A POSTERIORI ERROR ESTIMATES FOR THE
FOKKER-PLANCK AND FERMI PENCIL BEAM EQUATIONS

MOHAMMAD ASADZADEH

ABSTRACT. We prove a posteriori error estimates for a finite element method
for steady-state, energy dependent, Fokker-Planck and Fermi pencil beam
equations in two space dimensions and with a forward-peaked scattering (i.e.,
with velocities varying within the right unit semi-circle). Our estimates are
based on a transversal symmetry assumption, together with a strong stability
estimate for an associated dual problem combined with the Galerkin orthogo-
nality of the finite element method.

1. INTRODUCTION

This paper is the second part in a series of two papers concerning approximate
solutions for the pencil beam equations. In the first part [3], we derived, for smooth
solutions in the Sobolev space H¥*+1 of functions with their partial derivatives up
to order k+1 in Lo, optimal a priori error estimates for the streamline diffusion and
discontinuous Galerkin finite element methods of order O(h¥+1/2). In this part we
extend our studies to a posteriori error estimates dealing with the following basic
problem: To construct an algorithm for the numerical solution of the pencil beam
equations such that the error between the exact and approximate solution, mea-
sured in some appropriate norm, is guaranteed to be below a given tolerance and
such that the computational cost is almost minimal. These two properties are re-
ferred as the reliability and efficiency of the algorithm, respectively. The a posteriori
error analyses are required for the reliability in the sense that the error is controlled
by a certain norm of the residual term (measuring the extent to which the computed
solution fails to satisfy the actual differential equation), whereas the a priori error
estimates are based on controlling the size of the error by some norm of the un-
known solution itself. As for the efficiency the adaptivity may be invoked to avoid
unnecessary mesh-refinements on the regions where the contribution to the error is
already small. Below, to be concise, we focus on the reliability issue, the efficiency
studies are similar to the adaptive error analyses in [4] and [12]. In our studies we
shall assume symmetry properties, compensating for the degenerate character of
the pencil beam equations, and put also a switch which slightly, raising the diffu-
sion coefficient in the critical cases, modifies the continuous problem. The effect of
all these manipulations would correspond to adding artificial viscosity in the case
of fluid problems, see, e.g., [16]. The error may be split into the perturbation error
caused by the modifications and the discretization error for the modified problem.
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We shall combine the advantages of both FEulerian and Lagrangian approaches to
derive finite element error estimates for the modified problem. Compared to the
adding of artificial viscosity in the fluid problems our symmetry considerations, be-
ing part of the nature of the particle beams, are less restrictive. Consequently the
perturbation errors are less significant and therefore not included in our studies.
For a similar problem with significant perturbation error, e.g., a convection domi-
nated convection-diffusion problem, detailed perturbation error analysis are given
in [12].

Pencil beam equations, considered below, are modelling, e.g., problems of col-
limated electron and photon particles penetrating piecewise homogeneous regions.
The collisions between the beam particles and particles from beams with different
directions cause deposit of some part of the energy carried by the beams at the
collision sites. To obtain a desired “amounts of energy deposited at certain parts
of the target region” (dose) is of crucial interest in the radiative cancer therapy.
To this approach the radiotherapist employ beam configurations obeying the Fermi
equation, which is a certain asymptotic limit of the Fokker-Planck equation, see,
e.g., [9], [15], and [19]. A physical study of the Fokker-Planck equation, which itself
is an asymptotic limit of the linear Boltzmann equation, is given by Risken in [20].
Fermi and Fokker-Planck are in the class of diffusion transport equations. For a
mathematical derivation of the diffusion transport equations, through asymptotic
expansions, see Dautray and Lions [11], Volume 6.

An outline of this note is as follows: In the remaining of this section we for-
mulate the general three dimensional problem as an asymptotic limit of the linear
transport equation and also our 2-dimensional continuous model problem. Section
2 is devoted to notations and preliminaries. In section 3 we introduce the charac-
teristic streamline diffusion method (CSD) for the pencil beam equations. Section
4 contains error representation formula, interpolation and strong stability estimates
for a dual problem. In our concluding section 5 we prove the main result: The a
posteriori error estimate both in an abstract form and also in a concrete version.

Below C will denote different constants in different occurrence independent of all
the parameters involved, unless otherwise it is obvious or explicitly stated. Further-
more (-,-)g and ||-|| = || - ||@ will denote the L»(Q)-inner product and L»(Q)-norm,
respectively.

1.1. The continuous problems. The derivation strategies, through the Gaussian
multiple scattering theory, for the Fokker-Planck and Fermi pencil beam equations
relevant in electron and photon dose calculations can be found in [15] relaying on
Fourier techniques, in [19] using spherical harmonics (see also Holland [14]), and
in [20] based on statistical physics approaches. Below we shall sketch the general
idea. For this purpose we start from the steady-state neutron transport equation:

(1.1) w- Vxth(x,w) + oy (x)h(x,w) = / os(x,w - w(x,w) du',

S2
(12) Y0,y 79) = 5601 - 6W3(E), €>0,
(13) w(lhyazaw) =0, £<0,

with x = (z,y,2) € [0, L] x R x R, and w = (§,n,() € S?, describing the spreading
of a pencil beam of particles normally incident upon a purely scattering, source-
free, slab of thickness L. Here v is the density of particles at the point x moving in
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the direction of w, o;, and o are total and scattering cross-sections, respectively.
Assuming forward-peaked scattering, the transport equation (1.1) may, asymptot-
ically, be approximated by the following Fokker-Planck equation

0 1 02

0
1.4 ) xFP: _1_2_ - FP
(14) 0V =0 [0 - )5 + ] ¥
where 9 is the azimuthal angle with respect to the z-axis and
1 1
(1.5) 0= soux) = 7r/ (1= E)os(x, €) de,
-1

is the transport cross-section for a purely scattering medium. In the expansions
leading to the equation (1.4) the absorption term o4 on the left-hand side of (1.1)
associated with a Taylor expansion of ¢ on the right-hand side gives the right-
hand side of (1.4) and a neglected remainder term of order O(c?), see [3] and
[9]. A further approximation, assuming thin slab by letting L x ¢ < 1, and a
simple algebraic manipulation yields to a perturbation of the equation (1.4), and
the boundary conditions (1.2) and (1.3), to the following Fermi equation;

wo - Voth = o Apctp?
(1.6) ¥¥(0,y,2,m,¢) = 6(y)d(2)d(n)d(¢), £€>0,
YF(L,y,2,m,() =0, £<0,

here wy = (1,7, (), where (n,() € RxR and A, = §%/0n>+0?/0¢%. Geometrically,
equation (1.6) corresponds to projecting w € S? in the equations (1.4), along w =
(&,m, ¢) onto the tangent plane to S? at the point (1,0,0). In this way the Laplacian
operator, on the unit sphere, on the right-hand side of the Fokker-Planck equation
(1.4) is transfered to the Laplacian operator on this tangent plane, as on the right-
hand side of the Fermi equation in (1.6).

Detailed mathematical analyses for variants of Fermi and Fokker-Planck equa-
tions, either as backward Kolmogorov or some Forward-backward degenerate type
equations, can be found in [5], [6], [7] and [18]. Asymptotic derivations and qualita-
tive approximate behaviour of these type of equations have, recently, been studied
in [8], [13] and [17].

The CSD-method, used in this paper, was first analyzed by Johnson and Szepessy
in [16] for the conservation laws. A posteriori error estimates for a more related
problem has recently been carried out by Verfiirth in [21].

Except in a few special cases Fokker-Planck and Fermi equations, with energy
dependent scattering and having degenerate nature, are not analytically solvable.
Therefore numerical approaches are the only realistic solution alternatives. How-
ever, in the numerical algorithms, so far, the priority has been given to the construc-
tion of operational codes, with no or some heuristic mathematical justifications,
consequently basic approximation theory concepts such as stability and conver-
gence are not appropriately studied. Our intension in this note is to bridge parts
of this gap and also construct numerical schemes accessible for practical purposes.
In the analyses below, for simplicity, we concentrate on approximate solutions of
problems (1.4) and (1.6) in two dimensions. Extensions of these studies to the
real three dimensional case, although would benefit a great deal from the present
studies, would still be a real challenge.

The two dimensional version of (1.1)-(1.3) leads to the following Fokker-Planck
problem, see also [3]: For 0 < z < L and —oco0 < y < oo, find 9P = WP (g y )
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such that
w - VX¢FP = Ulpg‘apa S (_7T/277T/2)7
(1.7) YFP(0,y,0) = 5=6(1 — cos0)d(y), 0 € Si,
FP(L,y,0) =0, 6eSt,

where w = (£,7) = (cosf,sinf), S} ) ={weS': {>0(<0)}.

Through the equations (1.1)-(1.7) ¢ denotes the flux while usually the measured
quantity (dose) is related to the current function
(1.8) J=&y.
We use the scaling substitution z = tan#, for € (—n/2,7/2), and introduce the
scaled current function J by
(1.9 J(z,y,2) = j(z,y,tan! 2)/(1 + 22).

Note that, now z corresponds to the angular variable . Below we shall keep 6
away from the poles +7/2, and correspondingly formulate a problem for the current
function J, in the bounded domain Q = I, x I, x I, = [0, L] x [—yo, Yo] X [— 20, %0]:

Jo +2Jy =0 AlJ, (z,z.) € Q,

J.(x,y,t20) =0, for (x,y) € I x I,
(1.10) J(0,y0,2) =0, for z<0,

J(0,—yo0,2) =0, for z >0,

J(OJQ"L) = f(ZUJ_),

where £, = (y,z) is the transversal variable and we have replaced the product
of d-functions (the source term) at the boundary by a smoother Lo-function f.
Further

(1.11) A=08%/022, (Fermi)
(1.12) A-=0/0z[a(2)0/0z (b(2)-)], (Fokker-Planck)

where a(z) = 1+ 22 and b(z) = (1 + 22)3/? are indicating the diffusive behaviour
of the Fokker-Planck equation compared to the Fermi equation. We recall that the
transport cross section depends on the energy and therefore on the spatial variables:

0 = 0(z,y) = 1/204(E(x,y)).

1.2. approximations in the case of small angular scattering. As we indi-
cated above equation (1.7) is obtained from a two dimensional version of the linear
transport equation (1.1) through a certain asymptotic expansion neglecting O(co?)-
terms. In other words, the absorption and scattering terms involving o, and oy,
respectively, in (1.1) are combined to give the, O(o), diffusion term on the right-
hand side of (1.7) as well as (1.10) and also higher order terms which are neglected.
Then a natural question would be: how much of the original absorption, which is
a regularizing term, is kept in the Fokker-Planck diffusion term ¢ AJ with A as in
(1.12)?7 Below, expanding AJ, we simply see that not only the whole absorption
term in (1.1) is now in the neglected or cancelled part but we also have a acJ
term hidden in 0 AJ. Loosely speaking, in the asymptotic expansions of deriving
the Fokker-Planck equation from the neutron transport equation, mathematically,
a regularizing absorption term of order O(o; + o) is gone. More precisely:

AJ = (a(bJ),), = d'(b]). + a(bJ]).. = (a'b + ab")J + (a'b+ 2ab')J, + abJ..,
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where A, a = a(z) and b = b(z) are as in the Fokker-Planck case (1.12). Conse-
quently, with this modelling, the Fokker-Planck equation can be written as

(1.13) Jo+B-ViJ—oaJ =cabJ,, =o(1+2%)°2J,.,

where V, = (0/0y,0/0%) is the transversal gradient and, for the moment
a=(a'b +ab") = 3(1+ 2%)"/?(42% + 1), 8= (z, —80z(1+ z2)3/2) )

Thus trying to, deterministically, derive the Fermi equation in two dimensions, i.e.,

(1.14) Jp + 20y =0,

from its Fokker-Planck counterpart, would lead to considering additional, annihi-
lating, approximations as ao = 0, and

{8~ (2,0) and ~=(1+2%)%2~r1} <= (20,2%) = (0,0).

This means that because of the forward-peakedness of the scattering associated
with the small angel approximations, loosely speaking, we may interpret the Fermi
equation as a consequence of yet another asymptotic behaviour of the Fokker-Planck
equation as (o, z) — (0,0), so that one can take (zo,2%) ~ (0,0). This is a nearly
rarefied model describing, e.g., a photon path with negligible collision effects which
may be simplified to J, = 0, i.e., free particles flowing in the z-direction.

In a forward-peaked scattering for the Flatland (2D problem) version a particle
at the position (xg,0), moving in the z-direction, after undergoing a collision would
move in the direction of the straight line y = tan(8)(x — x¢). For small 6-values,
because of the forward-peakedness, we may use approximations: siné ~ 6 — 63/6,
and tan 6 ~ 6 + 63 /3. Then one possible study of the Fermi equation (1.14) would
be through Fourier techniques which is also considered by Jette in [15].

For a partial remove of the degeneracy we may assume that, Jy, ~ J,,. We
shall use a somewhat more involved assumption: that there are constants C; and
C5 such that

okJ _ okJ okJ

1.1 — < — < (Co—, k=12

(1.15) = Oz — Oyt — O Ozk’ ’

Then a non-degenerate approximation for the equation (1.7) would be as follows:
(1.16) [:(J) =J,+08-V1J—eA,J =0,

where ¢ & Co/2 = Coy, /4, C = (C1 + C2)/2, Ay := 8%/0y® + 8*/92?, is the
transversal Laplacian operator, and from now on 8 = (z,0). In our studies below
A is given by (1.11) corresponding to the Fermi equation, extensions to the Fokker-
Planck case (1.12) are straight forward ,but lengthy (see our a priori error analysis
in [3] involving such extensions), and therefore are omitted.

2. OUTLINE AND PRELIMINARIES

We shall use high accuracy and good stability properties of the streamline dif-
fusion, (SD), Galerkin finite element method, studied also in [2] and [3], based
on

a) A space-velocity discretization based on piecewise polynomial approximation
with basis functions being continuous in 2, = (y, z) and discontinuous in z.

b) A streamline diffusion modification of the test function giving a weighted least
square control of the residual R(J") = £(J") of the finite element solution J".



6 MOHAMMAD ASADZADEH

c) Modification of the transport cross-section oy = 20 so that, in the critical
regions, a more diffusive equation is obtained through modifying € as

(1) ézz1) = max (s(z,), BRI |V LT e2h(, 21)*2)

where h is a total mesh-size and ¢;, @ = 1,2 are sufficiently small constants. For
the original degenerate problem £ is defined by replacing € by ¢ in (2.1). With a
simplified form of the modified/artificial transport cross-section given by

(2.2) € = max(e,c1h),

the SD-modification b) may be omitted. The a posteriori error estimate (also
underlying the adaptive algorithm) is, in the case of discretizing in the transversal
variable (y,z) = z only, basically as follows:

(2.3) llenlle < C°CH e R*R(TM) o,
where &, = J — J", with J being the solution of (1.16) with ¢ replaced by & and
(2.4) e=J—Jh=(T -0+ (J-J":=é+eépn

Note that J — J is a perturbation error caused by changing € to € in the continu-
ous problem (1.16). Further C* is a stability constant and C* is an interpolation
constant. In the simplified case (2.2) the error estimate (2.3) takes the form

(2.5) llénlle < C*CHINR(I")llq-

The adaptive algorithm is based on (2.3) and seeks to find a mesh with as few
degrees of freedom as possible such that for a given tolerance TOL> 0,

2.6 CCH|ETR2R(IM)| o < TOL,
Q

which, through (2.3), would Ls-bound é,. To control the remaining part of the
error, i.e., € = J — J , we may adaptively refine the mesh until € = ¢, giving J=1J ,
or alternatively approximate € in terms of £—e. To approximately minimize the total
number of degrees of freedom of a mesh with mesh size h(z,z ) satisfying (2.6),
typically a simple iterative procedure is used where a new mesh-size is computed
by equi-distribution of element contributions in the quantity C*C*||é~1h*R(J")||g
with the values of & and R(J") taken from the previous mesh.

The structure of the proof of the a posteriori error estimate (2.6) is as follows:

i) Representation of the error € in terms of the residual R(J") and the solution
¥ of a dual problem with €, as the right-hand side.

ii) Use of the Galerkin orthogonality to replace i by ¢ — ¥, where ¥ is a finite
element interpolant of .

iii) Interpolation error estimates for 1) — ¥ in terms of certain derivative D*v of
¥ (in our case €y, or €A 1) and the mesh-size h.

iv) Strong stability estimate for the dual solution v estimating D% in terms of
the data éj of the dual problem.

Below we specify the steps i)-iv). We let I, := I, x I, and recall that J satisfies

Jo+B-ViJ—éAJ=0, in Q,

(2‘7) z]A(O,iL'J_):f(.'EJ_), for z, €1,

J(0, 5o, 2) = 0, for z€Ty,
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with Ty =T~ N{z =0}, where ") = {x e T =0Q : B-n(x) <0(>0), (=
(1,8)}, and similarly, T'° = {(z,y, £20) }U{(, £y0,0) }. Observe that problem (2.7)
is nonlinear because ¢ depends on J". Hence, in particular, £ depends on z leading
to control of some crucial terms, in the stability Lemma 4.4 below, which otherwise
are not estimated in a natural way. To deal with £,-contributions we shall below
consider some additional angular symmetry assumptions, e.g., (2.15).

Suppose now that J* € Vj, where V, C Lo(Q) is a finite element space, is a
Galerkin type approximate solution satisfying

Jg'i‘,g‘VJ_Jh—éAJ_Jh:R, in @,
(2.8) J0,-) = fn, in I,
Jh=0, onTy, and J*=0, on T?

where f}, is a finite element approximation of f and the residual R satisfies Galerkin
orthogonality relation

(2.9) / Rudxdz; =0, Yv € V.
Q

Let us also assume that in the approximation procedure the total inflow of particles
is preserved, i.e.,

(2.10) JMn - B|dr =/ Jn - B|dr,
ry rs
where I'; := T'~ \ {z = 0}, is the side-inflow boundary and (2.10) is referred as

side-inflow consistency. Observe that both in our continuous and discrete model
problems (2.7) and (2.8), primarily, we may assume

(2.11) Jp- = J"- =0,

then, there is no guarantee that “after-collision and/or reflected” particles would
obey the same boundary condition as (2.11).

In the sequel and to avoid multiple-indices, we shall refer to all approximated
functions with alternate sub or super-index h. Subtracting (2.8) form (2.7) gives
the following equation for the error éh = J — Jh:

Leh=eh+ -V eh—éAeh=-R, in Q,
(212) éh(oa ) = f - fh7 in IL:
éh"=0, onT,;, and éF=0, on IO

We now introduce a dual for the problems (2.7), (2.8) or (2.12) as
{c*zp = —f-Vip—éAp=2" in Q,

2.13
(2.13) =0, on IT, and ¢, =0, on IO

Recall that the degenerate equation corresponds to replacing in (2.7)-(2.13), 3 -
Vi, Ai, and ¢ by 28y, 0.., and ¢, respectively and then we have the following
version of the dual problem (2.13):

(2.14) {['*90 = =g — 2Py — €z = e, in @,

=0, on Tt and ¢, =0, on TO.

Note that, in (2.14), £ is obtained from (2.1) by replacing € by o. We shall keep
using the notation € for both degenerate and non-degenerate cases, € or ¢ version
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will be obvious from the context. Now, for simplicity, we assume the following
natural angular symmetry,

(2.15) /IXI (cpw)(zo)dxdy:/I o (gow)(—zo)da:dy, Yw € La(Q).

Integrating by parts and using (2.15) with w = (é"), and w = €.é", we have
(2.16) _(éhaé‘Pzz)Q = —(é.¢ za‘p)Q + (€.€ a‘Pz) (éé,’zlza‘p)Q7

where we have also used the boundary conditions ¢, = é* = 0, on T°. From
(2.14)-(2.16), we get the following error representation formula

1P =(é", £70)o = /Q e~y — 20y — puz) dr iy
(EAh ) / ~h z:Ld d / ~h
=(Le", p)g— | é"p ydz — 2ty
(2.17) Q I =0 I, xI.
5

— (&l 0)g + ") =S L.
=1

dxdz

‘y=yo

Y=—%o

Below we identify each term I;, i = 1,...5, more closely. We have that
= (Léh, p) /chdxde
The incident boundary conditions give

L= _/1 e"(L,)o(L,") dz +/ é"(0,-)¢(0,-) dz . =/ (f = fr)pdz,

I, o

while the outflow boundary conditions, i.e., ¢ = é" = 0, on I'" imply that

y=10 0 y=vo
I; = —/ / <p| dz+/ zé cp‘ dx
y=—%0 A y——yo
/ / zeh —Y0)p(—Yo) / / 1/0 o(yo) = / éh<p|n.,§|d1‘,
—2

where n is the outward unit normal defined at the boundary and, for the sake of
generality, we have not used the assumption (2.10) yet. Thus summing up we get

(2.18) ||éh||2=—/ chdx—|—/ éh<p|n-B|dr—/ ézégcpdx+/ é.eMp, dx.
Q r- Q Q

We use Galerkin orthogonality (2.9) and write

/Rtpd:cd:m_:/R(go—Phcp)dxde_:/(R—PhR)(tp—Phap)d:cde_,
Q Q Q

where P, : Lo(Q) — Vp, is the Ly(Q)-projection. By Cauchy-Schwarz inequality we
may estimate the boundary integral term in (2.18) as

) : 1/2 5 1/2
[ eteln-glar< ([ ePin-giar) x ([ _oneglar)
r- r- r-

Now using an interpolation error, with a symmetry assumption ¢,y ~ ¢, in-
herited from (1.15), of the form

(2.19) 18h%(0 = Prp)llq < CUlIEA Lol ~ CPllép::llo,
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together with a strong stability estimate for the dual problem (2.14) of the form

(2.20) €p=:lle < C°lle"lq;

we get that

(2.21) —/ Ry drdr, < C*CHW* (R —PuR)|lollé"]lo-
Q

To estimate the boundary integrals we recall the Ly trace theorem

2
||U||L2(an) < CT||U||L2(Q)||U||W21(Q);
and also the inverse estimate
-1
lvllwz @) < Cinollh™ vllLo(0),
where W is the usual Sobolev space consisting of functions having their derivatives
up to order r in Ly, u and v are sufficiently smooth functions and Q C R¢, d =2,3

is a bounded Lipschitz domain, see [1] and [10] for the details. Applying the trace
theorem and inverse estimate to ¢ and @ we get using (2.19) that

/F_|<,0|2|n -BldL < Cllellellellwz@) < Clle = Prollolly = Prellwi @)

< Cllen™(p = Prp)lllle ™" h* (v = Pro)llwi (o)
< CC*(C)[Ie"lle™ W A Lylle,

where C' depends on the trace theorem and inverse inequality constants. Recalling
(2.1) we have that € > h3/? and therefore é~'h3 < h3/2 < é. Hence

e AL glle ~ 167 H gzl < llép=:llo < C°lle o
Thus

(2.22) / loPln - 8] dT < C(C*C |||
.

At this moment we need to invoke (2.10), (note that if there is a feasible information
on behaviour of the secondary particles at the inflow boundary we would be able
to continue without using (2.10)), identifying the boundary integral

(223) @Pn-plar= [ 1f = fuPin- Bldr.
r- Ty

It remains to estimate Iy and I5, where there is no orthogonality relation, such as
(2.9), available. Now we assume, for a sufficiently small constant ¢ < 1, that

(2.24) |V 1€ < céhT?,

and let C' = sup(¢h ')/ inf(éh "), (works for the case corresponding to é ~ O(h)
in (2.2), as well), then by (2.24) and the inverse estimate we have

(€2, 9)al < csup (en)INT €I Al < cCllelepss]] < cOC e,
X
the choice of ' is for moving éh]_l in and outside the norms (see also proof of

Lemma 5.3 below), and ¢ is chosen so that ¢C'C*® < 1/8. Estimating Iy, in a similar
way we finally get

. 4 A s L.
(2.25) (€262, 9ol + |(€:8", v2)ql < leehllz’-
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Inserting (2.21)-(2.25) in (2.18), and using a kick-back argument we obtain

1/2
(2.26)  [le"lo < O |In*e (R = PrR)lq + (/F_If — fal’ln- 8] dF)

Thus we have estimated the error in terms of the residual and the incident boundary
error and have a complete control over all the involved constants (note that C' =
C(e, C, Cr,Ciny,C*%,C?), depends on the constants in the inverse estimate, trace
theorem, stability estimates, interpolation estimate and energy variation. All these
are, assumed, theoretical constants not effected by our approximation procedure).
The estimate (2.26), which is an analogue of (2.3), is appropriate in the present
setting with R satisfying the Galerkin orthogonality relation (2.9) and f being a
sufficiently smooth approximation for the product of ¢ functions at the incident
inflow boundary.

A general Galerkin method for (1.10) or (2.7), to be studied below, does not
have exactly the form (2.9) with R € Ly(Q) and therefore below the projection
Pp, will not enter into the error estimates in a concrete way as in (2.26), but a
corresponding form to be derived would be, essentially, as follows:

(2.27) 1%l < C (I€7h1D2 1 T g + 1h0e T" ) ,

where Di , is the second order difference quotient operator in z1, 0, is the first
order difference quotient in x and h, and A are the transversal (in z,) and con-
vective (in z) step-size functions, respectively. The norms on the right-hand side of
(2.27) are naturally corresponding to interpolation terms ||h2 A J||g, (if € = Ch)
and ||hJ,||g related to piecewise polynomial approximations.

We have now outlined the basic ideas in the proof of the a posteriori error
estimate (2.3) which relay on the Galerkin orthogonality relation (2.9) and the
strong stability (2.20) of the dual problems (2.13) and (2.14). Our main focus will
be to derive the strong stability estimate (2.20) and interpolation error estimates
for the dual problem.

Remark 2.1. The strong stability (2.20) should be compared with the non-
validity of a weak stability estimate for (2.13) and (2.14) of the form

(2.28) ol < Clle"lq, with p =1, or ¢,

corresponding to the Lo-instability phenomenon, related to the lack of absorption,
discussed above. However, since ¢ = 0 on a part of the boundary (I'"), with
positive measure, we may derive a weak variant of (2.28) (with p replaced by
€p) using Poincareé inequality, (see [3], Lemma 2.2). We note that in (2.20) the
derivative Ajp ~ @,, of the dual solution is La-controlled (with the factor &)
in terms of ||é"||g, whereas La-control of ¢ itself as in the estimate (2.28) is not
possible to achieve in general. For the a posteriori error control, using the strong
stability estimates of the type (2.20) (with derivative control only), it is necessary
to use Galerkin orthogonalities.

To motivate for removing degeneracy through introducing € and also the role
played by the artificial viscosity € in the error estimate (2.3) we notice that the
corresponding sharp a posteriori error estimate for elliptic problems is

(2.29) 18"lq < ClIR*R(I")llq-
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The estimates (2.3) and (2.26) may be viewed as a variant of (2.29) where the
ellipticity introduced, by €, in the hyperbolic problem is compensated by the mul-
tiplicative factor £ in (2.3) and (2.26).

In conclusion: A posteriori error estimates for numerical schemes may be viewed
as special cases of a general stability theory controlling the effect on the solutions
resulting from non-vanishing residuals. The perturbations in the finite element
method corresponding to certain orthogonality relations make the a posteriori error
estimates possible in cases where a general perturbation argument would fail.

3. THE CSD-METHOD FOR THE PENCIL BEAM EQUATIONS

Welet 0 = z9p < 1 < --- < zny < zn41 = L be a sequence of discrete
collision sites in the z-direction with the corresponding intervals I = (2, Tp41)
and discrete steps h, = Zp41 — n. For each n let 7, = {r,} be a partition of
IT .= {zp} x I, (IL =1, x I,), into edge-to-edge triangular elements 7,, (in the
sequel we suppress n from the 7;,), with corresponding mesh functions h;- € C1(I7)
such that for some positive constant ¢; independent of n,

(3.1) (hTSh#(xL), for z, ET) /\( c1h? S/d;m_, TE’Tn), Vn,

where h, is the diameter of 7. Further, we assume that there is a constant A
independent of n and h.- such that

(3.2) ||VJ_hTJ;||Loo(IJn_) <A, Vn.

Now for each n we define the slab S, = I? x I,, and a local mesh-convection
velocity (3, € [C(Sy)]? satisfying, for some sufficiently small constant cs,

(3.3) 1Bn(x, 1) — Bu(z,2')| < colz = 2|/bn, z.,2'| €L, zell

In general (3, will be an approximation of 3|s,. Let oy, = ay(Z,Z.) be the charac-
teristic curve corresponding to (3, defined by

(3.4) { ton(Z,%1) = B (T, 0n(F,21)), Telp,

Oén(.Z'n,.i'L)=.’T}L, T, €1,.
Since 8 = (z,1) is independent of z, we may assume that 3, = 3,(Z1) and rewrite
(3.4) as
(3.5) an(Z,8.) =2, + (T —,)B,(Z1), for zelI.

The approximate particle path (Z, an(Z,Z 1)) is a straight line-segment with slope
Bn(Z 1) starting at (., %1 ). In this setting (z,z,) and (Z,Z ) are acting as local,
(on S,), Euler and Lagrange coordinates, respectively. Since 3 is not constant our
local non-oriented (Z, %, ) coordinates, although close, are different from the global
Lagrange coordinates.

Now we introduce the local coordinate transformation F,, : S,, — S, defined by

(3.6) (z,21) = Fn(Z,2.) = (Z,an(Z,21)), for (Z,Z.)€ Sh.
Denoting the Jacobian with respect to Z; by V1 (= A), we have from (3.5) that
(3.7) Vian(z,2,) =T+ (Z —2,)V18.(21),
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with I being the identity operator. Now by the inverse function theorem the map-
ping F, : S, = S, is invertible if

(3-8) BinlIV 1 BnllLeemy < ¢,

for some sufficiently small positive constant ¢. The condition (3.8) is guaranteed by
our assumption (3.3) on f,, ensuring that the approximate particle paths satisfying
(3.4) do not cross in Sy,

Remark 3.1. The above approach, initially, is constructed to gives a lo-
cally controlled approximate velocity field, therefore for our model problem, with
|8] < (14 22)'/? (giving a total control of the quantity corresponding to the veloc-
ity field), the coordinate change may seem to be unnecessary. However, we need
to be convinced that the approximation procedure do not introduce particle path
crossings, otherwise the discrete model would allow additional collisions than those
modelled by the continuous case making the model problem inadequate. A some-
what less involved 3, would be sufficient to carry out the analyses in here. We
have chosen the above general frame-work in order to have an algorithm which is
applicable to the related nonlinear problems, such as Vlasov-Poisson, as well. O

For a given function v : S,, =& S,, we associate a function o : S,, = S, by setting

(3.9) v(z,z1) =v(z,x.), where (z,z1)=F,(Z,Z1),
and vice-versa. Let now

Iy, ={zx1€0(7):n(z1)-#<0}, and T, =T7 NSy,
we now define for p > 0 and ¢ > 1, the function spaces

Wp={veC(I}):v|; € Py(r),VT €Tp, v=0, onT, , v.]|+; =0, Vn},
B P
Vo = {0 €C(S,) : 9( Zx—wn Jwi(F1), wiew, }s
j=0

Vo ={vel(Sp):v(z,z1) =0(Z,%1), (z,21)=Fn(Z,T1)},

V={veLyQ):vls, €Vp, for n=0,...,N},

where P, (7) denotes the set of polynomials of degree at most ¢ on 7 and h denotes
the global mesh function defined by a direct product as

hz,z,)=Hhlz)®h,(z1), (x,21) € Sy.

Note that the function v € ¥V may be discontinuous across the discrete z-levels z,,,
to account for this fact we use the notations

vl = Aiig%)i v(xy + Az), and [v,] = v} —o.

We shall below seek an approximation J” of the exact solution J for (1.10), in
the space V, = V, by using the streamline diffusion (SD)-method defined as follows:
Find J* € V;, such that for n =0,1,..., N,

Z=Z0

(J;l +8-ViJh v+ kv, + 8- VJ_U))H + (Jf, (év)2)n — / éva
InxI,

z2=—20

— @rJL, gt < Jh, v >po1 — < TP ug >p-=<JM g >al1, YW eV,
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where J*(0,-)_ = fy,. Further
£ = max (5, CLRR(TM) ) (IV LT"| + Ca), C3h") ,
or
£ = max (5, CLh2R(IM) /(| J*] + Cs), cgh") ,
with
R = T2+ 8-V LI + |0/ hn = [RA ()| + [R2(J™)], on S,

with [J?] extended to S, as constant along the characteristic curve o, (Z,Z.).
Moreover C;, i = 1,2,3 are positive constants, 3/2 < v < 2 and recall that

(v,w)z/ vwdzdr , (v,w)nz/ vw dzdz )
Q Sn

< v, W >, = / (T, )W (Tp,-)dTy, <v,w >Sp-= / vw|n - B|dT.
I, n

In the pencil beam problems the convection velocity 3, of the mesh is either identi-
cal or sufficiently close to the velocity field 3, therefore the streamline modification
in the SD-method above may be omitted, i.e., K = 0. Below we shall concentrate
on the study of the following simplified CSD-method: Find J" € V, such that for
n=0,1,...,N,

(JE+B-ViJ"v) + (J:,(év)z) —/ eJlv

n 17 X1,

Z=Z0

z2=—2¢0

(3.10)
+ <oy >no— < T op Sp-=<J" vyp >nq, Vo€V,

The equation (3.10) with € = Ch corresponds to a first order accurate upwind
scheme, studied for the fluid problems, with classical artificial viscosity € = Ch.
Note that in our SD-method with € = Ch the é-term dominates the k-term and
therefore we may take k = 0, justifying (3.10).

Note further that there are two x| -discretization meshes associated to each x,,-
level I'': the mesh 7, associated to S,, that is the “left-face mesh” on the slab
Sp, and 7,7 = {Fp_1(zn—1 X 7);T € Tp—_1}, i-e., the “right-face mesh” on the slab
Sn—1, resulting from a direct transport, along the characteristics, of the previous
“left-face mesh” T,_1. If 7,7 is not too distorted, it is possible to choose T, =
T, corresponding to no remeshing at x,, while remeshing would corresponds to
Tn # T, . Finally, the existence of a unique solution to SD-method as well as CSD-
method (3.10) is due to a contractivity assumption and the Lax-Milgram lemma,;
see [10].

4. STABILITY AND INTERPOLATION ESTIMATES

In this section we shall consider the CSD-method (3.10) for (2.8) and give a
corresponding error representation formula together with interpolation and strong
stability estimates, in some weighted Lo-norms, for the dual problem (2.14). Esti-
mates for (2.13) are easier and obtained in the same way.

Dealing with discontinuities in z, , from now on, we shall use the notation

N
(4.1) (v,w)g = Z/ vwdzdr,, for wv|g,, w|s, € L2(Sy), Yn.
n=0"5n
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Compared to the outline in section 2 the main difference, as we shall see below, will
be the additional contributions from jumps on slab-to-slab edges.

4.1. Error representation: The dual problem and Galerkin orthogonality.
The error representation is now obtained by multiplying the dual problem (2.14)
by é", integrating over each S,,, integrating by parts and finally summing over n,

N
||éh||2Q = Z(éh7 _SOZ - ZSDy - é(;Ozz)n
n=0
N ~
= Z {(ég + ﬂ : VJ_éha(p)n + ((ééh)zﬂpz)n + ~/F_ éh(p|n : ﬂ' dl’ — ([Jh]7gpi)n}
n=0 n

{(jw + ﬂ ) VJ_j - éjzzago)n - (ézzj+ Zézjzago)n + / (éj)zSO
I

o xIy

M-

20
—20

{(Jg +IB ) VJ_JhaSO)n + ((éJh)zu(Pz)n + /I‘_ Jhcp|n B'dr + ([Jh]a‘pi)n};

0

3
I

WE

Il
<

:

where, in the second line, we have used the boundary condition ¢, = 0, on I'°,
in partial integration with respect to z and, in the third line, the angular sym-
metry condition (2.15) with w = (£J),. Now recalling (2.7) and using a suitable
interpolant ® € V4, of ¢, we get

N

I3 =3 {2 +8-VLIh @ =) + (€M), (@ - 0):) }

n=0

N
+ 3 {Ead, @ = + 267,00}
n=0

N
" — oV - B h R ‘
+7§{/F;J<<I> o)l Bl dT + ("], (@ m)n}

By an identical manipulation leading to (2.16), this time using (2.15) with w = £,J,
and letting J = é"* + J", we have
(€22, j‘P)Q + 2(észa‘P)Q = _(ézja ‘PZ)Q + (észaSO)Q

= _(ézéha‘PZ)Q - (éthaSOZ)Q + (ézégaﬂo)Q + (énga‘P)Qa

recall that (-,-)¢g is now defined by (4.1). Inserting (4.2) in the error representation
formula, (after summation over n), and combining with (£J%),, we may write

”éh”é == (ézéha ((I) - (p)z)Q + (ézé;l: ¢ — QP)Q + (éz‘]z]:la ¢ - SD)Q

(4.2)

+ (4 B- VLI — p)g + (272, - ¢).)
(4.3) ?

N N
+ Z <J"N®—¢ >r; t+ Z([Jh]m (@ —©))n
n=0 n=0

=I+I1T+I1IT4+1IV4+V+VI4+VII

The idea is now to estimate ¢ — ® in terms of é" using a strong stability estimate
for the solution ¢ of the dual problem (2.14), (works equally well for (2.13)).
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4.2. Interpolation estimates for the dual solution. We shall now define our
interpolant ® € V, of ¢, appeared in (4.3). We start with defining the L,-
projections Py, : La(I) = Wiy, and @y, : La(IZ) — Lo(I7}), respectively, by

(4.4) / (Pnp)vdry :/ pvdz,, Yv€W,, Vn,
I? I
and
(4.5) / (Tn)vdz :/ pvdx, Yve P,(I7)NLy(I7), Vn.
Iz Iz

Now we define ®|g, € V, by letting
(4.6) @ = PpTn® = TP,
where ¢ = ¢|g, and the coordinate transformations (3.6) and (3.9) are used. Hence
Pup(@,71) = (Pup(@,) (@1), and 7up(3,21) = (7ap(,71)) (2),
with Z and Z, acting as parameters in P,, and 7,, respectively. Defining P,, and
T, by
Prp(Z,%1) = Pn@(Z,%1), Tnp(Z,Z1) = 7np(Z,71), for (Z,Z.) € Sp,

and using the same parameter convention as above, we can alternatively write (4.6)
as

(4.7) @ =Prmnp = mnPnep,
where ¢ = ¢|g, and & = ®|g, . We finally define P and 7 by setting

(Py) < =Pn(¢ls,), (mp) < =7 (¢ls.)

n n

and extend (4.7), to define & € V as follows:

(4.8) ® = Pryp = 7Py.
Below we split the interpolation error ¢ — ® writing
(4.9) p—®=(p—Pp)+Plp—mp),

so that the errors of projections are separated, and then estimate the contribution
from each projection, separately.
First let us once again recall (4.1), and some frequently used notations:

||‘P||LDO(L2) = €8s Ssup ”(p(m:')”Lz(IJ_); ||90||L1(L2) = ||90||L1(IE,L2(IJ_))-
0<z<L
Further, for R € Ly(Q) we write R = RA, R = RA where A(Z,Z.) = An(2,21),

for (z,2.) € Sy, with A,, the Jacobian of 2, — a,(Z,2.), ie., A, = Vi]s,.
Finally, we define the discrete transversal averaging space, V, associated to (1.15),

. - kv kv
4.1 = iv = k =1.2
( 0) 1% {U € Vh 83}’“ 62k7 ) }7
the transversal é- weighted discrete Laplacian Ai B VY =V by
(4.11) (A% pw,v)q = —(EV.iw,Viv)g, YveV,

and the following é-weighted discrete second derivatives,

(4.12) Di’fhw(x,wJ_)‘T = ‘divJ_(éVJ_wﬂT é[g—i] ‘/hr,

e
max —
ar 2
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and D7 jw = ’Di’}hw, where [gTw,] denotes the jump across 7 in the normal deriv-
ative Ow/dn, = n, - Vw, where n, is the exterior unit normal to d7.

In the rest of this section we shall focus on deriving the strong stability and
some interpolation estimates, leaving the overall estimates for I — VII to the next
section.

Lemma 4.1. Suppose (2.24) is wvalid, further assume |Vih,| < ¢, and |&;] <
c min, b1, for some small constant c. Then, there is a constant C such that for

R € Ly(Q),

(4.13) (R, = P)l < CllE* (I = P)Rllglléps:llg
(4.14) €75, (0 = Pp).)ol < CIRLD? T Mlgllp-:llo-

Proof. We change to (Z,Z ) )-coordinates and write using (4.1) and the Galerkin
orthogonality,

(Rop=Pelo=Y" [ RA(p = Pup)dads.
n=0 Sn
N
(4.15) -y / (I = P)YRA(G — Ppp) dzdi,
n=0 Sn

N
< DT = Po)RAlls, 18 — Palls,

n=0
Further, with @ € Vp = f/| s, , being the standard nodal interpolant we have
(4.16) ¢ = Paglls, <l —@nlls, < ClIRADIg|lS, < Cllh@=ll3,

with

1/2
(4.17) lpzzll5, = {Z/ (pz2)” di?dm} < Cllgzzlls,,
T »XT

where the lost inequality follows from the fact that (, is piecewise smooth and
the Jacobian A, satisfies C~! < A,(Z,7.) < C,n=0,1,...,N, for some positive
constant C'. The estimate (4.13) follows now combining (4.15)-(4.17).

To prove (4.14) as in the previous estimate we shall first transfer to (Z,Z)
coordinates and write accordingly

N
CUNCELDBEESY /5 ETPALN(P — Prp) AL Ay dad )
n=0 n

(4.18) N

->/ (Z / <éJ£K;1)<:r:,au)<¢—ﬁn@z(z,m)d@) dz.
n=0 z Tn Tn

E)
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Now we approximate the inner sum in (4.18) as
> / (@nggl)(z,m)@ — Pn®)z(%,%1)dT 1
(4.19) 1 o ~
- / divy (69 L TR (@, 2.) (Prp — ¢)(2,2.1) dZs
1 L[0T A - s -
+ 5 TZ (5 [ 3117,, ] /hrn) hf‘rn((P —PHQD)

where we have used the symmetry assumption (4.10) and integration by parts.
Inserting (4.19) into (4.18) we get using (4.12) that

(ere-ra) < [ (5] 225
n=0’12 \'7, J7=
N
2.2

Now by the well-known interpolation estimate for the Lo-projections 7@, Py, : L2(Q) —
Vp, and Py, : La(I1) = W, we have
h

Z/ (P = Pup) dzs +) (@~ Pup)?|, hr,

< ClIWADY wp(@,)IZ, ) < ClIRL @22, )IE, 0, )

(z),

(@ — Pn®) da?u_) dz

DY T, [T L - |he (@ = Pr)(@)lor,

d.’EJ_) dz.

(4.20)

where we have used the trace estimate and also evaluated T)i’ nP(Z,-) and conse-
quently @z:(Z,-) on each triangle 7,, separately. Note that @i’fh = éﬁih, thus,
using (4.18)-(4.20), with h, transfered to the first terms, and transforming back to

(z, 21 )-coordinates we obtain the desired result. O

Corollary 4.2. Let h) and é satisfy the conditions in Lemma 4.1, then

(4.21) (€272, = Pp)o| < ClIN DY T " lallép::llo;
(4.22) (828", (¢ = Pp)2)ol < Clle" lallép::llo,
(4.23) (€282, ¢ = P)ol < Clletllgllép:zlle;

where C = C(c,C) and ¢ and C are introduced in section 2 to derive (4.25).

Proof. Using (2.24) and an inverse estimate, we derive the first estimate (4.21) in
an identical way as (4.14). Further (4.22) and (4.23) are derived likewise (2.25),
using the inverse estimate, (2.24) and the same techniques as in the proof of (4.14).
The details are omitted. O
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Lemma 4.3. Assume that h, ~ O(1), and |¢;| < cmin,, h,,'é, hold with ¢ being a
sufficiently small constant. Then, there is a constant C' such that for R € L2(Q),

(R, Ple — 7))l <CIIKI - ))PRllallp. + 5 Vivlle
+ Cmin { |l V2L = ) PRI|g, (1) 1"/ |1 (1),
lhe™"/2(1 = myPRIQlIE ¢l

where C = C(c,C) and 3(Z,%.) = |(B— Bn)(ZL)| ~ G(|Z— Za|), on S, Vn, with G

being a small, positive and smooth function on Rt .

Proof. Again, changing to characteristic coordinates (Z,Z ), and using the Galerkin
orthogonality we have

N
(R Ple —m0)gl = | 3 (RA,P(6 - 75)
n=0

(4.24)
<leﬁ 1—7)PR|ls,[Ih;" (@ — 7p)lls,

< CZ | (I = 7)PR|s,

5,,’

where a usual interpolation estimate was used in the last inequality. Now we have

da
%:(P:c+/Bn'vJ_‘p:(Pz+/6'vJ_(P+(/6n_ﬂ)'VJ-()O’

and thus

L < . — . .
|52, < e BV oolls, + 1B = B) - Viells.

Replacing in (4.24) and changing back to (z,x, )-coordinates we get

(425) |(R,P(¢ = 19))q| < ClIAI = m)PRllq (lpz + 8- Voglla + llelVLellle) -

Now since |¢.| ~ |V ¢|, the desired result is easily obtained from (4.25) and the
proof is complete. O

4.3. Strong stability of the continuous dual problem. To be able to control
the remaining terms on the right-hand side of (4.3) we need stability estimates for
the continuous dual problem (2.14), (stability of (2.13) is easily followed). These
estimates will be the essential tools in deriving our a posteriori error estimates. To
derive stability estimates we shall use the transversal covective-balance condition:

(4.26) / Ep? / 2.
Q Q

Then, we have the following crucial result:
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Lemma 4.4. Suppose (4.26) is valid and that (1 + s)é +E,(t +€,) < r(é; + 2€y),
for some constants 0 < r,s,t < 1. Then, e.g., forr =s=t=1/4,

lpa + zylla + 1108 - V&) Pp:llq + 118 20zl + lIE2 0= llo

1/2
+epudlo+ ([_@n-slar) " < c@etla.

Proof. We multiply the main equation in (2.14) by —(¢z + 8- V1¢) = —¢z — 2¢y
and integrate over @), to obtain

@2 - [ Eootap)dx= [ (oot zp)Pixt [ Spulon+ a0, dx
Q Q Q
Integrating by parts and using the boundary condition ¢, = 0, on I'", we have

/ €22 (pa + 2py) dx = / Ep,rpy dx + / E2pa2py dx
Q Q Q

Z=20

Z=—20

:_/QSOZ(&?Q%)Z dx+/ EPzp

I, x1I,
z=2z0

Z=—2Z20

0 (E70y)s dx + / E2pyes
I x1I,

:—/ 2Pz P2 dx—/ EQrpg, dx
Q Q

—/ E.20y dx—/ Epyp2 dx—/ E2p,py, dx
Q Q Q

|
S

€0, 4 E 0, ,
= — RS d d _ PV d d
/6'2281_(90,2) TaT | ‘/;2zay(¢Z) TaT |
€:0:(pz + 2ipy) dx — /Qé(pygaz dx
é

9 {©2(yo) — 2 (o)}

I,
é
= [ S s - B0} -
I,
1., . . .
+ / 5(% + 2€,) 2 dx — / €202 (g + 2¢py) dx — / Ep iy dx
Q Q Q
é 2 é 2 = ]- A~ PN 2
>— §¢Z(L) dez, + §g0z|n-ﬂ|df+ E(ew + 2€y)p; dx
r- Q
é 2 d é 2 d 22 2 d 1 2 d
= | geidx— | cgydx— | Epidx— 2 | (po+apy)” dx.
Q Q Q Q
Inserting in (4.27) and using (4.26), we thus have
N é é ~
= [ etz 2lpa 20l - [ S0 e+ [ Setmeflar
Q I, r—
1.~ . € € 1 N
+IB- Ve 2l — [ 2ot = [ 20— Jlle +zml sl
Q Q
(4.28)

3 1 . ~ 1, .
=3lee+ 20yl +5 [ etin-BlT+ Z16- V9 0.l

1
——/ égoi(L)da:L—/ Ep? dx—/ £2p% dx.
2Jr, Q Q
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Invoking the boundary conditions in (2.14), (i.e, the fact that in our problems
@ =0, on T'", implies ¢, (L) = 0), we get

3 1 . ~ 1, .
Teet 2ol +5 [ eetin-Blar+ Z15-v9) el
. 1 a2 1l
<1, + glloe +24lly + [ (€€ 3B VONR? dads,
Now using the assumption on €, we may write

o+ 200l + [ (62 In-lar
(4.29) r-

1., 1. 1. - R .
+ 3180+ Y. + SIB - ) Pl < 201t
Finally, using the original dual equation in (2.14) we also get

(4.30) 1pzzlle < llps + 2oyl + 1"l

and the result follows from a combination of (4.29) and (4.30). One can easily check
that C(C*) = (v/30+C?), other choices of 0 < r,s,t < 1, give similar estimates. [

Observe that (4.29) together with (4.30) imply that the stability constant C* in
(2.20) may be taken as C° ~ (1 +v/2).

5. A POSTERIORI ERROR ESTIMATES

In this section we proceed to compute the estimates of the terms I — VII in
the error representation formula (4.3). To this approach below we shall combine
the interpolation estimates in Lemmas 4.1 and 4.3, Corollary 4.2 and the strong
stability estimate in Lemma 4.4. First we note that the terms I, I1, II] and V,
having the same structure, may be estimated in a similar way. In particular the
pairs I and IT as well as II] and V are of the same order of magnitude. Let now
® =Prp =7Pyp € V, and split the first term in (4.3) as follows:

I= _(ézéha (®-¥))g = _(ézéha (Po—)2) — (ézéha (m = DPp).) =5 + Iz,

where I is estimated in (4.22). To estimate I», note that the trial functions are
continuous in z; and therefore in z, we use (2.24) and the inverse estimate to write

L] < / 2.6"|(P(r = I)p).| dx < CCimy / EhT2(6 [P (r — I)p| dx.
Q Q

Now using the same argument as in the proof of Lemma 4.3, and (4.29) we may
write

|I| < CClny|[€NT>A(T — 7r)’Pé”llcz(llwac +6-Viglle+ ||Q|VL<P|||Q)
< CCiml1€e™lollpz + 8- V ivllg + CCinullE'0e"lolIE" . llq
< 20CinalleM|(l1g6" g + 106" 1),
where ¢ = C(¢, C). Similarly we write

1= (ézég,m - w)Q + (ézéZ,P(w - I)(p)Q — [T, + I,
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where, also in here, I]; is already estimated in (4.23) of Corollary 4.2. To estimate
II, we use again (2.24) and the inverse estimate, this time applied to é”, and write
as in the estimation for I,

\IL| < CCina /Q ERT2|EM [P (r — I)g| dx

< 2CCim el (116" g + 1€"/208" g ) -

Continuing with III, in the same way, we see that III; is estimated by (4.21) in
Corollary 4.2. And, as we shall see, the IT]>-term and V3 below will lead to the
same expression with opposite signs and therefore will be cancelled. Otherwise,
estimating V5 we would, simultaneously, have estimations for both I'TI, and V3 as
well. Now we proceed splitting the I'V-term in (4.3) as follows

IV = (R4, Py — ) + (R4, P(mp — @) := IV1 + IV,
where
Re=Ry(JY =T, +8-V J"=3-VJ", on S, V=V,

By Lemma 4.1, using orthogonality related to the Ly-projection P, we have

[IVi| = |(Ra, Po — )l < Cllé™ R — P)Rallgllép=:|l,
where R4 = R4A. Further, from Lemma 4.3 we get that

|1V3] < ClIM(I = myPRallelles + 8- Vivlle
+ Cmin {|lhge /(I = M)PRall 1, ) IE/ 20 1. 1)
1hoe="/2(I = myPRallqllE - lle }.

Similarly we split V' and use integration by parts, in the second term, to get

V= (éJ;’:l7 (7)90 - (P)Z)Q + (éJ£7 (7)(7‘—90 - w))z)Q = (é‘]zh’ (’PQD - (p)z)Q

- (éD}ZL,th7,P(7T(p - @))Q - (éz‘]zhap(ﬂ—‘p - (P))Q + /I I éJ:’P(ﬂ'go - 90)
z X1y

Z0

—2z0

=V 4+ Va4 Va4V,

where V; vanishes, since J! = 0 for z = +2, we also note that III + V3 = 0. Now
using the second estimate of Lemma 4.1, we have

Vil < ClIRADA T lgllép::lo-

Further, by Lemma 4.3 and since P is a bounded operator we may estimate V> as
follows

Va| < ClIRE(I = m)D;, . T "lqllve + 8- Vigllo
+ Cmin { 172"/ A(T = YD} L M|z, 1) €20z 5. 1),
Ing!/2(1 = D} . T lQlIE" ¢ lq }-

For the primary particles, if we assume (2.11) then obviously VI = 0. However,
as we discussed above, a condition as (2.10) is more motivated, due to the possi-
ble secondary collisions resulting from the reflected particles. Below we continue
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estimating V I-terms: we have that
< Iy @ =@ >p-=<Jp, Pp—p >p- + < Jn, P(mp — ) >r-i=Vh + V.

Due to the fact that P is the L, projection on z 1 , we have that VI1 = (Pp—¢)|p- =
0, for n =0,1,...,N. As for VI, using interpolation estimate together with the
trace inequality we get

N
V1| = ‘ S < JnPlr— D > ‘ - ‘ < Jn, P(m = I)p >p ‘
n=0

= | < WA, P(T - D)@ >p-

< / ‘(7? — DJ,AP(7 — I)«p‘ dr’
Ty

< ON@ = DPIuA oy 0l sy

< C||h(75jh)z||[,2(r;) |90||L2(F;) < Cl|h(75jh)z||[,2(r;)”V‘P“Q'

It remains to estimate the last term VIT in (4.3), i.e., the contributions from
the jumps. Here, for simplicity, we introduce the following notation:

(5.1) Ro(x) = I = Pp)J""/hn, eIl

observe that R71 =0 on S, if Jg,, € Wh, i.e., no remeshing (or changing to finer
mesh) at ¢ = xz,,. Further, let

(5.2) Rz = (J" = J"™) [hp, on (F,%1) € Sy
Now we give the estimate for VII in the following Lemma:

Lemma 5.1. Assume that 9, R71 and Rra are defined as above. Then, there is a
constant C' such that
N

2
S (1 (@ - 9)), < Ll W Rallléps: )l + 3 (IRilllge + 8- V 14l

n=0 =1
+ min [[|ige Rl (1) 1620 1.1, 1h0E ™ ReillgllE 22l ) }-

Proof. We split VII into two parts

N N
VII =Y ([J"n, (Po—o)t), + Y ([J"n, (@Pp — P)}), :=VIL + VI,
n=0 n=0

First, using [J"], = J&™ — J*™ = P, J"™ — JA™ we estimate VII; as

VI = f: (Jf’" — PRIt (I — Pn)goﬁ”r)n

(5.3) v N
= z (hnRﬂ (@n)4, I = Pn)ﬂoi)n = Z (R71 (@n)4, (I = Pn)hnwi)n-
n=0 n=0

To estimate (I —P,)¢’}, we note that

Ph(EL) = w(iz,an(a‘f,:h)) - /x %w(:ﬁ',an(ﬁ',m)) dz’

= o(.00,20)) = [ (pe+6u- Vi) (@00 21)) a,

Tn
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so that

Bl (1) = /n w(i,an(i,m)) dz — /n /z (<pz + B - VJ_go) (z',%,) dz'dz.

T

Inserting this representation into (5.3) and using estimates for (I — P,,), similar to
(4.13), together with the piecewise smoothness of 3,,, and Lemma 4.3 we get

[VIL| < C{Ilé_lhiRnllQllévnllQ + [[FRxullelles + 8- Vellg +

min (11108 Rl (2a) |1E/20: | .o 22y 1006 ResllallE 202 10 ) }-

For the VII-term we write using Lemma 4.3 that
VIL| < c{IiRnlollp. + 8- Vellg +

min (11022 R | 1) 16720 | .y 06~ Res o ll€ - 10 )
Thus the assertion of Lemma 5.1 follows from (5.4) and (5.5). O

(5.4)

(5.5)

Now using a kick-back argument in the contributions from the terms I — IT we
summarize the estimates of this paper in the following main result:

Theorem 5.2 (a posteriori error estimates). Suppose that the assumptions in Lem-
mas 4.1 and 4.8 are valid. Let J and J" be the solutions of (2.7) and (3.10),
respectively. Then, there is a constant C = C(C,C) such that

17— Ilg < C (|12 (1 = PYRal + [Raa| + [Roa| + [Ra])

lo

|8 (1 = mPRA| +1U = )Rl + Rl + B |+ [Besl) |

n min{HﬁgEAilﬂ (|(I —1)PRy| + |(I — 7)Rsa| + |Rr1| + |R72|) HLl(L2)7

A—1/2 _ 5 Y
Hﬁg& (|(I m)PRa| + [(I — m)Rsz| + |Rra| + |R72|) HQ})’
where ﬁ,i(j) = Ri;)A, Rr1 and Rra are defined in (5.1) and (5.2), respectively,
further
Rs1 = Rs1 = D7, J", Rsy =éD; ,J", and Rex = D1 D, J", onT;,.

Here we have used the fact that (I — )P = P(I — ) and the boundedness of P.
Note again that VI, =0 and Ry vanishes whenever T, =T, so that Jhn e Wh.

Theorem 5.2 may be stated in a more concrete form by estimating the terms
(I—=P)R4, (I—m)PR4, (I—7)Rss and (I —P,)J"™ explicitly. First we note that
in Theorem 5.2 these terms are associated with weight functions: w = é='h%, hor
Fioé~1/2 so that typically we need to estimate terms of the form

lw(I — S)gllz,(1.,L2(1.)), S=m, or P, and p=1, or oo,

with g replacing given relevant function from the right-hand side of the estimate in
theorem 5.2. To derive concrete estimates we need some assumptions on the weight
functions, (cf. [12]),

(5.6) |[Vw| < 6h *w, &§>0 small,
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i.e., in our case for hy, |V (67'h%)| < ShT (67 h2) = 66 h_, while for A, |B'| <
Shh~' = §, and also |D, (hgé='/?)| < 6l hgé~'/? = §pé=1/2. Thus, e.g., we have
that [26D, (hy) — hi(D1€)| < 6¢, and hence (5.6) is guaranteed if the following
two conditions hold true:

o (1 | 5
(57) |h|§m1n (gw‘i‘m,a y
IV Lé] s
. < —.
(5.8) IVihi| < 2=hi +3

Lemma 5.3 (Weighted Ly-projection estimates). Assume that (5.7) and (5.8) are
valid, then there is a constant C' such that for sufficiently smooth g,

(5.9) lw(I = )gllq < Cllwh'Dygllo, leZt,
(5.10) lw(I =P)gllq < Cllwh’ D gllo, kezt,

Proof. We give only the proof of (5.10), (5.9) is estimated in a similar way. Let §
be an interpolant of g then

[w( = Pglle < llw(g =9l + [lwP(g - 9)lle < Cllwlg - 9)lle

1/2
. 1/2 . .
< (ZHw(g - 9)||2L2(1; xT)) <C (Z (w‘r”g - g||L2(I; XT))2>

n,T

1/2
<c (z (w7||h'zz>ig||wm>2)

n,t
. 9\ 1/2
(0
<C (Z (ﬁ,—llwh’iD’iglleng)) ) < Cllwht Dlgllq,
n,T T

where we have used the fact that the assumption (5.6) applied to x variable gives
that W, < w(zy)|r < Wy, with @ = ming, en, w(zL), Wy = max,, en, w(zL)
and

N; ={7 € T : ¥ have a common edge or vertex with 7}.

O

In the rest of this section we prepare for a concrete version of the Theorem 5.2.
Below we shall estimate all the R;(;)-terms so that, finally, in Theorem 5.4, we can
formulate such a concrete version. To this approach, first we note that

(5.11) (I = Pa) ™" 1s, < CII = Po)I™ s, _,
(5.12) (I = P)Ralls, = (I = P)(B - VI")Als,,

recall thatﬁ = (1,8), and V = (9/0z,V1). To estimate the right-hand side of
(5.12) let J be a standard mollification of J* on the length scales (A, hy,h,), i.e.,

(513)  J= /Q TMa — a2y — )2 dx, X = (o a)),
where 0 < x € (§°(Q) and

/ @ e ) dx =1, xu(e,z0) = b hT(0 e, AT,
Q
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Then we have that
(5.14) I(I=P)(B-VI)lg < ClIDL(B-VI)lg-

Below we shall use the following discrete convective-symmetry assumption for our
approximate solution J"* € V,, and the mollifier function J:

(5.15) hiJy=hiy., J=J" orJ=J.
Note that given a sufficiently smooth function g we have the identity
(5.16)  (B-VL)(hiDrg) =DL(hi(B-VLg))—2hi:gy + 2h1yg: —higy.

Now to estimate (5.12) using (5.14) we need to control the Ls(Q)-norm of 3 -
V(J" — J), and to this approach we use (5.10) and split a Taylor expansion on z

and x| -directions. Then using also (5.15) and (5.16) we get
B-V(I" = J) = (ha)s + (B V1)(h1DL) + OR?)
(5.17) . . -
~ (hy)e + D1 (hL(ﬂ : VLJ)) —hyJ,.

It follows from (5.17) that
[ERACAE] I (AR ARNCID I CRER ) |

+lhedylle < 18-Vl + byl
Combining (5.14) and (5.18) and using (5.13) we have
1T =P)(B-VIMq < ClINLDL(B-V)llg + (T = P)hidylle

<C (DB VIMllo + A1)

(5.18)

(5.19)

Remark 5.1. Note that using the mollifier J is necessary to transit || - ||, norms
to || - || norms. In the continuous case a direct application of Lemma 5.3 yields to
our final weighted estimates. O

Now we turn to give concrete estimates for (I — 7)-terms: i.e., (I — 7)PR4 and
(I — )PRs2 on the right-hand side of Theorem 5.2. Using (I — )P = P(I — ),
boundedness of P and (5.9) in Lemma 5.2, with [ = 0, we have

(5.20) lw( = 7)PRallg < Cllw(I = m)Rallg < Cllw(B - VJ")llq-
As for Rso-term, since there are involved higher derivatives we need to use again

the regularizing effect induced by the mollifier function J. So that using Taylor
expansion in x direction

lw(I = m)Rs2llq < llw(I = m)éD; . JT"|lo
< lw(I —m)eD;  Tllq + lwI — m)eD; (J" = J)llq
(5.21) < lw(I = m)eD;  Tllq + lw(I — m)eD;, _(h)llq + O(wéh?)
< Cllw(I =) (€Dp,J") llg + lw(I = m)eD3 . (BT™)llo
< llwhe g} llq + llwhe T2 |-

Recalling Theorem 5.2 the relevant weights in (5.20) and (5.21) are w = k and
w = hpé~ /2, respectively.

Summing up we have proved the following final and concrete a posteriori error
estimates for (2.7),
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Theorem 5.4. Let J and J" be as in theorem 5.2. Suppose further the dis_crezte
convective symmetry assumption (5.15). Then, there is a constant C = C(C,C)
such that

lenll < C{IeTBLDLB- VIl + €T LT lg + I DL g
+ e B ATIDR T g + (BB - VI")lg + 1262 llq + IK%T% llo
+ KDL (T2)llr- + [IFh2 A D2 Tl + 1A Tl
+min (||hge™/2(B- VI")llq + 112022 T2l + K062 T2l
+ (1B ee /2D T g + [1he %85 T") g,
1he™ (B - VI Iy (2 + B2 082 T () + 1920812 T2 |1, (1)
+ (113 08 2D T 1y 1) + 10220 T a0 ) }-
where we have used (5.14)-(5.21) and
Oz " = (JL" = J2") /B, on Sy

Remark 5.2. Note that in theorem 5.4, the terms ||h2 D (3 - VJ")|q (if
¢ =Ch,.) and ||h(8zJ")||q are naturally corresponding to the terms ||h% D (Jg)lq
and ||AJz||q arising in pure interpolation with piecewise linear and constant func-
tions respectively. Now assuming that 7, = 7., all contributions from R7z; =
(I — Pn)J"™ /Ry, in particular, the critical term ||¢="h4 A='D2 J%||o will vanish.
That is, if we take 7, to be the convected mesh from the previous z-step with
elements {a,—1(zn,Z1); T €T}, T € Tn_1, then Ry = (I—'Pn)Jf’n/hn vanishes
and therefore 1A% A=1D?% J"-term never comes up. More generally the parameter
h~! in this term is related to how frequently we remesh. We may therefore replace
the h~! factor by the “remeshing frequency” h;! which by (3.3) may be taken as
small as O(|V L B]|) ~ 1, without getting difficulties with collapsing or too disordered
grids. Consequently, we can claim that our a posteriori error estimates in here are
of optimal order. There are other ways to control the é-*h% A=1D? Jh-term by
requiring that the Az, -steps are not too small, but then it may be become cum-
bersome to get a reasonable balance between the velocity and space discretization
errors, at least for p = 0. Finally with small o, (¢ < é'/2), h ~ h% and é = Ch,.
we have the following absorbed version of our final result; Theorem 5.4: O

Corollary 5.5. Suppose conditions in Theorem 5.4, together with T, = T,7, 0 <
V2 B~ h3 and & = Chy. Then there is a constant C, as in theorem 5.4, such
that

lenll < C{IBLDL(E- VIM)liq + 1K1 T llq + 1K DL T lg + 13,3 - V™) g
+ BT o + DL T2l + 1B DL ()= + KDL T g + 12 (027"l
+min (||K3(3 - VIl + 1K T2l + 1B T2 llg + W3 DL Tl +
+ W30 Mlg,  1B2(B - VI Loy + IR TNy ) + IRY T Ly (1)
+ 113D T |nza) + D302,z ) } ~ ClIRLECTMI#

with ||h2 E()||# being a weighted norm equivalent to h2 (||J"|| = + ||T"|lw> .
1 L L1(L2)
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Remark 5.3. With arguments similar to those leading to the proof of Theorems
5.2 and 5.4, we can derive a posteriori error estimates in || - || oo (s, £,(r,))-nOrm.
Then we need to use a dual problem of the following form

—Pz — ZPy — Ep,, =0, in Q,
(5.22) o(L,") = ényas on Tf,
=0, on 'y, and ¢,=0 on I?
instead of (2.14). O
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