®D(z,0) + 7O (:U,O)) -
2\0 A\
We have

D (@, 2 — h) = OV (2,0)| < |z = b| sup |r®)(z,y)|.
(z,y)eA

Moreover (%1 (z, 0) being piecewise continuous in [0, 1], ;I{‘I}] @Y (z,0) = r(®Y (0T, 0).
Therefore

EED_@)zrm”m+ﬂ)
A similar treatment gives D continuous in [0, 1] and

. + — (0,1) —
il/‘m1D () =r®Y(17,1).

In conclusion we get continuous extensions of D~ and DT by setting

D~(0) =V (0%,0),
D) =rO(1,1).
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Appendix B. Proof of lemma 4.3

We recall that Ay |z > A2 [na] = --- = Ana),|na) = 0 are the |nz] eigenvalues
of the covariance matrix L, X |ne) LLTM |- Without loss of generality, we suppose
hereafter that A; |ne) > 0.

(i) We have the decomposition for any = € [0,1], for any € > 0 and for any k& =
1,2,..., |nz|

P([Ekn(z)] > €)

IN

P(\/ﬁ)‘l,an“X%,anJ —1[>¢)
+ 1)+ P(X3 ) < —

INA

1).

PO, ) > __
ko Lnz] \/ﬁ)‘l ,nz] \/ﬁ/\l, |nz|

We deduce from theorem 4.1 that dny; > 0 such that if n > n,

Al,anjsior +1< -2y/n+1<0.

€
\/ﬁ/\l, |nz ]

Hence for all n > ny

P(|&kn( >e<P2m>¥+l.
(I€k,n ()| > €) < P(Xj, | na NI )
—x/2
Since the density of a chi-square with one degree of freedom is M forz >0
V2rz
€ o0 exp(—z/2)
PO 0y > o +1) < S 4y
k,|nz| \/ﬁ)\l,anJ \/;)‘le,Lna:J 2nx
< 2/\1,|_nzj\/H €
4 exp{——"—.
= e P\ 2N ey v/
Thus, for all n > ny
1
P(|&kn(z)] >€) < N exp(—+v/n).
Therefore, for any € > 0
[nz] n3/4
D P(lekm(z)] > €) < N exp(—+/n) (18)
k=1

[nz]

and Z P(|&k,n(x)| > €) converges to 0 as n becomes infinite.
k=1

(i) We have for some € > 0

E(&n (@) = E(Gkn(@) g, . 1<c) + €(P(€k,n(@) > €) = P(§rn(z) < —€)).  (19)
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In the proof of (i) it has been shown that P(&n(z) < —e€) is equal to O for n
sufficiently large and that LZJ P(&kn(z) > €) converges to 0 as n — oco. Then it
remains to prove that =
[nz|
Jim ; E(&kn(2) g, @1<e) = 0. (20)

We have
E(&rn(x)l, . ()<e)
= \/E/\k,l_nzj (E(Xi,[nzj ]llék,n(w)\SE) - 1) + \/ﬁ)‘k,l_nzj P(|§k,n(m)| > 6)'

Keeping in mind that P?(|&,n(z)| > €) < P(|¢,n(z)] > €), Cauchy-Schwarz’s in-
equality gives

kz \/ﬁ)‘k,anJP(Kkm(xﬂ >e) < J Z ”)‘i,LmJJ kz P(|§k,n($)| > €).
=1 =1

k=1

[nz]
Theorem 4.1 implies Z ")‘i,an | = 0(1). Moreover, it follows from the previous
k=1
[nz]
point (%) that Z P(|&k,n(x)| > €) converges to 0 as n — co. Using again the density
k=1
of a chi-square, we get the following bound for n > ny with n, defined in (%)

1 o
IEOG ne) Yigwni@<d) =11 < —zﬁ/ _ Vuexp(—u/2)du
1 @*unu
< Wi exp(—u/4)du
47r \/“:,anj
< —%GXP(—\/H/Z)

The second inequality is due to the fact that /u < exp(u/4) for all u > 0. Thus

L]

2
| D Vi e (B, () Do) = DI < \/ﬁe nexp(—v/n/2).  (21)
k=1

Consequently, (20) is proved, as is the point (%)
(#4) From (19) we get

E*(& o (3)) < 2B (Epn (@) g, 1<) + 262 (P(€kn(m) > €) — P(&pn(2) < —€))?.
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We deduce from the proof of (i) that

Z GZ(P(gk,n(m) > 6)_P(§k,n($) < _6))2 < 62 Z( (§k n( ) > €)+P(£k,n($) < _6))'
k=1 k=1

converges to 0 as n — 0o and from the proof of (7) that

Z E £k n ]I|E;c n|<e) < 2 Z n)‘i,\_nzj (E(Xi,anJ I\Ek,n(z)|§e) - 1)2

k=1
Lnz]

+ 2> 1A} e P(&kn ()] > €.
k=1

For n > n; we have nA? lne] < e Combining this inequality with (18) we obtain
: n

|nz ] 2
2 €
; nAk,anJP(Mk,"(x” > 6) < 4\/7—m1/4 exp(—\/ﬁ).

Moreover, due to (21)

2
Y 0% na) EOG o) Vs @12 =17 < (Z Ve el [EOG 2y Ve @) <) = 1l>
k=1 k=1
262
< —nexp(—vn).
™

Therefore E? (&k,n(2)) converges to 0 as n — oo.
[nz] z
(iv) To prove that lim Z E((& ,,(x)%) = 2/ o?(z)dz, we proceed in three stages
n—00 ’
k=1 0

|nz ] z
e Firstly, we show that Z E( §k »(Z)) converges to 2/ a*(z)dz as n = oo. To
0

prove this result we start from the following equality due to proposition 4.1

[nz] [nz]
Y EEG @)=Y X ey = nVar(Va(2))
k=1 k=1

= n(EWV2(@) - (EV,(2))?).

Let us recall the definition of a;x, (j, k) € [1,...,n]?

j -1 k-1 ) k-1 -1 k
orer () (52552) (25) - (52)
nn n n n n n n
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We have

[nz]
E(Vu(z)) = Zak,k’
k=1

[na] Lna)
E(Vi(z) = 3 Z agp +2 Z Z (ar,paj; +2a3 ;) -
k=1 k=1 j>k
Then
L] Lnz| [ne] Lna] Lna]
Z E(& () =2n Z Z al, =2n Z ai p +4n Z Z aj . (22)
k=1 k=1 j=1 k=1 k=1 j>k

In the proof of theorem 4.1, we obtained (cf. (8) and (9))

n

{ gk = la(g>+o(1/n), kell,...,n],
lajel = OQ/n%), j#k.

Thus, the second term in the right-hand side of (22) converges to 0 as n — oo

and
[nz]

[nz]

2 k
2 § 2 :—§ 2= 1).
nk:1ak,k - ao(n)+o()

k=1

|nz] z
Since « is Riemann integrable in [0,1], 2n Z aj.j, converges to 2 / o?(z)dz
0

k=1
as n — oo.
e Then we show that Z E(&G (@) e, . o)<c) — Z E(& ,(z)) converges to 0
k=1 k=1

as n — oco. We have for n > nq

2 2 nAi[an u?
|E(§k,n($)1|gk,n(x)|§e) - E(§k,n($))| < ﬁ . ﬁ eXP(—U/z)dU-

VX | na
Thus, we obtain for n large enough

€2

|E(& n (@) g, ()1<e) — B&R  (2))] < Toen exp(—v/n/2).

Therefore as n — oo

[nz] 62

; |E(&R (@) L, (2)1<e) — B(&R p(2))] < Ners exp(—v/n/2).
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e Finally, we use the following decomposition

> E((& ()% Z E(& (@) g, (2)1<e)
k=1

anJ
+ €Y (P(Ern(z) >€) = P(rn(z) < =€) (23)

k=1

As already shown, the second term in the right-hand side of (23) converges to
0 as n — oo and we use the decomposition

|na
Z E(& n(@) g, . (0)1<)

=Y B ZE&M Wi, . @)i<d) = Y B n(@))
k=1 k=1

|nz] z
According to the first stage, Z E(f,%"(x)) converges to 2 / o?(z)dz, and
k=1 0
Lnz] Lnx]
according to the second stage Z E(& (2) M, .1<e) Z E(& o ( con-
k=1
verges to 0 as n — oo. Therefore, we can conclude that the left—hand side of (23)

xz
converges to 2/ o?(z)dx as n — oo.
0
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