Separability and the Twisted Frobenius
Bimodule

Lars Kadison

1 Introduction

A classical notion in the theory of induced representations is that of a Frobe-
nius extension. Let a ring extension A/S be a homomorphism of unital
associative rings S — A. We define A/S to be a Frobenius extension if A is
isomorphic to its dual as S-A-bimodules,

sAa = gHomg(Ag, Sg)a, (1)

and Ag is a finitely generated projective right S-module [17]. Now for any
ring extension A/S where Ag is finite projective and S-module ¢M, we have
a natural isomorphism of A-modules, 4A ®s M = 4Homg(sA*,sM) where
A* := Homg(Asg, Sg). It follows that A/S is a Frobenius extension if and only
if the functors of induction and co-induction from S-modules into A-modules
are naturally equivalent: for every M, there is a natural isomorphism of
A-modules,
AA Qs M = AHomS(SA, SM) (2)
Now the bimodules gA4, 4Ag, and §Sg in the isomorphism 1 are the
natural ones; however, sS¢ may be replaced by a left twisted bimodule 3Sg,
where 3 is a ring automorphism of S and the left S-module structure on S
is indicated by s; - so := ((s1)se. This replacement by 3Ss in the definition
above defines more generally a ($-Frobenius extension [22]. (-Frobenius ex-
tensions are characterized as those ring extensions A/S having a bimodule
homomorphism E : gAg — 3Sg, called a Frobenius homomorphism, as well
as 2n elements z;,y; € A, called a dual base, such that

ﬁ;ﬂl(E(axi»yi - ixiE(yia) 3
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for every a € A [25]: call {E, z;,y;} a 3-Frobenius system. This is equivalent
to assuming gA finite projective and 4Ags = sHomg(sA, S)s-1, for we map
a+ a(f7E) for every a € A.

It may be proven that E and the Casimir element >, z; ® y; are unique
up to multiplication by an invertible in the centralizer C4(S) of S in A. The
Nakayama automorphism n of C4(S) is defined by

E(ad) = E(n(d)a)

for every a € A,d € C4(S). Then from Equations 3, n(d) = ¥°; 3~ (E(z:d))y;,

and
n~d) = ZxZE(dyZ) (4)

The Nakayama automorphism is unique up to an inner automorphism by
an invertible in C4(S). In case A/S is an algebra, § is automatically the
identity, since for every s € S,

B l(s) = inE(yiﬂfl(s)) = Szsz(yz) =s.

For example, a Hopf subalgebra K in a finite dimensional Hopf algebra
H over a field is a free f-Frobenius extension by a theorem of Schneider [29].
By a theorem of Larson and Sweedler [18], the antipode is bijective, and
H and K are Frobenius algebras with Frobenius homomorphisms which are
left or right integrals in the dual algebra. The automorphism 3 of K is the
following composition of the Nakayama automorphisms of H and K:

B =nxong". (5)

It follows from Equation 6 that 1y and 1" restrict to inverse mappings of
K — K.

We describe a (-Frobenius system for H/K due to Fischman, Mont-
gomery and Schneider [10]. From the formula [26, Theorem 2] for the an-
tipode S it follows that, given a left integral f € H* and right integral ¢y
in H such that f(tg) =1, {f, S~ (tu), tuq)} is a Frobenius system for H.
Given right and left modular functions my and my', a computation using
Equation 4 determines 7n;"', from which

ni(a) = S*(a = my'), (6)
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for every a € H. Let tx be a right integral for K. Now by a theorem of
Nichols and Zoeller in [23], Hx and xH are free. Then there exists A € H
such that ty = Atg. Let A := ng(S~'(A)). Then a S-Frobenius system for
H/K is given by {E,S™"A), A1)} where

E(a) =) fla@)S™ (tk))ag), (7)
(a)

for every a € H [10].

In this paper we study a generalization of [-Frobenius extensions to
Frobenius bimodules with two-sided twisting. These may be useful in the fur-
ther study of subobjects of Hopf algebras and Hopf algebras over categories.
In the framework of bimodules, Hom, and tensor, we prove an endomorphism
ring theorem and its converse for certain twisted Frobenius bimodules in Sec-
tion 2. In Section 3, we discuss a duality of the notions of separable extension
and split extension A/S (a ring extension A/S is split when gAgs = ¢S5 *).
The duality is cast in terms of the separable bimodules and endomorphism
rings studied by Sugano in [32]. We observe an endomorphism ring theo-
rem for projective split separable extensions. In Section 4, we characterize
the twisted Frobenius bimodules that are separable in terms of data corre-
sponding to a Frobenius system. The duality mentioned before results in
two corollaries for separable -Frobenius and split 3-Frobenius extensions.
We show that if A/S is a 3-Frobenius extension, then A/S is split (separa-
ble) if and only if End(Ag)/A is separable (respectively, split). In Section
5, we discuss the question of when projective separability implies Frobenius.
We give a Hopf algebra example and a matrix example of free separable 3-
Frobenius extensions with finite rank, which are not Frobenius extensions in
the ordinary sense.

Preliminaries A ring R will mean a unital associative ring. A ring homo-
morphism sends 1 into 1. A right module Mg or left module g M is always
unitary. Bimodules are associative with respect to the left and right actions.

An R-S bimodule M is denoted by gMg. Its right dual is defined by
M* := Hom(Msg, Ss), an S-R module where sfr(m) := sf(rm). The left
dual of M is *M := Hom(gM, rR) is also S-R module where (m)(sfr) :=
[(ms) f]r, the argument being conveniently placed on the left. Both M — M*
and M +— *M are contravariant functors of bimodule categories, sending

rMs — s Mp.



If R = S in the last paragraph, denote M := Homg_g(M, S). Define the
group of S-central elements by M := {m € M| ms = sm, Vs € S}. Note
that (M*)S = (*M)S = M.

If kMg, RN, 7Qs and sPr are bimodules, then M ®g P receives the
natural R-T bimodule structure indicated by r(m ® n)t := rm ® nt, and the
group of right module homomorphisms Homg(Msg, Qs) receives the natural 7-
R bimodule structure on Homg(Ms, Qs) indicated by (¢fr)(m) := t(f(rm)).
The group of left module homomorphisms Hompg (M, N) receives the natural
S-T bimodule structure indicated by (m)(sft) = ((ms)f)t, where the argu-
ment is written to the left of the function (and if M = N, composition is
“arrow-theoretic, ” i.e., reverse from the usual). All bimodules arising from
Hom and tensor in this paper are the natural ones unless otherwise indicated.

A ring extension A/S is a ring homomorphism S < A. A ring extension
is an algebra if S is commutative and ¢ factors into S — Z(A) — A where
Z(A) := A” is the center of A. A ring extension is proper if ¢ is 1-1, in which
case identification is made.

The natural bimodule sAg is given by s-a- s’ := ¢(s)ac(s’). In particular,
we consider the natural modules Ag and sA. An adjective, such as right pro-
jective or projective, for the ring extension A/S refers to the same adjective
for one or both of these natural modules. The structure map ¢ is usually
suppressed.

2 Frobenius bimodules

Suppose S is aring and §: S — S is a ring automorphism. A left S-module
sM receives a new module action defined by

s-3m = B(s)m, (8)

for every s € S,m € M, the new module being denoted by zM, called the
B-twisted module. Given another S-module /N, note that Homg(sM, sN) =
Homg(sM, s-1N), since f € Homg(gM, sN) satisfies f(G(s)m) = sf(m) for
every s € S, equivalently f(sm) = f7!(s)f(m) Vs € S. In particular, if
SN = /jM, then 5—1N = SM-

Similarly, we twist a right S-module Ps by 3. Note that P ®g gM =
Pg-1 ®5 M, whence Ps @5 gM = P ®s M. If sMg is a bimodule, note that
(6Mp5)° = M>.



Let A be another ring and suppose o : A — A and (3 are inner auto-
morphisms. A bimodule 4Mg is then isomorphic to its twisted bimodule:
aMg =2 ,Mg. For if u € A° and v € S° are invertibles such that ua = a(a)u
for every a € A, and sv = v3(s), then m — umuv defines an isomorphism
AMs = Mg,

It is well-known that Pg is finite projective if and only if P ® P* &
Homg(Ps, Ps) given by p® f +— pf, where pf : p' — pf(p') for every p' € P.
We need the following generalization of the forward implication.

Lemma 2.1 If Ps is finite projective, then ¢ : P @ 3P* — Homg(Pg, Ps)
given by p® f > p(B~Lo f) is an isomorphism.

Proof. Suppose {pk, gr} is a finite projective base for Ps. Then an inverse
mapping to ¢ is given by ¢ : d — >, d(pr) ® gi for each d € Homg(Pg, Pg).
We note that ¢ o ) = Id, since for each p' € P we have

; d(pr) B8~ (gx(p)) = d(gpkgk(p')) =d(p').
That 1) o ¢ = Id follows from

Zp(ﬂ_l(f(pk)) Qg =p® Z for)gr=pQ® f

foreachpe P, f € P*. O
Suppose B and T are rings, and that «: B — B and f: T — T are ring
automorphisms.

Definition 2.1 A bimodule gPr is an a-B-Frobenius bimodule if
1. Pr and gP are finite projective modules, and

2. 1("P)p = 3(P")a-

If « = Idg and B = Idr, this definition recovers the untwisted Frobenius
bimodules defined by Anderson and Fuller [2]. A notable class of examples of
Frobenius bimodules come about as follows. By Theorem [21, 1.1] of Morita
a faithfully balanced bimodule [2] satisfies the untwisted condition 2 of a
Frobenius bimodule. Suppose Py is a progenerator and & is defined to be
the endomorphism ring Endg (Pr). Then it follows from Morita’s Lemma [2,
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17.8] that the natural bimodule ¢ Py is faithfully balanced. It follows from
[2, Lemma 17.7] that ¢ P also satisfies condition 1 of a Frobenius bimodule.

A ring extension A/S is a B-Frobenius extension if and only if the natural
bimodule sAg is a Id-B-Frobenius bimodule. This is clear since A, =
3(Ag)% and Ag finite projective is a characterization of 3-Frobenius extension
[10, 22, 25].

We will refer to a Frobenius extension A/S where 3 = Idg as simply a
Frobenius extension. By a theorem of Nakayama and Tsuzuku in [22], given
two automorphisms «, 3 of S, a proper (-Frobenius extension A/S is an a-
Frobenius extension if and only if a871(s) = usu™! for some u € A° and
every s € S, which we call an A-inner automorphism of S. In particular,
a [-Frobenius extension A/S is a Frobenius extension if and only if 3 is
A-inner.

If 6:T — T is a ring automorphism, we will refer to an Id-3-Frobenius
bimodule gPr as a (3-Frobenius bimodule. For any bimodule g(Qr, a ring
automorphism [ of 1" has a @Q-extension to a ring automorphism o« : B — B
in case there is a bimodule isomorphism v : gQr 5 o®p. For example, an
automorphism of a ring extension is a QQ-extension as follows: if B/T is a
ring extension with structure homomorphism ¢, gQQ7 = gBr is the natural
bimodule, and ot = 10 3, then « induces a B-extension of 3.

The following sets up some more notation for the next theorem, which
generalizes the endomorphism ring theorem for S-Frobenius extensions [22].
Given a bimodule g Pr, denote the endomorphism ring of Pr by £ := Endr(Pr).
Note that there is a proper ring extension B — £, where b — )\, left multi-
plication by b € B. Note too the natural bimodule ¢ Py given by fpt = f(p)t
forevery fe&,pe PteT.

Theorem 2.1 Suppose gPr is a 3-Frobenius bimodule and oo : B — B is a
P-extension of 8. Then € is an o~ -Frobenius extension of A.

Proof. First, £ is finite projective, since €5 = P @ Pj; and both Pp and
Pj; are finite projective as a consequence of Definition 2.1.

Next we apply £ = P ®r Pj;, the Hom-Tensor relation, Definition 2.1
for the Ids-g-Frobenius bimodule P, reflexivity of g P and gpPr = ,Ps (in
that order) in a computation with the natural bimodules discussed in the
preliminaries in Section 1:



o-1Homgp (€, Br)e o-tHomg (Homr(Pr, ¢Pr)s, Be)e
o-1tHomg(¢P ®1 Py, Bp)e
a—lHomT(ng, HomB((BPT)*,BB)T)s
BHOIHT(SPT, HomB(ﬂ—l(*P)B,a—lBB)T)E

BHOIIIT(PT, a1 Pﬂ—l)g

1R M1 1

IR

pHomt(Pr, Pr)e = g&s.

Whence p€¢ = ,-1(Ep)f and £/B is a o '-Frobenius extension. O

Corollary 2.1 [22] Suppose A/S is a [-Frobenius extension and « extends
B to A. Then Ends(As) is an o '-Frobenius extension of A.

With the suppositions of the corollary, an o *-Frobenius system is given
explicitly as follows. Since Ag is finite projective and gA4 = gA%, we note
that £ := End(Ag) = Az ®s A, since £ =2 A ®g A*. This extends to an
isomorphism of rings if multiplication on As ®g A is given by

(a®b)(c®d) =aFE(bc) ® d. 9)

If gAq = 3A% is given by a — Ea, where E € (Ag)* is the image of 1, (24, f;)
is a projective base, or dual base, for Ag, and f; = Ey;, then {E, z;,y;} is a
B-Frobenius system for A/S [25]. Then Y, z; ® y; is easily checked to be the
unity element in Ag®gA. An o~ '-Frobenius homomorphism for A3®gA over
A may easily be checked to be given by Fy : Ag®@s A — A, a®b— a *(a)b
with dual base {z; ® 1} and {1 ® y;} (cf. [24, o = Ida]). This leads to a
lemma needed later:

Lemma 2.2 Suppose A/S is a B-Frobenius extension with (8 extending to
an automorphism o of A and Ag free of rank n. Then gA, €4 and A€ are
free of rank n.

Proof. Let {z;} and {f;} be dual bases for Ag and (4s)*, (i = 1,...,n
throughout) and @ — Fa (Ya € A) a Frobenius isomorphism gAg —
Homs(AAs,ﬁSS). Let Y; € A be determined by Eyz = fz € A*. Then
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Y;xjE(yja) = a for every a € A, whence E(yz;) = ;;, the Kronecker
delta. Then {y;} is a basis for sA, since 3, 87 (E(ax;))y; = a for all a € A,
and Y; s;y; = 0 for some s; € S implies E(Y; s;yixj) = [B(s;) = 0 for each
j=1...,n.

By our remarks above, £/A has o~ !-Frobenius system {F},7; ®1,1®y;}.
But E1((1 ® i) (z; ® 1)) = E1(E(yizj) ® 1) = o 1(d45) = di5, from which it
follows that £4 and 4& are free of rank n. O

A converse of the endomorphism ring theorem is given next. Condition 10
is a weak version of Condition 2 for a Frobenius bimodule studied by Willard
[35]. Condition 10 is satisfied if Ps is a generator module, as in our discussion
following Definition 2.1.

Theorem 2.2 Let A and S be rings and oPs a bimodule such that Ps and
AP are both finite projective. Let a : A — A be a ring automorphism.
Suppose £ := Endg(Ps) is an a-Frobenius extension of A, and

SHOmg(gP, gg) = SHOI’Ils(Ps, SS)A- (10)
Then 4Ps is an a-Frobenius bimodule.

Proof. We apply the Hom-Tensor Relation, the necessary condition ¢€4 &
e(*€)a™! for an a-Frobenius extension £/A and Condition 10 in that order:

1%

S(*P)a—l = SHomA(AP,AA)a—l SHOIIIA(AS ®g P, AA)a—l

112

sHomg (¢Ps, eHoma (A€, AA) 1)
sHomg(¢Ps, £€a)a
sHomg(Ps, Ss)a = (aPs)”

1%

1%

By assumption P is finite projective as an A-module and as an S-module,
whence P is an a-Frobenius bimodule. O

Corollary 2.2 Suppose A/S is a ring extension and o is an automorphism
of the ring extension. If Ag is a finite projective generator and £ := Endg(Asg)
is an a-Frobenius extension of A, then A/S is an o~ '-Frobenius extension.

Proof. Since Ag is a generator, Willard’s condition with 4Ps = 4Ag is
satisfied. The rest follows from the theorem and the lemma below. O



Lemma 2.3 Suppose A/S is a ring extension with oo an automorphism of
the ring extension and (3 its restriction to S. If Ag is a finite projective and

sAa-1 = sHoms(As, Ss)a, (11)
then A/S is an 3~'-Frobenius extension.

Proof. Let 3 be the automorphism of S such that at = (3 for the structure
map ¢ : S — A of the ring extension A/S. We wish to show that A/S has a
(B~ L-Frobenius system as defined in Equations 3.

Let v : gAx 5 sHomg(,As,Ss)a and E :=9(1). Then for every si, sy €
S,a € A, we have E(siasy) = 71(s1)E(a)sy. If {x;, f;} is finite projective
base for Ag, and y; € A such that ¥(a™'(y;)) = Ea™'(y;) = fi, then a =
Yz E(y;a) for every a € A. We compute for every a,b € A:

WX Blaz)a ' 4)(6) = E( A(E(az:)yi)
— Y B(az)E(yh)
= BY nEuh)

= E(ab) = ¢(a'(a))(b).

Then a = ¥, B(E(ax;))y; for every a € A, and {E, x;,y;} is a 3~ '-Frobenius
system. O

In closing this section, we remark that Frobenius properties, endomor-
phism ring theorems and converses for functors and categories have been
studied by Morita in [21, 20].

3 Separable bimodules and a duality

Separable bimodules are defined in [32] as follows. Suppose Mg is a bimod-
ule. Define the evaluation map ev : M Qg *M — T, by m ® f — (m)f,
and note that it is a T-bimodule homomorphism. 7T is M -separable over R,
or M is separable, if ev is a split epi in 7 M.

First some easy deductions. It follows from the definition that 7M is a
generator. Similarly, if M* is a separable R-T bimodule with Mg reflexive,
then Mp is a generator.



Proposition 3.1 Suppose 1My is a faithfully balanced bimodule. Then Mg
1s separable < oM s a generator < Mg s finite projective.

Proof. Since 1My is faithfully balanced, the following square is commuta-

tive:
M@ M; —» M Qg *Mr
n J/ N i/ ev
rEnd(Mp)r — +Tr

where the top horizontal arrow is given by m ® f — m @ ®(f), ® : g M 5
» My being the isomorphism defined in the proof of [21, Theorem 1.1], the
bottom arrow sends elements in 7" to their left multiplication operator, and
n is the standard mapping m ® f — mf € End(Mg).

Now one of the vertical arrows is epi if and only if the other is epi. But
ev is epi iff M is a generator, while n is epi iff My is finite projective.
Furthermore, 7 is epi implies 7 is an isomorphism, whence M is separable iff
My, is finite projective. O

Clearly, T is M-separable over R iff there is an element

e=> m® fi € M ®r "M,

i=1

called a M -separability element, satisfyingte = et Vt € Tand >0, (m;)fi =
1.

Now let A/S be a ring extension. Two specializations of a separable
bimodule are to be made in defining separable extension and split extension.
First, let M; = 4Ag. Since Hom(a A, AA) = A, A being M;-separable over S
is equivalent to the following definition. A ring extension A/S is a separable
extension if

IU,S:A®SA—)A, a®b|—>ab,

is a split epimorphism of A-bimodules [12]. The M;-separability element cor-
responds to the ordinary separability element, while separable algebras over
commutative rings [6] correspond to the algebra case of separable extension.

Secondly, let My = g A4 in the definition of separable bimodule. Note that
My = *M,. Since A ®4 Hom(sA,sS) = S reduces to *A — S, f +— f(1),
and *A% = fl, S being Ms-separable over A is equivalent to the following
definition. A ring extension A/S is a split extension if there exists E €
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Homg_s(A,S) such that E(1) = 1. Call E a conditional expectation of the
split extension A/S. Equivalently, A/S is a split extension if A =S @ N as
S-bimodules for some sub-bimodule N in A.

Split extensions are a noteworthy class of ring extensions. The left or
right (respectively, weak) global dimension of rings of A and S in a split
extension A/S satisfy

D(S) < D(A) + ds(A), (12)

where dg is the projective (respectively, flat) dimension of the S-module A
(cf. [16]). Secondly, the centralizer C'4(S) is a split extension of the center of
S (restrict E to C4(S)). Thirdly, a characterization of split extension is that
for every module Ng and arrow N — N’, the natural monic Ng — N ®g As
is a split monomorphism and natural with respect to N — N’ (cf. [27]).
Similarly, for every module Ng the natural epi Hom(Ag, Ng)s — Ng is split.

Dual-like analogues of these propositions hold for separable extensions.
If A/S is a projective separable extension, we have D(A) < D(S) (cf. [12,
Proposition 1.8]). Secondly, C4(S) is a split extension of the center of A
[12, Lemma 2.2]. Thirdly, a characterization of separable extension is for
every module M, and arrow M — M’, the natural epi M 5 A — M
is a split A-epimorphism and natural with respect to M — M’ (cf. [27]).
Similarly, the natural monic M4 — Homg(Ag, Mg)a is split for every A-
module M. It follows from the last point and naturality that the natural
inclusion A — End(Ag) is a split extension if A/S is a separable extension.

The rest of this section will study a type of duality between separable
extension and split extension A/S with respect to the endomorphism ring
Ends(Ag). Given a bimodule gMy, let £ := Endy(Mr), a ring extension
over R via left multiplication. Let E := End(gM) be the left endomorphism
ring of M, a ring extension over T via right multiplication (with arrow-
theoretic composition and arguments written to the left). The next theorem
is equivalent to [32, Theorem 1, Proposition 2.

Theorem 3.1 Suppose p My is a bimodule.
1. If R is M-separable over T', then £ is a split extension over R.

2. If My 1is finite projective and & is a split extension over R, then R is
M -separable over T.
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3. If RM 1s finite projective and R is M-separable over T, then FE is a
separable extension of T.

4. If RM is a generator and E is a separable extension of T, then R is
M -separable over T'.

The proof is contained in [32]. The explicit forms of the conditional
expectations and separability elements may be useful and are given below in
their respective order.

1. Let >, m; ® f; be an M-separability element. Then a conditional ex-
pectation R€r — rRpg is given by f +— 3,(f(m;))f; for every f € £.

2. Let {my, f;} be a finite projective base for My and let F': R€r — rRp
be a conditional expectation. For each m € M, let mf; denote the
element in & given by m' — mf;(m'). Define ¢g; € Homg(rM, rR) by
gi(m) = F(mf;). Then ¥, m; ® g; is an M-separability element.

3. Let {z;, h;} be a finite projective base for gM, and >, m; ®r f; be an
M-separability element. For each f € *M and m € M, let fm € E
be given by m' > [(m/) flm. Then ¥, ; hym; ®r f;z; is an separability
element for E/T.

4. Given generator g M, let >, (yx)hx = 1g where hy € *M and y; €
M. Given E/T separable, let >, F; ® G; € E ®@r E be a separability
element. Then Zi,k(yk)Fi ® G;hy is an M-separability element, where
G;hy € Homg(rM, grR) is arrow-theoretic composition.

If A/S is a ring extension and Ag is a progenerator, the theorem implies
that Ends(As)/A is a separable (split) extension if and only if A/S is a
split (respectively, separable) extension. As a corollary we obtain a type
of endomorphism ring theorem-with-converse for projective split separable
extensions. Let £ := Endg(Ag) for a ring extension A/S.

Corollary 3.1 Suppose that A/S is a right finite projective ring extension.
If A/S is a split separable extension, then &' is a left projective split separable
extension of A. Conversely, if A/S is a right progenerator extension and &'
is a split separable extension of A, then A/S is a split separable extension.
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Proof. The corollary follows from letting M = A in the theorem, first as
the natural A-S bimodule, then as the induced S°P-A°? bimodule. Note that
End(sopA) = &P, and that any ring extension is separable (respectively,
split) iff its opposite ring extension is separable (respectively, split). Finally,
A48 = 4A®g A* is finite projective since gA* is. O

4 Separable Frobenius bimodules

In this section, we will obtain a characterization of the twisted Frobenius
bimodules that are separable in terms of data corresponding to a Frobenius
system. We will obtain two corollaries characterizing those 3-Frobenius ex-
tensions that are split or separable. We will then use this to prove a duality
result like Theorem 3.1 for #-Frobenius extensions.

We set up some notation for the next theorem. Let o : B — B and [ :
T — T be ring automorphisms. Suppose gPr is an a-3-Frobenius bimodule
with bimodule isomorphism ¥ : 3(P*)q — %Ps. Let {p, g} be a finite
projective base for Pr, and e, := ¥(gx). Note that e, € *P and we write the
argument in P to the left of e.

Theorem 4.1 Suppose P is a Frobenius bimodule with the notation above.
Then B is P-separable over T if and only if there is d € Hom(,Pg, gPr) such

that
zk:(d(pk))ek =1p. (13)

Proof. (<) Let ® be the composite isomorphism

BP ®T Z_lpa—l 18&) BP ®T Pi; i) BEndT(PT)B

Note that 3, pr @ ex — >p Pr ® g — Idp under ®. Since Idp € End(Pr)®
and d induces the homomorphism,

8Pr ® j1Pamt “5 -1 Ps1 ®1 1 Pomt = 5P ©1 " Pp,

it follows that e := 3, d(px) ® ex € (P ®r *P)B. By Equation 13 then, e is
a P-separability element.
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(=) Let e is a P-separability element in (P ® *P)Z. Let ® be the com-
posite isomorphism,

BP Q7 *PB 1®—\Iﬁ)1 BP Q7 BP; i) HOH]T(Pﬁ,PT)a,

where the last mapping is the natural isomorphism given by p® f — p(8~1o
f)- Then d := ®'(e) € Homp_1(,Ps, sPr). Moreover, d = ®'(3_, d(pr) ® ex)
since

(Y d(pr) ®ex) = d(pp)f ' ogr =doy prge = d.

Hence, e = Y, d(pr) ® e and Equation 13 follows. O
Given a ring extension A/S and automorphism ' of S, we define a twisted
version of the centralizer of S in A by

CH(S):={d € A|sd =d'3'(s),Vs €S} (14)

Corollary 4.1 Suppose A/S is a [f'-Frobenius extension with [3'-Frobenius
system {E,x;,y;}. Then A/S is a separable extension if and only if there is

d e Cf;_l(S) such that 3, xid'y; = 14.

Proof. Let B=A,T=5,a=1da, f = and gPr = 4As in the theorem.
Since (z;, E'y;) is a finite projective base for Ag, it follows that e; = y;. But
d € Homy s(aAg, aAs) & CJ(S) via f — f(1): set d' = d(1). It follows
that Equation 13 becomes >, z;dy; = 14. We have noted in an earlier section
that A is 4Ag-separable over S if and only if A/S is a separable extension.
O

In case ' = Idg, we obtain [12, Proposition 2.18].

Corollary 4.2 Suppose A/S is a ['-Frobenius extension with [3'-Frobenius
system {E,x;,y;}. Then A/S is a split ertension if and only if there is
d' e C% (S) such that E(d') = 1.

Proof. Let B=S,T=A, a=/, f=1ds and gPr = gA, in the theorem.
We have seen that S is gAa-separable over A if and only if A/S is a split
extension. With 1 the trivial projective base for A4, F is the image of 1 under
U : x — Ez. Note that d € Hom(gAa,sAx) = C(S) via f — f(1). Set
d' = d(1). Placing the argument of E € A to the right this time, Equation 13
becomes E(d') =1g. O
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The next proposition again illustrates the duality between split and sep-
arable extension with respect to the endomorphism ring. Three of the four
implications below follow from Theorem 3.1. We must prove the fourth impli-
cation as a 3-Frobenius extension need not satisfy the generator hypothesis in
Theorem 3.1. The proof uses the conditions given in Corollaries 4.1 and 4.2.
(Similar proofs may be provided for the other three implications [14].) Let
g’ = Ends(As).

Proposition 4.1 Suppose A/S is a ring extension, o : A — A is an auto-
morphism of the ring extension A/S, and B3 : S — S is its restriction to S.
If A/S is a B-Frobenius extension, then:

1. A/S is a separable extension if and only if £'/A is a split extension.

2. A/S is a split extension if and only if £'/A is a separable extension.

Proof. That A/S is a separable extension iff £'/A is a split extension follows
from Theorem 3.1, parts 1 and 2, where R=A, T =5, and M = 4As.

That A/S is a split extension implies £'/A is a separable extension follows
from Theorem 3.1, part 3, where R = S° (the opposite ring), 7' = A°P, and
M = gowAsn. Then E = £ is a separable extension of A°, which is
equivalent to £'/A being a separable extension.

To prove that £'/A is a separable extension implies that A/S is a split
extension, suppose 3 : S — S denotes the restriction of o to S, and that
{FE,z;,y;} is a B-Frobenius system for A/S. Recall from an earlier section
that Ag ®s A = £ as rings, if multiplication in Az ®g A is given by

(a®b)(c®d):=a® B (E(bc))d = aE(bc) ® d.
Note that 1 = 3, 7; ®y; under this identification. Recall the o~!-Frobenius
system (F1, z;®1, 1®vy;) for £'/A in the endomorphism ring theorem above.

Note that the mapping 7 : Ag ®s A — A given by a ® b — aFE(b) is well-
defined since E(sa) = B(s)E(a) for every s € S;a € A. By Corollary 4.1,
there is an element e := Y, a; ® b; € Cg(A) such that 3;(z; ® 1)e(1®y;) =
Y% ® ;. Then d:= 3, a;E(b)) € C%(S), and arises as follows:

Y (@i®)(a;0b)(1@y) = Y (z:®1)(dQy)
ij

= Y zE(d)®y;

- ]_g.
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By applying 1 to the last equation above, we obtain
szE(d)E(yz) = ZﬂﬁzE(yz)E(d) =FE(d) =1,

since sd = df3(s) and ¥, z;E(y;a) = a for every s € S,a € A. It follows from
Corollary 4.2 that A/S is a split extension. O

5 A Hopf algebra example

The question of when a separable extension is a Frobenius extension is one of
the open questions concerning ring extensions [31]. Eilenberg and Nakayama
showed in [7] that a separable algebra over a field is a Frobenius algebra.
Endo and Watanabe extended the reduced trace of central simple algebras to
central separable algebras (over a commutative ring k) and showed that pro-
jective, separable k-algebra is a symmetric (Frobenius) algebra in [8]. Sugano
proves in [31] that a one-sided projective split H-separable [11] extension A/S
is a symmetric Frobenius extension, and that a centrally projective separable
extension is a Frobenius extension. In both cases, the problem is reduced to
showing that the centralizer C's(A) is a projective separable algebra. Sugano
shows in [33] that a projective H-separable extension of a simple ring is a
Frobenius extension. It is for example not known if a projective split sepa-
rable extension is a Frobenius extension [14]. By Theorems 3.1 and 2.2, it
is almost equivalent to ask if a separable two-sided projective bimodule M
such that M* is separable is an untwisted Frobenius bimodule.

In this section, we will provide Hopf algebra and matrix examples of
finitely free, separable -Frobenius extension A/S, where 3 is not A-inner.

We first consider an example coming from Hopf algebras. Let 1 be a
primitive N’th root of unity in a field £ and % € k. The Taft k-algebra H is
generated by two elements g and = such that

and the following simple anti-commutation rule holds:

xg = Pga (15)
Thus, H is an N? dimensional algebra with elements of the form Y% a;;z'g7.

Note the Wedderburn decomposition H = K ¢ J where K is the separable
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subalgebra generated by g, a cyclic group algebra of dimension N, and J is
the nilpotent radical ideal (z) satisfying J~ = 0.

Proposition 5.1 The algebra extension H/K is a split §-Frobenius exten-
sion, where B is not an H-inner automorphism of K.

Proof. We have noted that H/K is a split extension: indeed, one may choose
a conditional expectation that is a ring homomorphism.

Furthermore, it is well-known that H is a non-cocommutative Hopf alge-
bra with comultiplication given by A(g) =¢g® g and A(z) =1z +z2® g,
counit by €(g) = 1 and ¢(z) = 0, and antipode by S(g) = ¢~! and S(z) =

1 [34].1 Then
S?(x) = gzg™", (16)

while S?(g) = g.2

The group algebra K is clearly a Hopf subalgebra of H. By the theorem
of Fischman, Montgomery and Schneider [10] discussed in Section 1, H is
a (-Frobenius extension of K. By Equation 5, 3 := ng o n5' and we must
determine the Nakayama automorphisms 7x, ng. Since K is commutative, it
is clear that ng = Idkx. By Equation 6, ng is given in terms of the modular
function my and S2. my is nontrivial since H is not unimodular, having
right integral

N-1
ty =21y ¢ (17)
j=0

and left integral 3°; g7z ~!. Since the right modular function my : H — k
is given by wty = myg(w)ty for every w € H, we have that myg(z) = 0 and
myg(g) = 1. It follows that

ng' (@) = S7*(a — mpy) ZmH )9 a9,

for every a € H. Whence

nat(2) = mp(1) g ag + mu(x)g = vr, ng'(g) = bg. (18)

!The proof that A(z)™ = 0 uses the quantum binomial formula (cf. [30]).
2Note that S? is an inner automorphism of order N, so that H is an example of Hopf
algebras with antipodes of arbitrary even order as N varies [34].
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Since 3 = ng' restricted to K, we have
8g") = ¥'d', (19)

for every 1.

Suppose that there is v € H such that 8(g) = ugu' = 1g. Then
e(u)e(g)e(u)™ = 1e(g), whence ¥»p = 1, a contradiction. Thus, § is not
H-inner. O

It follows from the theorem of Nakayama and Tsuzuku described in Sec-
tion 2 that H/K is not a Frobenius extension. Since 3 is extended by the
automorphism 5y of H it follows from Corollary 2.1 that £ := End(Hg) is an
nu-Frobenius extension of H. Since H/K is split, so that Hy is a generator,
it follows from Corollary 2.2 that 7y is not £-inner. By Proposition 4.1, £/H
is a separable extension, since H/K is a split, S-Frobenius extension. Since
the natural modules Hx and x H are free by the theorem of Nichols-Zoeller
in [23], it follows from Lemma 2.2 (or other means) that £y and y& are free
too. We have proven:

Corollary 5.1 £/H is a finitely free, separable ny-Frobenius extension where
Ny 1S not E-inner.

With regard to the open problem mentioned above, it should be noted
that £/H is not a split extension. For if it were a split extension, H/K would
be a separable extension by another application of Proposition 4.1. Then by
transitivity of separability [12] K being a separable algebra implies that H
is separable, a contradiction.

The Taft algebra H is part of a more general class of Hopf algebras con-
structed from a biproduct defined by Radford in [28]. That H is the Radford
biproduct of K with a subalgebra isomorphic to K' := {3°; a;z'} follows
from [28, Theorem 3]. In particular, it is easy to see from Equation 15 that
H is a crossed product algebra of the cyclic group G := {1,¢9,4%...,¢" "'}
acting on K’ in an obvious way.

A matrix example. A second example of free separable g-Frobenius ex-
tension results from applying the same theory to [22, Example 2, p. 95]. Let
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K be a field and a,b,c,d € K. The following notation is convenient:

[a,b,c,d] :=

co o
cC o oo
QU OO
@ oo o

Consider the algebra A := {[a,b,¢,d]|a,b,c,d € K} with ordinary matrix
multiplication and addition. Consider the subalgebra S = {[a,b,0,0]|a,b €
K}. Let §: S — S be the automorphism defined by /3([a, b,0,0]) = [b,«,0, 0]
for every a,b € K. One checks that § is not A-inner. Then A/S is
easily checked to be a [-Frobenius extension, with (-Frobenius homomor-
phism E([a,b,c,d]) := [c,d,0,0] and dual base {14,u}, {u,14}, where u :=
[0,0,1,1]. Moreover, it is easy to check that As and sA are both free with
basis {1, u}.

We note that A/S is a split, though not separable, extension. We compute
by hand that C%(S) = {[0,0,¢,d]|c,d € K}. Then 1, € E(C%(S)), so that
Corollary 4.2 implies that A/S is a split extension. Noting that C%(S)u +
uC%(S) = {0}, Corollary 4.1 implies A/S is not separable, since 42 = 1.

Now the ring automorphism « : A — A given by «([a, b, ¢,d]) := [b,a, d, (]
extends the automorphism 3 of S. Also a? = 1. Then by Theorem 2.1 and
Lemma 2.2, £ := Endg(Ag) is a free rank 2 a-Frobenius extension over A.
That « is not E-inner follows from Corollary 2.2. £/A is a separable, though
not a split, extension by Proposition 4.1.
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