ASYMPTOTIC BEHAVIOUR OF CONDITIONAL LAWS
AND MOMENTS OF o-STABLE RANDOM VECTORS,
WITH APPLICATION TO UPCROSSING INTENSITIES

By J.M.P. Albin and M.R. Leadbetter

Center for Stochastic Processes, University of North Carolina at Chapel Hill

We prove weak convergence and convergence of certain moments for the conditional
law (X/u|Y =wu) of an a-stable random vector (X,Y) when «a € (1,2). As an
example of application we derive a new result in crossing theory for a-stable processes.

1. Introduction. Given an a€(1,2) we write Z€ S, (0,) when Z is a strictly

a-stable random variable with Fourier transform (characteristic function)
(1.1) E{exp[i0Z]} = exp{—|0|*c*[1+iB74sign(d)]} where 7,= tan(@).

Here the scale 0 =0z >0 and the skewness f=/(7 €[—1,1] are “free” parameters.

Given measurable functions f,g:R—R we put f(*=|f|*sign(f) and define

(A= [ f@) dzs, (Ha=D), Nflla=f*Y* and  (f,g)na=(f"g>™)

(where n€N is required if f#0). Moreover L*(R) = {(h:R—R) : ||h]|o<oo}.

Let {£(t)}ter denote an a-stable Lévy motion with skewness = —1, so that
¢(t) has independent stationary increments and &(t) € S, (|t|*/®, —1). Assuming
that f,g€L*(R) it is then well known that the bivariate a-stable random variable
(1.2)

(X,Y) = ([ fdé, [pgdf) satisfies OX+pY €S, (||9f+<pg||a,_<9f_"7‘pg>a>_

16 +eglla
Further each bivariate a-stable vector (X,Y) has this representation in law for
some choice of f and g: See, for example, Samorodnitsky and Taqqu (1994, Chap-
ters 1-3) on these and other basic properties of a-stable random variables.

Of course, (when needed) random variables and processes that appear in the

sequel are assumed to be defined on a common complete probability space (£2,F, P).
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Cioczek-Georges and Taqqu (1994, 1995a) showed that [thereby sharpening ear-
lier findings of Samorodnitsky and Taqqu (1991) and Wu and Cambanis (1991)]

for some v>p when p<2
(1.3) E{|X[?|Y=u}<oco & (|f],]g))va<o0 :
for v=p when p=2

for a power p€(0,2]. (The condition on the right-hand side is void when p<a.)

In Section 2 we characterize the unique continuous (wrt. y) regular conditional
law (X |Y =y) for an a-stable vector (X,Y) by means of specifying its Fourier
transform. When [as in (1.3)] making statements about conditional probabilities
and expectations, we always assume that they are computed according to this law,
and so there is no ambiguity concerning what versions these statements refer to.

In Section 3 we use a result of Albin (1997) to investigate the asymptotic be-
haviour of E{X?|Y =u} as u—oco.

In Section 4 we use Fourier techniques to derive an upper bound for the moment
E{|X[%I{x|>x}| Y =y} when p€[0, ). Besides being of importance on its own,
this bound is a crucial ingredient in the proofs of Sections 5 and 6.

In Section 5 we prove weak convergence for (X/u|Y =u) as u— 00, together
with convergence of the moments E{|X/u|®I{x/y>x} ‘ Y =u} when g€ (0,a)
and, under the additional condition (|f],|g|)2,« < 00, when p € [a,2). We also
discuss convergence of probabilities and moments conditioned on Y > u.

The expected number of upcrossings of a level u by a stationary and differen-
tiable symmetric a-stable (SaS) process {n(t)}icr such that ('(0),7n(0)) pos-

sesses a continuous density function f,/(o),n(0) 1s given by Rice’s formula

(1.4) p(I;w) = length(I) [ & fur(0)m(0) (@, u) dz.

Michna and Rychlik (1995) proved this result under quite restrictive additional
conditions, and Adler and Samorodnitsky (1997) extended it to a virtually optimal
setting. See also Marcus (1989) and Adler, Samorodnitsky and Gadrich (1993).
In Section 6 we prove a verison of (1.4) without any requirements about statio-
narity, symmetry or existence of joint densities. Our proof is based on the bound
for moments in Section 4 and on the counting-device for upcrossings described in
Leadbetter, Lindgren and Rootzén (1983, Section 7.2). Despite the fact that our
proof produces a more general result, it is considerably shorter and easier than

proofs by previous authors.



2. Conditional distributions for a-stable random vectors. Choose functions

f1y--5 fn, g€L*(R) where ||g||o>0, and consider the a-stable random vector

(2.1) (X,Y) = (X1,..., X, Y) = (Jgfrdé, ..., [o fadE, [5 9 dE).

In Proposition 1 below we prove existence of and characterize the unique regular
conditional distributions Fx|y(-|y) that depend continuously on y€R.

Let Z be an a-stable random vector in R™ with spectral measure I'z [as defined
in e.g., Samorodnitsky and Taqqu (1994, Section 2.3)]. By Kuelbs and Mandrekar
(1974, Lemma 2.1), the linear dimension L(dFz) of the support of the distribution
of Z equals that of the support of I'y L(I'z). Further the Fourier transform of
Z is integrable (so that Z has a bounded and continuous density function) if
L(I'z)=m |[cf. Samorodnitsky and Taqgqu (1994, Lemma 5.1.1)]. It follows that if Z
has a density [so that L(dFz)=m]|, then Z has a bounded and continuous density.

Henceforth we shall therefore without loss assume that a-stable density functions

are bounded and continuous when they exist. In particular, the component Y of

the vector (X,Y’) defined in (2.1) has a bounded and continuous density fy since
L(I'y)=1 when ||g|lo>0 [cf. Samorodnitsky and Taqqu (1994, Example 2.3.3)].

Proposition 1. Consider the a-stable random vector (X,Y) in R*"! given by
(2.1) where ||g|la >0. Then there exists a unique family of distribution functions

{Fxv(-|y)}yer on R* with the properties that

(2.2) Joern M) dFx )y (z|y) s a version of E{h(X)|Y =y}

for each measurable map h:R™ —R satisfying E{|h(X)|} <oc, and that

(2.3) Fxiy(-ly) —a Fxiy(-|yo) as y—yo (continuity).

Further, writing (0, z)) =012+ . Hpz, the law Fx|y (- |y) has Fourier transform
1 i . n

@) bxy(0ly) = 5 [ CBlexpli(0, XY+ oY)} dp for 9B,

2rfy (y) Jr
and if (X,Y) possesses a density function fxy(z,y), then

(2.5) Fxiy(-|y)  has density function  fxy(-|y) = fxy(,9)/fr(y).

Proposition 1 allows us to refer to conditional probabilities and expectations for
a-stable random vectors in the same easy-going manner as for Gaussian vectors.
The result does not seem to have been observed previously, but a related discussion

is given in Samorodnitsky and Taqqu (1994, Section 5.1).
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Convention. In the sequel conditional probabilities and expectations are assumed

to be computed according to the law Fx|y (- |y) specified through (2.4) [or (2.5)].

Proof of Proposition 1. As is well known [e.g., Breiman (1968, Section 4.3)], there

exists a so-called regular family of distributions {Fy3(-|y)}yer such that
(2.6) Joern (@) dF 5 (z|y)  is a version of  E{A(X)|Y =y}
whenever E{|h(X)|} <oco. Further observe the fact that [cf. (1.1) and (1.2)]

[E{exp[i((0, X)+Y)]}| = exp{~[1(0, FH+eglla} < exp{~[I1€0, FMlla—lelllgllal™}-

Since the density fy is continuous and locally bounded away from zero, it follows
that ¢x|y(0|y) is a well-defined continuous function of (,y)€R**!, and that
E{e“ X iy cap } = S/ 0D dFy v (z,y) = [ ¢x1y (0 |y) fr(y) dy
(z,y) ER"x[a,b]
for —co<a<b<oo. Hence ¢x|y(0|y) is a version of E{exp[i((f, X))]|Y =y},

and in view of (2.6) we therefore conclude that
2.7) dxy(01y) = [ ern e#(0>2) dF;;"%,(ac |y) for 6€Q™, for almost all yeR.

By continuity in 0, (2.7) extends to all 6, and so ¢x|y (0 |y) is the Fourier trans-
form of some distribution Fxy(-|y) for almost all 3. By continuity in y, this
statement in turn extends to all y, and (2.3) must hold. Further, since by (2.7)
Fxiy(-y) =a F;(T%,( |y) a.e., (2.6) implies (2.2).

If a density fx y(x,y) is continuous in y, then the fact that fy is continuous

and locally bounded away from zero and the theorem by Scheffé (1947) show that
[, cafx)y(z|y)dz is a continuous function of y for every measurable ACR".

Hence the laws with densities {fx|y(-|¥)}yer satisfy (2.2) and (2.3), and thus
coincide with the laws {Fxy (-|y)}yer specified through (2.4). O

3. Conditional second moments. Take functions f and ¢ in (1.2) such that
(If],19])2,a <oo and either g>0 or g<0 a.s. Extending results for the symmetric
case by Wu and Cambanis (1991), and complementing results by Cioczek-Georges
and Taqqu (1995b), it was then shown in Albin (1997, Theorem 1) that

Ay 1 (o <fa|g|>2,a_<f’g>%,a> “z2fv(2) (£,90%a -
(3.1) BTy =y} = (a ”( lole ol )y e P e Y




Note a minor error in Albin (1997): In equations 2.3 and 2.4 (as well as in later
occurrences) f;o z fy (z) dz should be changed to flcyxf z fy(z)dz
In Theorem 1 and Corollary 1 below we use (3.1) to determine the asymptotic

behaviour of E{X?|Y =u} as u—oo.

Theorem 1. Consider the a-stable random variable (X,Y) given by (1.2), where
lgllea >0 and (f,|g|)2,a <oo. Further define the sets

Gt ={zeR: g(z) >0} and G ={zeR:g(x)<0}.
(i) Suppose that g>0 a.e., so that By =—1. Then we have
lim v ?E{X?|Y=u} = (f,9)] ./ (9)

uU— 00

When (f,g)1,o=0 we further have

1/(a-1)
uli)n;ou@ /D E{X?Y =u} = (a—1) <m> (fs9)2,a-

If (f,9)10=1{(f.9)2,0 =0, then we have f=0 a.e., so that X =0 a.s.
(ii) Suppose that (g~ )o >0, so that [y >—1. Then we have

lim v ?E{X?|Y=u} = (flg-,9 )20/ {9~

U— 00

When (flg-,9 )2,a=0 but (flg+,9%)1,o >0 we further have

o . T@a-1){flg+,g")3.
uli)rglou 2E{X?|Y =u} = I'(a—1) cos(5(2—a)) (97 )a’

while (flg-,9 )2.0a={(fIg+,9" )16 =0 but (flg+,9" )2 >0 implies that

lim B{X?Y=u} = 2(a—1) [(f+,0")2.a/0 o] E{{Sa(lgF[la; —1)*]*}.

uU— 00

If (fIg-,9 )2.a = {(fIg+,g")2a =0, then we have f=0 a.e., so that X=0 a.s.

Proof of (i). By, for example, Samorodnitsky and Taqqu (1994, Chapter 1) we have
(32) fsutom1)() ~ Aao (/o) 2/ OO exp{ B, (u/a)*/ @D} as u—soo,

where A, >0 and B,= (a—1) [cos(§(2—a))/a"]l/(°‘_1) are constants. Defining
w = wu) = [a{g)a/cos(Z(2—a))]/(@Vy=/(@=D (3.2) and easy calculations
show that (u+zw)fy(ut+zw)/(ufy(u)) = e and

utzw) fy (u+zw)
u fy (u)

(3.3) [y fy(y)dy = uwfy(u)/ooo ( dzx ~uvw(u) fy (u).
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Using that uw(u) = o(u?) and g=|g| a.e., (3.1) now yields the statement (i). O

Proof of (ii). Writing Co= a(a—1)/[I'(2—a) cos(5(2—c))] we have

(3.4) limy 00 u* fs,(0.8) () = $Co (1+8) 0°

[e.g., Samorodnitsky and Taqqu (1994, Chapter 1)]. First assume that ¢<0 a.e.,

so that By =1 and |g|=¢~ a.s. Using (3.4) in an easy calculation, we then obtain

(3.5) [y fy(y) dy ~ (a—1)""u? fy (u).

Inserting (3.5) in (3.1), and observing that since (f,|g|)2,o < o0 we must have
f=0 ae. when (f_,g7)2,=0, the statement (ii) of the theorem follows.

Now suppose that By<1 and let (X_,X,)= ([, f-d§, [ f+d€) and (Y_,Y,;)

= (Jo(—97) d¢, [pgt dE), where fi=Ig+f and f_=Ig-f. Then we have

E{X? Y =u}
/(E{X Y=o} + B{X2| Y =u—a} + 2B{X,| ¥, =2} B{X_| Y. =u—a})
R
fyi (@) fy_(u—z)
X
fy (u)

[since (f,|g|)2,a <oc implies that Iz (g+ug-)f=0 a.e.]. Using the formulae for

dx

linear regression [cf. Samorodnitsky and Taqgqu (1994, equation 5.2.27)]

E{X|Yi=y} = (f+,9)1ay/(9")a and E{X_[Y=y}=(f-,97)1,ay/(9 )a

together with (3.1), we therefore obtain
(3.6)
_l’_
E{X2|Y:u}:(a—1)<<f+79 Y20 _ f+’ 1a)// @)y u=z) ) o
||

(97 )a fy (u)

+ (- 1)<<f_< >>M_<f_ 1a> / /| mlszfy(iﬂ() 2da

FirgHVoa [ 22y, (@) fy (u—2)

e / RO

<f—ag_>%,a (U—.’L’)2fy+($)fy_(u—$) "

T A Fr () 4

2(fir 010 0 Ve [ I (E) (=) fy (um2)
T el a / Fr (w) -
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Here applications of (3.2)-(3.5) in straightforward calculations reveal that

b Ooz 3 2 doda C2(97)a OOZ S
fY(“)/R/m fY+( ) fr_( ) dzdz — (1+5y) IIQIIS/R/M fy+( ) dzdz,

szZ)/R/:xffY—(z)fﬁ(m) dade (14?;?”6;”3’

(3.7) ;Y(_;) | 2 5ve) fr(um) da % A Ow%,
f“gz) /R (u—2)fy,(2) fy (u—2z)de — ﬂ/—]fm,
s [ o) =) o umae + 2 By,

Note that [, fl(:f z fy, (z) dzdz = 2E{[Sa(lg" |las —=1) T2}, (148y)]l9]|2 = 2(97)a
and [ 2'7*/(14+2)* T do = I'(2—a)I'(2a—1) /T'(a+1). Inserting (3.7) in (3.6)
and using that (fIg-,97 )2,a=0 and (fIg+,97)2.o=0 implies (f_,g7)1,4=10

and (fi,97)1,o=0, respectively, the statement (ii) now follows. O

An inspection of the proof of Theorem 1 shows that a version of the theorem

applies in the case often encountered when X depends on u, that is, when

(38) (X, Y) = (Xuvy) = (fR Ju dg, ngdé.) where fu(')ag(')eLa(R)'

Corollary 1. Consider the a-stable random variable (X,,Y) given by (3.8),
where ||g|la>0 and limsup,_,.{fu,|9])2,a<00.

(1) Suppose that g>0 a.e. and that liminfu%oo‘(fu,g)l,a|>0. Then we have
E{X|Y=u} ~ v’ (fu,9)]./(9)2 as u—oo.
(ii) Suppose that (g~ )a >0 and that liminf, . (fulg-,97 )2, >0. Then we have

E{X3.| Y:U} ~ u? <fuIG*7.q_>2,a/<g_>a as u—oo.

4. Bounds on conditional moments of order less than «. In Theorem 2 and
Corollaries 2 and 3 below we derive bounds for E{|X |21y x|>x}| Y =y} via Fourier
transforms. The usefulness of Fourier techniques when dealing with conditional a-
stable moment was discovered by Samorodnitsky and Taqqu (1991) and Wu and
Cambanis (1991). See also Cioczek-Georges and Tagqu (1994, 1995a, 1995b).
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Unlike the above mentioned authors, we study the case when p < a and the
existence of conditional moments (which was the problem they considered) is au-
tomatic. Our aim is instead to derive a bound for E{|X|?|Y =y} possessing the

right rate as y—o0o. Arguments are quite elementary, albeit a bit bulky.

Theorem 2. Consider the a-stable random variable (X,Y) given by (1.2) where
llglla>0. If 0€[0,a) we have

K fll2 ae—e -
B{|X|?Lx55 | Y=y} < — 7l el

a—e max{|yl, l9lla} fr(y)

for A>0 and y€R, where K,>0 is a constant (that depends on « only).

Proof. First observe that there exist constants K o, K2, > 0 such that

|(tg)a— (tg+5f)al
(4.1) { < Kia ((If],19D1,a
leglle — ltg+sflla] (07

L + 118 1s1°)
and

‘2(tg)a—<tg+sf>a—(tg—8f)a| a|.|o
) < Kol 712

211tgll2 — ltg+s IS —ltg—sflle|

for s,t€R. The proofs of these inequalities rely on the elementary fact that
l1+ax < [1+z|* <14+ar+ Kyqlz|® for z€R, for some constant Ko o >0:
To prove the (most difficult) inequality (4.2), for example, one notes that

0 < [2(tg) —(tg+sf) @ —(tg—sf)\?| = [tg+sf|*Htg—sf|*-2[tg]* < 2Koalsf|”

when |sf|<|tg|, while
{ 12(t9){™ —(tg+s )\ —(tg—sf) |
|2[tg|*—[tg+sf|*—[tg—sf|*]

Adding things up it follows that (4.2) holds with Kj o = max{2Kj q, 2(1+2%)}.

< 2(142%)sf|* when |sf|> |tgl.

We will also need the elementary inequality

(4.3) | 2 cos(z) —cos(y) —cos(z) ‘

= 4 oos? (452) sin(225=2) sin(2515) — sin? (132) cos(22=%) cos(224)

< [2z—y—z| + fly—2/



for z,y,z€R, and its corollary |cos(z)—cos(y)|<|z—y|, as well as the inequalities
le™"—e7Y| < em (™M) g —y|

(4.4)
|27 —e7Y—e7%| < e (@2 (|2 —y— 2| + 2|z —y[>+ 2|z —2[?)

Combining these inequalities with (4.1)-(4.2) and using symmetry, we deduce that

[ iltgll e ratole] dsdt
(4.5) + / 11 cos(ty—Ta(tg)a)e ”tg”a—cos(ty—Ta<sf+tg)a>e I f+t9”a} pE;
s€(0,1) )
teR
== / |t|P cos(ty—Ta<tg)a) - cos(ty—7a<sf—|-tg)a>]
s€(0,1),teR

o (- llsf+tall _ o litalis) 95t
glt+e

Cleate o g epne) dsdt
+ / & cos(ty—Ta(tg>a) <2€ ltglla _ o—lltg+sflle _ o—lltg S.f”a) e
s€(0,1),teRT

+ / |t|P [2 Cos (ty—Ta(tg>a) — cos (ty— Ta(tg—l—sf)a)
s€(0,1),teRT
tgllg A5t
slto

— CoS (ty—Ta(tg—sf)a)] e

o (lsF+tgll2A fitgll) A5t
glteo

<t [ 1 |(tga—(sTt0)a

s€(0,1),teR

ltglla—llsf+tglla

s [ e ([l sl - lug—sri

s€(0,1),teRT

2
+2|litgll5— litg-+ /113

+2|litgllg — lItg—sf1lg

2
o—(lltg+sf13A [tg—sFIZA lltgll2) DSEt
81+Q

v [ 10 (|2 tgha— atssa— s

s€(0,1), teR+

1
+ ZTa

2\ _litale dsdt
(t9=s)a—tgs)a] ) o2

_ 2 a_og—a o dsdt
<(rrmart) [ KR ((fghrast +  flgse) el ol S
s€(0,1),teRT

Srat) [ Eallg s et e
S
s€(0,1),teR+

2r 201 (2021 (If] g\, o
+2a—1 € °
a(2—o) lglla

= (T2 4+27,+4) Kﬁa
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204D (EL%) (£, gDral FlIE sy
a(a+1—yp) lgll&te

200 (25D IR ppe
+ (T§+2Ta+4) K2a ”f”a
b aa—o) Jglls

200 (28 NFIS e
ala—o0) |gllat”

< Esaplflla  osg

+ (Ta+274+4) K1,

—+ (Ta+1) K27a

< Tts for p>0, for some constant K34 ,>0
(a—0) [lg/la

(that depends on a and p only). Here we used Holder’s inequality and the elemen-
tary fact that ||f||% <elfla when k<ae to obtain the last inequality. Replacing
the inequality (4.3) with

(4.6) |2 sin(z) —sin(y) —sin(z) |

=4 ‘COSZ(y—Z) Sin(2z—y—z) COS(2$+4?/+Z) 4 Sin2(y—z) COS(2$—4Z/—Z) Sin(2z+4y+z)

4 4

< |2x—y—z‘ + %\y—zﬁ for z,y,x€eR

the above computational scheme further carries over to prove the bound

) o| dsdt
(47) + / t<p>[Sin(ty—7a<tg>a)e_”tg”a_Sin(ty_TO‘(Sf +tg>a>e_”8f+tg”a} =
S
56(071)
teR
< K&L”ﬂlaﬂemlfllz for p>0.
(@—0) [lglle

Let X be a random variable with Fourier transform ¢x. Using the inequality
[l [1—cos(t)]dt > [yt D L2aqr = L(2—p)7t  for p€0,2),

together with a calculation inspired by Ramachandran and Rao (1968) and Rama-
chandran (1969) [cf. Samorodnitsky and Taqqu (1994, Theorem 5.1.2)], we obtain

t= |w| cos
48 gy B e < [ [ 5 = gy ap ()

LR/SS 11‘%‘”7”@61}?@)
:/0 R(1-¢x(s)) 1+9-
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Adapting this estimate to the context (1.2) and (2.4), (4.5) now shows that

2 fy (y
1(2—

. /01 ?R</R o—ity [¢X’Y(0,t)_¢x,y(s, t)} dt) S(fig
dsdt

- / (COS (ty_7a<tg>a> e lItslla — cos (ty — Ta<sf—|-tg>a> e—IISf+tg||3> -
s
s€(0,1), tER

(4.9) E{|X|9I{|X|>1} | Y=y}

< Ksapo 1118 21 F1S
a—0 |lglla

Invoking the inequality ||z|*1—|y|* | < |[z—y|*7!, it is easy to show that
[ltgl* = ltg+sf* 71| < |(tg) D =(tg+s /)@ V] < (14277 [sf|* 7T < 2%sf|* 7

by treating the cases |tg|>|sf| and |tg|<|sf| separately. This in turn gives

{9, t9)1,0— (9, tg+5F)1.0]
(4.10

{9, Itg)1,a— {g; ltg+sf ),
Moreover integrations by part combine with an inspection of (4.5) to show that

o dsdt
(4.11) / ‘2 (9: ltg)1,a— (g, ltg+sf)1,a— (g, |tg—sf\>1,a‘ e~ltalls 22

s€(0,1), teR+

= llglla / gt Sign(2 (9,1tg))1,6— (9, ltg+sf)1,a— (g, \tg—SfI)l,a)

s€(0,1),teR+

(g, |fD1,als|®t  for s, teR.

o dsdt
x (2 (tg)a— (tg+sf)a— (tg—sf) )e lealy 22
K3 a,a—1 o a
< Sheesd e 213
and
o dsdt
(4.12) / ‘2 (9,t9)1,0— (9, t9+5f)1,0— <g’tg_3f>1,a‘ o—litglla Sig

s€(0,1),teR+

= |lglla / gt Sign<2 (9,t9)1,0— (9, tg+Sf)1,a— (g,tg—sfh,a)

s€(0,1),teRT*
_ adsdt
x (2 ltglls = litg+ss 115 — litg =115 ) oMol S22

+é / [Sign(Z(g,tg)La—<gat9+3f>17a_<g’tg_8f>1’°‘)

s€(0,1)
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T ds
x (2 lltglls — litg+s£15 - ||tg—Sf||g)e_||tglla]

K3aa—1 2 o
< Toma—d a 2| flla
L

2 (67
Il

Integrating (4.9) by parts the estimates (4.3)-(4.7) and (4.10)-(4.12) show that

2myfy (y) 0 _
(4.13) 1a(2—0) E{|X|%I{x)>1; | Y=y}
< E/']‘% /e_Zty[ngY(O t)_¢XY(S t)] dt ds
T o 0 R ? ’ ’ ’ 81+Q
1 _;, 0 ds
s€(0,1),teR
= / (Ta COS<ty_Ta<tg>a) (9, ltg[)1,q e~ M9l
s€(0,1), tER

— To cos(ty—Ta(sf-i—tg)a) (g9,|5f+tg])1.q o~ llsf+tglla

+sin (ty—Ta<tg>a) (9, tg)1,a eIl

o\ dsdt
_ sin(ty—Ta<3f+tg>a> (g, 8f+tg>1,a e_||3f+tg||a> Sf—l—g

Ta / <g7 |tg‘>17a (COS(ty—Ta<tg>a) e_HtgH:
s€(0,1),teR

_ @ dsdt
— COoS (ty—Ta(sf+tg>a) e ||sf+tg||a> R

— Ta / (cos (ty—Ta (tg)a) — oS (ty — To(sf +tg)a) )

s€(0,1), teR

_ a det
x (<g, tg]) 10— (g, ‘sf-|_tg|>17a> o less 0

e [ cos(ty=ralt)a) ({9, ltal)ra— (g Isf+tgl)r.)

s€(0,1),teR

x (el 1ol _ ool dsdt
$1+Q

+ o / (2 (9[t91)1,0— (g, [tg+5f)1,0— (9, \tg—sf\h,a)
s€(0,1),teRT
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X €OS (ty—ra(tg)a) e I"lla

+ / (9,t9)1,a <Sin(ty—7'a(tg)a) e litalla

s€(0,1),teR
. _ @ det
— Sm(ty—Ta<Sf+tg>a) e ||5f+tg||a) e

3 / (sin (ty—Ta (tg)a> — sin (ty — Ta<3f+tg>a> )

s€(0,1),teR
|g dsdt

81+Q

X ((g, t9)1,0— (9, Sf—i-tg)l,a) o llsf+tg]

+ / sin(ty—7a<tg)a> ((g, t9)1,0— (9, 5f+tg>1,a>

s€(0,1), teR

y (e—||sf+tg||3_ e—ntgnz) dsdt
glte

+ / (2 (9:t9)1,0— (9:t9+5f)1,a— <g,tg—8f>1,a)

s€(0,1),teR+

. _ o det
X Sll’l(ty_'ra<tg>a> e lItglla 31—+Q

K300-1 171|2 e2lF1a

< Ta
a—g
_ o dsdt
+ 74 / ‘<t9>a_<3f+tg>a (9, \tg\>1,a—<g,|8f+tg\>1,a‘e bl
s€(0,1),teR
+ 7o / ‘(g,\tg\h,a—(g,|8f+tg\>1,a ||Sf+tg||3—||t9||3‘
s€(0,1),t€R

o o—(lsf+tgllsA fitgls) 450t
glt+e

+ 7, Kz00-1 1£|2 2 Fla

a—Q
K _ a
+ % 1|2 21
a—p
o dsdt
+Ta / ‘<t9>a_<sf+tg>a <g7tg>1,a_<ga3f+tg>1,a‘e_llsf+tg||a 81+Q
s€(0,1),teR
s [ [otehna (st righial s gl - gl
s€(0,1), teR
@ oy dsdt
—(llsf+tglian litgll)
xe 31‘|‘Q

13



K3,a,a—1+2/a

a  20If118
+ oo 115 e
< (Ta+1)? / K1,a(<|f|, 19)1,als] |t|“‘1+||f||3|8|°’) 2% (|gl, [f)1,als/*"
s€(0,1),t€R
o (oo |Lyle dsdl
% ellflla=llgllg 15l Sfﬂ)

+ 2(Ta+1)K3,a,a_1+2/Oj
a—pQ

) ) § 2971 (| f] g1, ATG)If1IS ) 17l
— (a0 K2 (0 o (T Uit e ) o

||f||ge2||f||3

+ 2(Ta+1)K3,a,a_1+2/(X
a—p

2w | flallgllet AP I e
< (Ta+1)2 K1 2% gl FI121 alldlla a a ) ollflle
< (at 1)Ko 2% lgllall g ( a(a—o) lgllz +a(a_g>||g||a>e

711 2712

21, +1)K _1+2/a a
n (Ta+1) 3,_a,a 1+2/ || £]|& 2171l
a—o
gae—llfE  2r (L) | fl|e e IFIG 1
=2 {(Ta+1)2K1,a2a( . @) “f“(;’ ) +(Tat1)K3a0-1+ E]

o WG oy
a—p

«
< Kiq m 2llflla for some constant K4 ,>0 (that depends on « only).
a—0

Here we used Holder’s inequality to obtain the second last inequality, and the
elementary fact that ||f]|2 e~ !flla <1 to obtain the last inequality.

Combining (4.9) and (4.13) the theorem follows in the particular case when
A=1. However, the general case with an arbitrary positive A can be reduced to

the case A=1 by elementary algebraic manipulations. [J

Corollary 2. Consider the a-stable random variable (X,Y) given by (1.2) where
lglle>0. If 0€(0,) we have

E{|X[¢|Y =y} < Ko I/l for yeR
[((0—g) max{[yl, [glla} fr @)/

Proof. By Theorem 2 we have

K, [ flla A%~ 2| e
BV ] < A0 s g 2IFIZA for A0,
{1x19] } a—p max{|y|, |9} fy (¥)

14



Taking A = ||f|la/[(@—0) max{|y|, ||g]la} fy (¥)]'/* it follows that

1£112 [1 + K, e2(@—e) max{lyllglla} £ )]
[(a—0) max{|yl, |lglla} fr (y)]e/®

Now note the fact that (3.4) implies (albeit not immediately so)

(4.14) E{|X[?|Y =y} <

(4.15)  fs, (0,8 () < Dq o (|z|+0)~ @D for z€R, for some constant Dg > 0.
This yields max{|y|,||lglla}fy(y) < D,, which together with (4.14) proves the
corollary. [

Corollary 3. Consider the a-stable random variable (X,,Y) given by (3.8) where
(97)a>0. If p€(0,) we have

K, limsup, . || full¢
[((a—0) (97 )ale/™

limsup E{| X, /ul|?| Y =u} <
U— 0

Proof. Take y=u in Corollary 2 (where f may depend on u), and use (3.4). O

5. Asymptotic behaviour of conditional probabilities and moments. In
Theorem 3 we prove weak convergence of (X/u|Y =wu) as u— oo by approxi-
mating X with a random variable X %) such that ox_xw. —0 as £— o0 and
€0, and such that the limit lim, .o P{X(e’s)/u>)\ | Y:u} can be calculated.
The remainder X —X (<) is controlled via Corollary 3 and the Markov inequality.

Clearly, one expects the proof of convergence of (X/u|Y =u) to be easier in
the case a <1, than in the (usually more interesting) case when «>1. However,
our bound on conditional moments in Corollary 3 is only valid when «>1. Thus
our proof of Theorem 3 (which builds on Corollary 3) can only be adapted to the
case a<1 if (a suitable version of) Corollary 3 is proved for that case.

Besides Corollary 3, the important mechanism in the proof of Theorem 3 is
sub-exponentiality: The essential contribution to a large value for a sum of sub-
exponential random variables comes from a single variable; cf. (5.4) below. [See
Samorodnitsky (1988) and Rosinski and Samorodnitsky (1993) for earlier examples

on the use of sub-exponentiality in asymptotic analysis of a-stable phenomena.|

Theorem 3. Consider the a-stable random vector (X,Y) in R*! given by (2.1)

where (g~ )o>0. Then we have (with obvious notation)

(X/’U, | YZ’U,) —d Z where P{ZSZ} = <|g|aI{x€G_ f(z)/g(z)fz}>/<g_>a

15



To explain how Theorem 3 follows from sub-exponentiality, we approximate the
functions g~ and f;Ig- [in (2.1)] by simple functions ¢~ = Z?zl gilg; and
= Z’Ll fi(j)IEj, where {E;}%_, are disjoint Borelsets in G~ = {z€R: g(z) <
0} and the distances ||§~—¢ || and ||fi_—fiIG7 |l are “small”. Then we have
Y. = [g di~ Y. = Jg 9~ d¢ (in the sence of convergence in probability), and

P{X/u<z|Y=u} ~ P{X/u<z|Y_=u} ~ P{X/u<z|Y_=u} for u large

since the tail of Y —Y_ [cf. (3.2)] is much lighter than that of Y_ [cf. (3.4)]. By
sub-exponentiality and (3.4), the right-hand is asymptotically equivalent with

> i P{X/u<z | g; 5 dE=u} Tos 1, de (1)
Z?zl I gj ij de¢ (u)
Sy PUD [, de Ju <z g; [ dE=u} fo, 1, de ()
) St For gy, ac ()

k k
~ im0, 97 I, dw/ZFl 95 I,

which, of course, is an approximation of <|g|°‘I{$€G7 :f(w)/g(w)Sz}>/(g_)a.

Proof of Theorem 3. By considering the random vectors (:I:X 1y--.y, T Xn, Y), con-

vergence for (X/u|Y =u) will follow provided that we can prove

(51) uli)ﬂoloP{X/’U/>)\ | Y:U} = <|g|aI{w€G— :f(a:)/g(a:)>)\}>/<g_>a

for continuity points A>0 (with components Aq,..., A, >0) of the distribution

of Z. To that end we define (again using obvious notation)
Yk(:) = [ola,9dE where Ay = {$€G+ : (k—Deg(z) < f(x) < ksg(a:)}
Yk(;) = [ Ip,gdé where Bp={zeG : keg(z) < f(z) < (k—1)eg(z)}

for e>0 and k€Z". Further let G°= {z€R:g(z)=0}, X = [ Igof dE,

f(e’E)E Z IAk k€g+ Z ‘IBk kEg and f(e) = ZIAk k€g+ ZIBkkgg’

Ikl <¢ llklI<£ keZn keZm
where ||k|| = max{|ki|,...,|kn|} for k€ Z™. Setting f&) =Ig+yg-f we then
have | fi(s) - fi(i)| < elg| for i=1,...,n, and in particular each component

fi(s) €L (R). Writing X,gjre) =ke Yk(;f) and X ,g’_e) =ke Yk(;) we may thus define

Xt= [t ag= > (XD+X()) and X©= [ @ de= 3 (X[D+x()).
Ik][<e kezr

16



To proceed, we note that by Corollary 3 and since X () is independent of Y,

lim sup lim sup E{|(X—X(e’e))i/u| | Y =u}

£—o00 U—>00

< limsupE{\(X—X(i))i/u| | Y =u}

uU—r0Q

+ limsupE{|(X(i)—X(€)),~/u\ | Y =u}

uU— 0

+ limsuplimsupE{|(X(€)—X(e’e)),-/u| ‘ Y=u}

£— 00 U—»00

< limsupE{\Xi(O)/u\ | Y=u}
uU—0Q

+ Ko |1 =N/ [(@=1) (g7)a] Ve

+limsup Ko | 12 = £ 0 / [(@=1) (g7 )al

L—o00

+Kaelglla/[(@=1)(g7)a]"

+0
[where X = [ f(#) d¢]. For each vector § = (d1,...,6,) >0 we therefore have

(5.2) limsup P{X/u>\|Y =u}

uU—0Q

< limsuplimsup<P{X(£’5)/u>)\—(5 | Y=u}+ fj %E{|(X—X(E’€))i/u| | Y:u})
i=1Y

L—o0 U—00

< limsuplimsupP{X(E’s)/u>)\—(5 | Y=u} + O(e) as €0,

£—00 U—>00

and

(5.3)  liminf P{X/u>A|Y =u}
U—ro0

l—oo u—00

> 1iminf1iminf<P{X(e’€)/u>)\—|—<5 | Y=u} - fjéi E{|(X —X®);/u| | Y:u}>
=103

=liminfliminf P{X“/u>A+6 | Y=u} — O(e) as el0.

{—o0 uU—0©
Now observe that by calculations similar to those that are featured in (3.7),

fyk(‘f;) () .fy_yk('f;) (u—1)

fy (u)

dr — 0

P{XD/ul> N | Y =u} =

{z€R: |kex|>|A|u}

as u—oo for k€Z™ and AeR"~{0}, while

17



fyo @) fy_yo (u—2)
P{X(/u>A|Y=u} = / Yoo Ty

fy (u) e

{z€R: kex>Au}

0 for ke—X 20
- { 2|1, 91l
(

for ke—A>0
1+6y) llglla
when A= (A1,...,An) > 0. For A,7v#0 and distinct j,k€Z" we further have
+ +
(5.4) P{XD/ul> N, (X ul> ) | ¥ =u}
fyj(in (z) f y,® (y) f Y-y _y® (u—z—y)

= ’ ’ dxdy — 0.
fy (u)
{(z,y)€R? : |jez|>|A|u, [key|>|v|u}

Given vectors A,0>0 satisfying A—40 >0, these asymptotic relations show that

(5.5)  limsupP{X“/u>A-5|Y=u}

U—00

glimsupp{ > XD Ju> - 25‘1/ u}

U0 lIkll<e

+ limsup > > P{(X(+))i/u>7z
umoo i=t iz L (26+1)"

Y=uf

:nmsupp{lz X fu>a—25, U {|X ) fuf > 10 |) }‘Y:u}

u—oo ke lil<e (2£+1)m

gnmsupp{ > XD fu>A-26,

U0 lIklI<e

U [{\X /u|>( i }m

lif<e 2+1)"

||j||SQj¢z{|X /U‘_%}] ‘Y:u}

+limsupP{ > X Ju>A—26,
u—00 Ikll<e

0
||z%J<e[{‘X( & |>(2€|+|1) }ﬂujng,#i{'X( I ‘>(2€| |1) }] ‘Y:u}
< limsup ), P{X /u>)\ 36 | Y=u}

w—roo lif <L

. 6] 6]
Flimsup Y% P{\X< pul> i xO s L
u—oo i <e ||jl|<E, j#i (26+1) (204+1)n

:u}

3 2||T5,91l2
T ienn: i) L ie > a—asy (1+By) [19l1g
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= (|9|*I{zec-: f(2)/g(z) > r—16}) [ (g Vo as £—o0 and £]0
(in that order). Similarly we obtain

(5.6) hmmfP{X(E u>A+6 | Y =u}

U—0Q0

> limian{ > XD Ju>a+26 ‘ Y:u}
oo ke

:u}

. n 5i
—limsup Y, > P{(X'g?)i/u<_m

u—oo i=l||k[|<t

Zlimian{ U {x}. )/u>)\—|—35}‘Y u}
vmee Uikl<e

—1imsupP{”k”<£[{X /u>)\+35}ﬂ U {|X( )/u|>%}HY:u}

w00 1311<E, 5k

> liminf Y P{X\)/u>A+30 | V=u}
YT IklI<e ’

—timsup 3% P{X) fusat36 X )/u>)\+35‘Y u
u—oo ||k|[<L ||I5]1<L, j#k ’
Y:u}

9]

Rt (=)
limsup > P{X Ju>A+36, |X /u\>(2£+1)n

u=00 ||k||<L [I7lI<e, 5#k

2|1, 9lla

2 L Bt 2 L
(kezn: k|| <2, ke > a+a5y (1F8y) lgllg

— (|9|*L{zec-: f(2)/g(x) > r+46}) [ (9 )a a8 £—00 and €]O0.
Now (5.1) follows from combining (5.2) and (5.3) with (5.5) and (5.6). O

Corollary 4. Let {f,:R—R"},50 be a family of maps with components f, ;€

L*(R) for i=1,...,n, and consider the R"*! -valued o-stable random vector

(X Y) = (Jofudé, rad€) = (Jgfundés .., Jg fundE, [z dE)

where g€ L*(R) with (97)a>0. If fui—rLemw)fi as u—oo for i=1,...,n,

for some map f:R—R"™, we then have

(Xu/u|Y=u) =q Z where P{Z<z}=/{|9|*Tzec-:t(x)/9(x)<z}) /(9 )a

Proof. Writing X = [, f d&, Corollary 3 shows that E{|(XU—X)i/u\ ‘ Y:u} —

0 for 2=1,...,n. Hence the corollary follows from Theorem 3. [
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When the conditional law (X/u|Y =u) converges weakly, convergence of mo-
ments of order g€ (0, ) follows from Corollary 3, while convergence of moments of
order p€|w,2) follows from Theorem 1if (|f|,|g])2,o <oo. Moreover, probabilities

and moments conditoned on the event that Y >wu also converge:

Corollary 5. Consider the a-stable random variable (X,,Y) given by (3.8) where
Ju—Lem@)f as u— o0 and (g7)o>0. Further suppose that o€ (0,a), or that
0€[0,2) and limsup,_, (| ful,|9])2,a <00. Then we have

(5.7 Jim B{IXu/ulTix, usny | V=1 = (IF1°191°7Tiaec-: s@)/9()>21) [ 9™

for continuity points AER of the function on the right-hand side. Moreover

Jim B{[(X./u)*]?| Y=u} = (F9g“") " Ig-) /(g7 as
Jim E{[(Xu/u)7)¢| Y =u} = (F9"*) Ig-)/{g7)as
Jim B{|X,/ul®|Y=u} = (f%lg]*"¢Ie-}/{g7)a

hm E{(Xu/u (e) ‘ Y = u} f(g) la=o)p_ V{9 V-

Proof. Since (X,/u|Y =u)—4Z by Corollary 4, it follows that

(IXu/ulLix, jusry | Y =u) =a |Z|¢Lz5ny when (|9|*I(zec: f(a)/g(x)=21) = O-

Further we obviously have

(191°Lwea: p(a)/g@)=2}) = (IF1%191% T reea- f()/9(x)=r})/|A|¢ for A0

Hence continuity points A#0 for the right-hand side of (5.7) also are continuity
points for (|g|*I(,cq- :f(m)/g(z)>,\}>. The fact that (5.7) holds for continuity points

A#0 thus follows if the family {(|Xu/ul®I{x, /usr} | Y =u)} is uniformly

u>0
integrable. However, by Corollary 3 when p<«, and by Corollary 1 when p€ o, 2)
and limsup,_, (| ful,]9])2,a <00, we have limsup,_,. E{|X,/ul’|Y=u} < oo
for some p>p. By elementary considerations this establishes uniform integrability.

By application of (5.7), for continuity points A#0, we readily obtain
(f 99N g ) /(g7 )a = (| F1%91* L iace : 1) /9()>0} )/ {9 Ve = limsup [e]
< liminf (1£1%]91*”*Tioec- : s@)/g(01>e3)/ (97 )a
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< limsupliminf E{| X, /ul®I{x, juse} | Y =0}

~L uU—r 00
< lim inf B{[(X,/u)*]*| ¥ =u}
< limsupE{[(Xu/U)+]g ‘ Y=u}

< liminflimsup E{ [ X, /uT;x jusy | Y =
HnT%)n imsup E{| X, /ul®I{x, ju>c} | u}

U—r 00

< limsup (|f12191° L (zea : f(z)/a(m)>e3 ) /{97)

< (If12g|° " tzec-: )/ g(z)>03 )/ {9 Va + listoup le]©.
This completes the proof of (5.7), and by application of what has already been
proved to the variable —X,, the proof of the whole corollary. []
Example. For a moving average process X (t f cr 9(t+z)dé(z) where g€
L*(R) with (g7 )o>0, we have (X (tl)/u,..., tn)/u | X(0)=u) =4 Z where

P{Z<z} = (I{zea-: gt +2)/9(0) <1 s e gltnta) /g(@)<zn} 191%) [/ {97 Dar #

Under the hypothesis of Corollary 4, (3.4) and Corollary 4 imply that

_ u fy (yu) dy
Y_y“} P{Y >u}

z
Y

P{Xu/u>z\Y>u}:/ooP{X—

a dy
— / (191*Iwec—: f@)/9@) > 2/9}) —ai1 ot/ 9 e

In the special case when f,=f and X, =X this was shown via a direct argument

by Samorodnitsky (1988, Theorem 3.1). We now adress convergence of moments:

Corollary 6. Consider the a-stable random variable (X,,Y) given by (3.8) where
Ju—=rLe@)f as u—oo and (g~ )a>0. For each choice of o€ (0,a) we then have

Jim E{|X,/ul®l(x, jus>xy | Y >u}

/ / f@)eg(@)| eI{f(m)/g(m)»/y}%

= z€G

= 218 lg(z) @@ — f(x)\@ |g(z)|*e adx -
_LEG([f( Pelatee - PO I ) S for e

Proof. In view of the obvious fact that

E{X Y>u}:/ E{ X @
1 uy

21
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the corollary follows from (5.7) and a change of the order of integration in the
resulting limit if we can establish dominated convergence. However, dominated

convergence is a simple consequence of (3.4) and Corollary 3. O

6. Upcrossings of a-stable processes. Choose a finite interval I=|[a,b] and

a family of maps {f;(-)€L*(R) : t€I}, and consider the a-stable process
(6.1) n(t) = separable version of [ fi(z)dé(z) for tel:

It is well known that each non-pathological strictly a-stable process has this repre-
sentation in law [e.g., Samorodnitsky and Taqqu (1994, Theorem 13.2.1)].
We shall assume that 7(t) is uniformly P-differentiable, which means that

©2) tim sup{][(t=5) 20~ ()= (=) L0 s,tET, 0<le=s]e} =0
for some family of maps { fi()eL*(R) : tel } Further we require that

(6.3) infeer [|fe()lla >0 and  supyer || f;(4)lla < oo

For a non-zero stationary process {n(t)}:cr, (6.2) and (6.3) boil down to
(6.4) tli_{%Ht_l[ft(')—fo(')—tf(l)(')]“a =0 forsome fy(-) € L*(R).

In their study of stationary Sa.S-processes, Adler and Samorodnitsky (1997) as-
sume that f(.y(x) is absolutely continuous for almost all = with fol 12 fe(ladt <
oo: The difference between this requirement and (6.4) appears to be minusculous.

Observe that, choosing a power p€ (1, ), (6.2) readily gives

E{|n(t)—n(s)|} < i I]E{‘Sa(laﬂ”g} [1fe=fo=(t—=s)filla+ [t=s| | fslla]®

el—1,

< constant x [t—s|¢ for s,tel.

A well-known and classic argument [e.g., Cramér and Leadbetter (1967, Section
4.2)] therefore shows that 7(¢) has continuous sample paths a.s.

Writing #/(t) = [; f{d€, Theorem 4 below states that the expected number of
upcrossings of a level u by {n(t)}:cs is given by

(6.5) pliu) = [ E{' @) n(t)=u} foe)(u) dt

Rice (1944, 1945) proposed this formula for differentiable processes. Under addi-

tional technical conditions, proofs were given by Leadbetter (1966) and Marcus
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(1977) for stationary and non-stationary processes, respectively, but although nat-
ural and reasonable, even in the stationary case these conditions are so forbidding
that they have been verified for very few processes except Gaussian ones. Indeed,
when Adler and Samorodnitsky (1997) verify Marcus’ conditions for Sa.S-processes
(via a 10-page argument), the key-ingredient in their proof is that symmetric a-
stable processes allow representations as mixtures of centered Gaussian processes.

If (n'(t),n(t)) has adensity fu )@ (T,y) that is a continuous function of y
for almost all €1, then Proposition 1 and (2.5) combine with (6.5) to show that

wLiw) = [ 15 @y (2, u) do] dt.

Our proof of (6.5) builds on Lemmas 7.2.1 and 7.2.2 in Leadbetter, Lindgren and
Rootzén (1983). Albeit these lemmas are stated for stationary processes, only the
last paragraph of the proof of Lemma 7.2.2 (iii) uses stationarity. All other argu-
ments are valid for processes {7(t)}:cs possessing continuous paths a.s. and a con-
tinuous univariate marginal distribution function Fy ;) at each ¢€I. Further the
mesh used when approximating 7(t) with a step process need not be uniform.

For each family of sequences {a= s(()") < s&") <. <s™M< 55[21 =b:neN}
such that q,(c") = s,(c") —s,(c"_)1 satisfy limg, oo SUP1<f<pni1 q,(cn) =0 we thus have

n+1

(6.6) w(l;u) = lim Y P{n(s,&@l)<u<n(s,§"))}.

Theorem 4. Consider the process {n(t)}scr given by (6.1) where the maps {f:(*)
eL*(R) : tel} satisfy (6.2) and (6.3). Then the expected number of upcrossings
p(I;u) of the level u by {n(t)}ier satisfies Rice’s formula (6.5).

Proof. Take 6€(0,1) and A€ (1,00), and let tfc") = atk(b—a)/n for k=0,...,n.

Define a mesh {s,(c")}Zié by setting s(()"):a, choosing s,(cn) € (tgc"_)l,t,(cn)] so that

A
/5 P{n’(s,(ﬂn)) > (1-6)x ‘ n(s,(c")):u—i-q,(cn)x} fn(sin))(u—i-q,(c")a:) de — 6§

A
< inf /P{n'(s)>(1—6)x\n<s>=u+(s—si’?1)x}fn<s>(u+<s—s,i'l’1>x)dx
se(l™, M1 )5

for k=1,...,n |[where q,(c") = s,(cn) —s,(c"_)l as above], and setting 31(1721 =b. Also
note that the Markov inequality combines with Corollary 2 and (4.15) to show that
6.7) P{n/(s)>(1=0)z | n(s) =u+(s—s{" )} fore) (ut(s—s0,))

23



< Ka DIl
T (a=D)Ye | flla (1-0)z
Using (2.3) and dominated convergence [guaranteed by (6.7)], we therefore obtain

for >0 and sel.

n+1

(6.8) Zcf") / P{n/(s\")> (1=0) | n(s{”) =utqa} 1, ) (uta{"z) d

(n)
skn

gzn:/(n) /6Ap{n'(s)>(1—5)x‘n(s):u+(s—s;@1)x}fn(s)(u+(s 5™ Vo) do

+[2(b—a)/n] (A-9) SUPge[s,4] In(v) (U+CI,(:21$)

+d(b—a)
—>/ / P{n'(s)>(1=08)z | n(s)=u} dz fys(u)ds + 0 + 6(b—a) as n—oo
— / E{n'(s)"[n(s)=u} fy(s) (u) ds as 00 and Afoc.

Defining a second mesh by setting sgn) =a, choosing s,(cn) € (t,(gn_)l, t,(c")] so that
A
/ P{n’(s,g"))>(1+5)x ‘ (s =u+q{™ }f (s (n))(u—l—q( M) de + 6
é

A

> s [P (6> (0 n)muk (55w} i (ut (55 )a) d,
se(t, 4170

for k=1,...,n, and setting 551421_5 (2.3) and Fatou’s Lemma further show that

n+1

©9) 3 a / P{of(s")> (10)a | n(s) =uta ) J, oo (wta) da

/ s)>(1+6)x ‘ (s)=u+(s— s,(C T }f,,(s)(u—{-(s St 1)J:)d3:

—6(b—a)
—>/ / P{n (s)>(1+0)x | n(s u} dz fps)(u)ds — §(b—a) as nm— 00
—>/ E{n(s)" | n(s) =t} fyis)(w) ds as 610 and Atoo.

Now choose a power p € (1,c). Using the Markov inequality together with
Corollary 2 and (4.15) as when establishing (6.7), (6.6) then yields

p(la, b];u)
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n+1 (n) (n)
. o n 77(3 )_77(8 — ) n n n
= lim E / q,(c )P{ k U s 77(3,(6 )):u—i-q,(C Vg fn(sin))(u—i-q,(c )m) dx
k=170

n—o0 q’gn)

n+1 b
< limsupZ/ q,(c") Da||fsin)||;1 dz
k=170

n—00

n+l A
+ lim sup Z/& q,(c") P{n'(s,(cn)) >(1-0)x ‘ n(s,(g")) :u—l—q,(cn)a:} fn(si")) (u-l—q,(gn)x) dx

k=1
L pa K D ) M g, ~fg = Ca ol
* 1£S£p;/5 T (a—1)Y/e ||f85€n)||a (6 x) v
1—p/a n)\—
- IS Ko Da || @) My Lo 1.
1m sup q x.
nooo =t Ja (a=0)?/* || f, e lla w2

Sending 60 and Afoo, and invoking (6.2)-(6.3) and (6.8), it follows that
b
p(la, bl u) < [, B{n'(s) ¥ n(s)=u} foes)(u) ds.

In a similar but somewhat simpler way we obtain

p(la, bl; )

A
> lim ian/é q,(c") P{n'(s,(c")) >(149)z ‘ n(s,gn)) :u—i—q,(c")x} fn(SEf)) (u-l—q,(c")a:) dx

n—o0

0o KD e —f = (i) ]
— limsu / a — x.
P2, (a=D) | f ol (52)

Sending 60 and Afoo, and using (6.2)-(6.3) and (6.9), we therefore conclude

u(la, Bsw) > [ B{ (s)*| m(s) =1} f(s)(w) ds. O

In the particular case when 7(t) is stationary, (6.6) readily yields
(6.10) p(I;u) = length(I) lim, o s~ P{n(—s) <u<n(0)}.

Taking off from (6.10) rather than (6.6), and using the Markov inequality and Corol-

lary 2, the proof of (6.5) then reduces to just a few lines of elementary calculations.

Remark. In the proof of Theorem 4 it is not crucial that bounds invoked on condi-

tional moments possess the right rate as u — oo, and the bound (4.9), which for
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symmetric variables is implicit in Samorodnitsky and Taqqu (1991) [see also Samo-
rodnitsky and Taqqu (1994, Section 5.1)], is sufficient. Since Samorodnitsky and
Taqqu proved a version of (4.9) [with || f||& replaced by (|f|, |9])p.a; cf. (1.3)] valid
for moments of order o>« of symmetric variables; it seems clear that an approach
via (6.10) offers a much simplified proof of the result by Adler and Samorodnitsky

(1997) concerning Rice’s formula for stationary SaS-processes also when a<1.
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