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Abstract

We study the Laplace transform on Hardy spaces on a class of convex do-
mains in C*. We obtain a Paley-Wiener theorem with a norm that char-
acterizes the entire functions of exponential type which occur as Laplace
transforms. This is done by using the Fantappié transform and the Borel
transform to rewrite the Laplace transform and reduce the problem to known
theorems in one complex variable.
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Chapter 1

Introduction

1.1 Background and formulation of the problem

Let X be some space of functions on a subset of R* or C*, and let T be
a continuous linear functional on this space. By continuity, the action of
T is determined by its action on a dense subset of X. Often we will have
that a linear system of exponentials e{+%) . where z belongs to some set S, is
dense in X. If that is the case we will thus have that T is determined by
its Laplace transform T'(z) = T (e<"z)), z € S. The Laplace transform will
then be a function on S, and we get an isomorphism between the continuous
linear functionals (the dual space) on X and a space of functions defined on
S. The problem of describing the dual space in this way is very old.

For an example, consider the Hilbert space L2(—1, 1) of square integrable
functions on the interval (—1,1). Every function g € L?>(—1,1) defines a
continuous functional by

1
T(h) = /_1h(t)@dt, he L2(~1,1)

and the Laplace transform

1

T(z)=T <e<"z)) = / e g(t)dt

-1

is an entire function in C. By the Cauchy-Schwarz inequality we immediately
get that
IT'(2)| < CelRe?l < Cel, (1.1)

and by the Plancherel theorem we have

1 o0

T (iy)[*dy = l|g)|72(_1,1)-

2r J o

The Paley-Wiener theorem is the converse of this.



Theorem 1.1 (Paley-Wiener). Suppose that f(z) is an entire function in
C such that

|£(2)] < Ce?! (1.2)
for some A >0, and -
[ IrtnP iy <. (1.3

Then there is a g € L?(—A, A) such that

There is another way of looking at this. Let us restrict the functional
T to act on entire functions h. We then get a continuous functional on
the space of entire functions, which is called an analytic functional (see also
section 3.1 below). If we let v be a contour around the interval (—1,1) in C
and use Cauchy’s formula we get

T(h) = /_ llh(t)ﬁdt _ /_ 11 (ﬁ /7 :(_z)tdz> @)t
_ 2% ez (/1%&) dz

where the inner integral defines a function which is analytic in the comple-
ment of the interval (—1,1). If we for instance let T' be the functional given

by g(t) =1 we get
1 z+1
Th)=— [ h(2)] dz.
(h) 27m'[7 (2) log (z—l) ?

If ¢ is an analytic function in the complement of some other compact
set K, then it defines an analytic functional g in the same way by

(k) = / h(2)(z)dz (1.4)
Y

for some contour v around K. Since this integral by Cauchy’s theorem is
independent of the contour v we get that the functional p is carried by the
compact K in the sense that for every open set w D K

[u(h)| < Cysup [R(()].
(Ew

In particular we get that fi(z) = u(e?’) is an entire function with

|(2)] < Cye ), (1.5)



where
H,(z) = sup(Re z()
(Ew

is the supporting function of the set w. The supporting function is 1-
homogeneous, and it is easy to see that H, (ew) is the length of the set w pro-
jected on the ray from the origin with direction e=*. For example, the sup-
porting function of the disk D(0; R) is Hp(g;r)(2) = R|z|, and we saw in (1.1)
that the supporting function of the interval (—1,1) is H(_; 1y(z) = |Rez|.

The Polya theorem, a proof of which can be found in [1], is the converse
of statement (1.5).

Theorem 1.2 (Polya). If K C C is compact and convez, and f(z) is an
entire function which satisfies

|£(2)] < Cet®)

for every w D K, then it is the Laplace transform of a unique analytic
functional p which is carried by K.

If we return to the example above, the Polya theorem says that an en-
tire function which satisfies (1.1) is the Laplace transform of an analytic
functional p carried by the interval (—1,1). It can then be represented by
a function ¢ as in (1.4). (In fact every analytic functional carried by K can
be written as in (1.4) for some ¢. For a discussion of analytic functionals in
one dimension, see [1].)

The difference between the Polya theorem and the Paley-Wiener theorem
is then that, when K is an interval, the latter gives an answer to when the
integral in (1.4) can be replaced by an integral on the boundary of K, and
not only on some curve in the complement.

In general, let K be a bounded convex domain, and let E?(K) be the
Hardy space (also called the Smirnov space — see [6, chapter 10] for a
discussion of Hardy spaces on general domains) of analytic functions on K
that are limits of analytic polynomials with respect to the norm

1B/l E2(r) = (/aK \h(t)\QdO(t))l/Q,

where do(t) denotes the arc-length element on K. Let P?(K) be the class
of entire functions which can be represented as

1) = [ ettty g€ BK) (16)
0K
A function f is said to be of exponential type if it satisfies (1.2) for

some A. The Paley-Wiener theorem then states that f € P%(—A, A) if and
only if f is of exponential type (where the A is the type of f), and f is
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square integrable on two rays orthogonal to the interval. In 1964 Levin [11,
Appendix I] proved a generalization, which says that if K is a bounded,
convex polygon then f € P?(K) if and only if f is of exponential type and

/ |f (rei®)|2e 2Hx 0D g < 00 j=1,...,N, (1.7)
0

where —61,...,—0y are the directions of the normals to the sides of K.

If the set K is not a polygon, we do not have any directions which are
distinguished in the above sense, and the condition on the function f must
then include all rays. In [12] Likht gave the description of the class P?(K)
when K is a circle, and in [9] Katsnel’son gave necessary conditions for f
to belong to P2(K) for an arbitrary convex and compact K, and proved an
analogue of Parseval’s identity when K is a disc. In Theorem 4.1 below we
give a generalization of this to C".

In 1988 Lyubarskii [14] solved the problem when K is a convex compact,
with smooth boundary whose curvature is bounded away from 0 and oc.
Finally Lutsenko and Yulmukhametov [13] proved a theorem which can be
formulated as follows.

Theorem 1.3. Let K be a bounded convex domain in C, and let f(z) be an
entire function. For f to admit the representation (1.6) it is necessary and
sufficient that

/ 1£(2) )AHK( 2)dm(z) < oo (1.8)
where

VA 2 e VA
Dic(2) = 1] o ey = /aK (2R (02) 4o (1),

Moreover

1/2
( ISP s Atttz )dm(z>) gl (19)

In other words, the Laplace transform is an isomorphism between the
Hilbert spaces E?(K) and P?(K), with the norms as in (1.9).

We can remark that if K satisﬁes the assumptions in Lyubarskii [14] then
the function Dy (ret?) ~ e2Hx(¢) |\ /5 as r — oo, uniformly with respect
to 0, and AHg(z) ~ 1/|z|. The condition (1.8) can then be written as

2T oo . i
/ / |f (re??)|?e2xc(re 9),7"1/2de0 < o0 (1.10)
o Jo

which is exactly the (square of the) norm used by Lyubarskii in [14]. Further-
more, if K is a polygon, and AHg(z) is interpreted correctly, Theorem 1.3
reduces to Levin’s theorem.



1.2 The results, and plan of the paper

In C*, the Laplace transform of the analytic functional p will be defined in
the same way as above, by letting y act on the function e with z as a
parameter
(z) = ne(e”)

(where z - ¢ =) z;(;). The Polya theorem was generalized to C* by Mar-
tineau [15]. Different proofs can be found e.g. in [4], [8, Section 4.7] and [3].

In this paper we will prove the following generalization of Theorem 1.3
to a class of compact domains in C".

Theorem 1.4. Let K C C* be a bounded and strongly conver set with

smooth boundary, and f an entire function. Then f is the Laplace transform
of some 1 € E2(K) if and only if

/ 1£(2) e 25 @) "2 (08 H )™ < oo. (1.11)

In that case we also have

B 1/2
oo ~ ( [ GIPe Gl 2Goamor) .

When K is a so called circled set (see section 4.2 below) we can get a
bit more. Using the function 7,(r), which is defined in (4.9) and satisfies
Tn (1) ~ 12 a5 r — 00, we get inequalities which are sharp in the sense
that we have equalities for the unit ball.

Theorem 1.5. Let K be as in the previous theorem, and in addition circled.
Then an entire function f is the Laplace transform of some ¢ € E*(K) if
and only if

/ ) Pra(Hic ()62 E) (108 H )" < oo, (1.13)

where T, is as in (4.9). We then have

B 1/2
enllvllmex) < (/If(Z)I2Tn(HK(z))e_2HK(Z)(ia@HK)") < cn, k¥l p2 (k)

(1.14)
where the left constant only depends on the dimension and we have equality
on both sides for the unit ball.

The problem of representing and characterizing the continuous linear
functionals by their Laplace transforms is also considered in [5]. The spaces
considered in that paper are variants of the so called Fock space of entire
functions. So, while that paper deals with functions defined on Euclidean



space of (real) dimension 27, we consider functions defined on a hypersurface
of (real) dimension 2n — 1.
Since K is bounded and convex, it can always be given as

K={zeC":p(z) <1}

where p is 1-homogeneous and smooth (because K is smooth). The Hardy
spaces need not be defined with respect to area measure on the boundary of
the domain. There is at least one other natural measure, as suggested e.g.
by the Cauchy-Fantappié representation formula (2.6) below, namely the
measure dSg represented by the form (27i) "0p A (00p)" ! on OK. The
norm in E?(K) will thus be

Il 2 re) = </6K Iw(w)\ZdSK(w))l/Q.

In other words, Theorem 1.4 says that f can be represented in the form

f(z) = /6 _EUgldSk(w), g€ B(K),

if and only if f satisfies (1.11), and the Laplace transform is an isomorphism
between the Hilbert spaces E?(K) and P?(K).

The reader may well notice that under our assumptions, the measure dSx
is equivalent to the ordinary surface measure, and the measure represented
by the form |z|"(i00Hk(z))™ is equivalent to ordinary Lebesgue measure.
One reason why we still choose to write the theorem like this, is that for
circled domains, this enables us to obtain an isometry for the Borel transform
(see section 4.2 below), which gives us Theorem 1.5. Another reason is that
the form (i00H i (z))™ must probably be used for less smooth domains, like
in Theorem 1.3.

The proof of Theorem 1.4 is carried out in two steps (as is the proof of
Theorem 1.3 by Lutsenko and Yulmukhametov). For this, we have to give
some background on different notions of convexity, like strongly convex sets
as used in the theorem, and more specifically C-convezity. This, and other
preliminaries, will be presented in Chapter 2. In Chapter 3 we will define
and discuss the so called Fantappié transform and the Borel transform, and
we will outline how they are used in the proof. In Chapter 4 we will prove
the L2-inequalities that are needed.



Chapter 2

Preliminaries

In this chapter we will make a brief discussion on various kinds of convexity
and other preliminaries needed in what follows.

2.1 Convex sets

Remember that our set K from Theorem 1.4 and Theorem 1.5 is bounded
and convex with smooth boundary. We will take K to be compact, and we
can without loss of generality assume that 0 € K. Then it can always be
given as

K ={z:p(z) <1},

where the function p is 1-homogeneous. The smoothness and convexity of K
implies that p is smooth. This representation for K will be used throughout
the paper.

The real tangent space at a point p € 0K is T,,(0K) = {v : Re 0p(p).v =
0}, and the complez tangent space is T,Sl’o) (OK) = {v : Op(p).v = 0}. It
is well known that for a domain with C? boundary, the usual geometric
definition of convexity is equivalent to the analytic requirement that the
Hessian of p is positive semidefinite restricted to the real tangent space at
every p € 0K, i.e. that

p P\
_gr , 0% S .
2Re Z 02,02, (P)vjvg | +2 ; 5z (p)vjur >0, Vv € T,(0K)

We will say that K is strongly convez if, for every p € 0K, this inequality is
strict whenever v # 0.



2.2 The polar and the dual complement

For a (1,0)-form 1 = ) n;dz; and z € C* we shall write

(n,2z) = anzj'

Since K is convex, through every point in the complement C" \ K there is
a real hyperplane which does not meet the domain. Indeed, for w € C* \ K
we can take the hyperplane

{z : Re (Op(w),w — z) = 0}.
The function p is 1-homogeneous, and Euler’s Theorem implies that

2Re (Op(w), w) = p(w).

Hence the hyperplane above can be written as

e (251

We will sometimes, for convenience, identify (1,0)-forms with vectors,
e.g. we identify dp with (g—;;, . ﬂ). With ¢ = 20p(w)/p(w) the hy-

? Ozn
perplane above can therefore be written as {z : Rez - £ = 1}. Every real
hyperplane which does not contain the origin can be written in this way,
and if ¢ defines a hyperplane contained in C" \ K we thus have Rez-£ # 1
for every z € K. Actually, since 0 € K, we must have Rez - £ < 1 for every
z € K. Indeed, if Rez-€& = ¢ > 1 for some z € K, then z/c € K and
Re(z/c)- &= 1.
Let

Hy(§) = SglgRe (z-€) (2.1)

be the supporting function of K. It is convex and 1-homogeneous, and if
|§] = 1 then Hg (&) is the length of the projection of K on the ray through
the origin with direction &.

Definition 2.1. The polar of a set E C C™" is the set

E° ={¢: Hp(¢) <1}

(The polar is usually defined by a non strict inequality, but we want K°
to be open.) By the above we see that K° can be interpreted as the set of
real hyperplanes which do not meet K (plus the point 0). Since Hg is a
convex function K° will be convex. It is bounded since 0 € K implies that
Hg(€) > 0 for every &, and by the Hahn-Banach theorem it follows that
K*° =K.



For a point in the complement of a general set E C C"*, we cannot hope
to find a real hyperplane through that point, which does not intersect £. We
will say that F is lineally convez if through every point in the complement
we can find a compler hyperplane which does not intersect FE.

Every complex hyperplane which does not contain the origin can be
written as Lg = {2 : 2 - £ = 1} for some ¢ # 0. If we consider our set K we
see, as above, that for every w € C*\ K we get that £ = 20p(w)/(20p(w), w)
defines a complex hyperplane through w, which is contained in C" \ K.

Definition 2.2. The dual complement of E C C" is the set
Er={¢:2-£#£1,Vz€ E}.

Analogously to the polar, this can be interpreted as the set of complex
hyperplanes (plus the point 0) which do not intersect E. In one variable this
will simply become E* = {1/z: z € C\ E} U{0}. We see that we always
have K° C K*, but the inclusion is strict in general.

The set K* will not be convex in general, but it does satisfy another
convexity condition.

Definition 2.3. A set E C C" is called C-convez if E N[ is a connected
and simply connected subset of E for every complex line [.

It is a highly nontrivial fact that any C-convex set is in fact lineally
convex (see [2] or [8]). For a set with Cl-boundary (so that it has a unique
tangential hyperplane at every boundary point) lineal convexity also implies
C-convexity. Any convex set is C-convex, which can be seen from the above
definition, but the converse is false in general.

A much more thorough treatment of C-convexity and its applications
can be found in [2] or [8]. In [2] convexity and C-convexity is discussed in
projective space, where the point 0 does not have the peculiar and annoying
role which it has in our statements.

It is not very difficult to see that the dual complement of a convex set
(containing the origin) is C-convex. In particular K* is C-convex. It is a
nontrivial fact that actually if a C-convex set contains the origin, then its
dual complement is also C-convex.

If E is given by a C? defining function r, i.e. E = {z : r(z) < 0}, there
is an analytic condition for C-convexity similar to the one for convexity. If
E is C-convex then

2Re E 5290 " (p)vjvg | +2 E 9790 " (p)vjur >0, Yve TISLO)(aK),
. 4

for every boundary point p (see [2]). Conversely, if this inequality is strict
for every boundary point, then E is C-convex. We will say that the set E is

10



strongly C-convez if the inequality is strict. In particular K, being strongly
convex, is strongly C-convex.

If z € K then tz € K for every 0 < ¢ < 1 since K is convex. This implies
that if £ € K*, then t¢£ € K* for every 0 <t < 1. Hence K* is star shaped
with respect to the origin and is given as

K*={¢:p"(¢) <1},

for a 1-homogeneous function p*.
If w e C" \ K we have seen that if we define

s(w) = 20p(w)/(20p(w), w), (2.2)

then s(w) defines a complex hyperplane through w, which does not intersect
K, and so s(w) € K*. Here, as well as on numerous other occasions, in a
struggle not to clutter the notations we agree to identify e.g. the (1,0)-form
s1dz1 + - -+ + spdz, with the vector (sq,...,s,).

Fix a complex hyperplane L, which does not contain the origin. Consider
domains of the type {z : p(z) < R}. By starting with R small and letting
it grow, we can make L tangential to {z : p(z) < R}, at a point w, for some
Ry. But since this set is smoothly bounded, L must then be the tangent
complex hyperplane at w, which means that it is represented by s(w). Thus
we see that s is surjective from C" \ {0} to C" \ {0}.

If we let R < Ry, then L will not meet the domain {z : p(z) < R}. If R >
Ry then L will intersect {z : p(z) < R}. Since this set is convex, this means
that L cannot be tangential at any point (a convex set is always on one side
of its tangent plane). Hence we see that L is tangent to {z : p(z) < R} only
for R = Ry. But since this set is strongly convex (and therefore strongly
C-convex), the function p restricted to the complex tangential directions,
has a strict minimum at the tangent point w. This means that L is tangent
to {z : p(z) < Ry} only at w. Hence we see that the mapping s is also
injective.

It may seem obvious from the construction, that given a smooth, strongly
convex domain, its polar and dual complement are also smooth. On the
other hand, there are smooth domains E, for which E** do not even have
C' boundary (see [2]). For the sake of completeness, we include the following
lemma, which will be proved in Appendix A.

Lemma 2.4. If K is a smoothly bounded, strongly conver domain in C",
then the polar K° and the dual complement K* are also smooth.

We can mention that the smoothness of K* actually follows from the
strong C-convexity of K. See Remark A.2 in Appendix A.

There is obviously some symmetry in Lemma 2.4, in that (K*)* = K
and (K°)° = K are also smooth. It is no surprise that we have the following,
which will also be proved in Appendix A.

11



Proposition 2.5. If K is a smoothly bounded, strongly conver domain in
C™, then K° is also smoothly bounded and strongly conver.

If K is a smoothly bounded, strongly C-convex domain in C", then K* is
also smoothly bounded and strongly C-convez.

In the proof of Lemma 2.4 we show that s actually is a diffeomorphism.
Since it is homogeneous of degree —1, its inverse s* will also be homogeneous
of degree —1. Since p and p* are 1-homogeneous, this then implies that

1
p(s*(¢))’

since this is valid for ( € 0K*. This shows that p* is smooth.
If we restrict the mappings, then

p*(() =

s(w): 0K — 0K*, s*(¢):0K* — 0K.

Analogously to K°° = K we have K** = K (this is valid for any lineally
convex set). Hence any w € 0K defines a complex hyperplane L,,, which
is tangent to OK*. Since w - s(w) = 1 we have that s(w) € L,, so this is a
plane tangential to 0K* at s(w). But since 0K* is smooth by Lemma 2.4, it
has a unique complex tangent plane. Therefore w = s*(s(w)) represents the
complex tangent plane to OK* at s(w). Since s*(£) apparently represents
the complex tangent plane at & for any £ € K* we therefore get

s™(§) = 20p™(£)/(20p (£), €)- (2:3)

In the proof of our main theorems we will reduce to functions of one
complex variable, and use the known theorems for the planar case. We
know that D** = D for C-convex domains D, but we also need to know
what happens if we intersect with a complex line, and then take the dual
complement of this planar domain. Let

D,={\e€C:)Xa€ D} (2.4)
We will need the following lemma. The proof can be found in Appendix A.

Lemma 2.6. Let ( € C" \ {0}. We have

(K* )" = {/\ : ﬁf € prong}, (2.5)

where projeK is the orthogonal projection of K on the complez line through
the origin and (. Furthermore

H(K*C)*(w) = Hgi (w().

12



2.3 Notation, and a representation formula

Let E CC C" be an open set with a C? defining function r. Assume that
we can find a differential function 9 with values in C" such that

Hw) - (w—2)#0 forwedE,z € E.

For functions f holomorphic in the interior of F and continuous on the
closure, we then have the Cauchy-Fantappié representation formula

1 9(w) A (50(w))"~!
T Rk e

fl2) =

If E is lineally convex (in particular if E is convex or C-convex), we know
that for w € OF, the condition (0r(w), w—z) = 0 characterizes the complex
tangent space at w. We therefore get that

(Or(w),w —z)#0 forwe€ dFE,z € E,

so that we can choose #(w) = dr(w) and write

1 w or(w) A (00r(w))™1 ;
10 = e 1O Gy PEE €0

A proof of the Cauchy-Fantappié formula can be found in [16, section IV.3].
In particular it is valid for our convex set K, where we can take 9 = s.

The open unit ball in C* will be denoted by By, B, g will be the ball
centred at 0 with radius R, and By(z, R) will be the ball centred at z with
radius R. The measure dm will always be the usual Lebesgue measure on
(G4

The Hardy spaces H?(B,, g) will be the usual Hardy space in the ball
By, r, with respect to surface measure on 0B, r.

Formula (2.6) suggests another natural measure on 0K, namely the mea-
sure dSk represented by the form (273)~"8p A (00p)™ 1. As we said in the
introduction, we will use the measure dSx on 0K to define the Hardy space
E?(K). The measure dSk~ will be the measure represented by the form
(2mi) ™0p* A (00p*)™ ! on OK* in the same way. For a strongly pseudo-
convex domain, these measures are equivalent to the surface measure on the
boundary, but they enable us to obtain an isometry for the Borel transform
in section 4.2.

The measure dm will always be Lebesgue measure. The measure do will
denote surface measure on different hypersurfaces in C* or curves in C.

If the reader is worried that dSk and dSk+ are not even real, this can
be seen by using the real operators d and d° = i(0 — ) to write

1 = 1

dp(2) A (89p(2))" " = (@) d°p(z) A (dd°p(2))" .

13



This shows that dSk and (in the same way dSk+) is real.
Recall that a (2n—1)-form w in a neighbourhood of 0K represents surface

measure on 0K if |§Z§2\ A w(z) = dm(z) when z € OK. It can be shown

that actually ﬁg—g A 0p(z) A (00p(2))" ! is dm(z) multiplied with the
determinant of the Levi form at z. Since K is strictly pseudoconvex (being
strongly convex), this determinant is positive. Since K* is also strictly

pseudoconvex, the same argument shows that dSk~+ is positive.

14



Chapter 3

The Fantappie transform and
the Borel transform

The proof of our main theorem will be carried out in two parts, by means of
the so called Fantappié transform and the Borel transform. In this chapter
we will define these transforms and explain how they will be used.

3.1 The Fantappie transform and analytic func-
tionals

For any open set E C C", let O(E) be the vector space of holomorphic
functions on E, endowed with the usual topology of uniform convergence
on compact subsets. If F is instead a compact set, we will mean the space
of all functions which are holomorphic in some neighbourhood of E. (The
topology in that case is obtained as the inductive limit of the spaces O(U)
for open neighbourhoods U D E.)

Definition 3.1. A continuous linear functional on O(E) is called an ana-
lytic functional on E. The space of all analytic functionals on E, that is,
the dual space of O(E), will be denoted O'(E).

Let E be open. The continuity of an analytic functional y implies that
there is some compact subset M C E such that

(b)) < Csup [h(z)], heO(B). (3.1)
zeEM

Then, for every open w D M in E, we obviously have

lu(h)| < Cu Sup [h(z)], R € O(E). (3:2)

Definition 3.2. An analytic functional ;4 on an open set £ C C" is said to
be carried by the compact subset M C FE if for every neighbourhood w D M
in E, we have (3.2) for some constant C,,.
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If y satisfies (3.1) then, by the Hahn-Banach theorem, u can be extended
to a continuous linear functional on C(F), which by the Riesz representation
theorem is represented by a Radon measure du with support in M, so that

u(h) = /E W2)du(z), he O(E). (3.3)

For every p € O'(E) this is an analytic function for ¢ such that z- ¢ # 1
for all z in the support of du. Since du is compactly supported in E, the
function will be analytic in some neighbourhood of the compact set E*, i.e.
it is a function in O(E™*).

In particular

Definition 3.3. We define the Fantappi¢ transform F : O'(E) — O(E*)
for an open or compact set £ C C" by

Fu(C) =p (%)

(The Fantappié transform is normally defined with respect to the func-
tion 1/(1 — z - ¢).) Analytic functionals and the Fantappi¢ transform are
discussed in conjunction with the Polya-Martineau theorem in Section 4.7
of [8]. In the nice (but yet-to-be-published) treatment [3], different trans-
forms, defined with respect to 1/(1 — z - ¢)¥,k > 1, are used. It is a deep
theorem that for an open or compact (and polynomially convex) set E, the
Fantappié transform is bijective precisely when FE is C-convex. Then it is
also continuous.

Now let E be our compact and strongly convex set K. In this case the
proof that the Fantappie transform is surjective is not very difficult, and is
obtained by a certain pairing between O(K) and O(K*).

Remember the definition of s and s* from Chapter 2. We will use the
form

s(w) A (9s(w))" 1.
Since s(w) is a (1,0)-form, this will be an (n,n —1)-form in C* \ K. We can
remark that if @ is any (1,0)-form and k any C! function, then
(hQ) A (B(hQ))"™™ = K"Q A (BQ)",
which follows immediately by observing that
hQ A O(RQ) = hQ A (Oh A Q + hoQ) = hQ A hoQ.
In particular we have that

_ on

s(w) A (Os(w)" ™" = Wap(w) A (00p(w))" ™. (3.4)
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Now fix g € O(K) and ¢ € O(K*). Then g is holomorphic in some
neighbourhood of K, so take an open set 2 D K such that g is holomorphic
in a neighbourhood of . Then s(8€2) C K* and we can consider the integral

/ g(w)p(s(w))s(w) A (9s(w))" . (3-5)
N

We want to show that this is independent of the particular choice of
€. The function g is analytic, and the form ¢(s(w))s(w) A (0s(w))"~ ! is of
bidegree (n,n — 1), so we want to show that this form is d-closed in C" \ K.
This is simpler if we first consider the so called incidence manifold (this is
used for inverting the Fantappié transform in [3])

A={(z{)eC xC":z-(=1}. (3.6)

V= Z deZj

A (dv) 1 (3.7)

Let

and consider the form

on A.
Lemma 3.4. Let h be a smooth function on 0S2. Then

- h(z)s(z) A (9s(2))" ™" = (=1)" /s(am h(s*(0))s*(€) A (8s(¢))" 1.
Proof. Consider the submanifold A of A defined by
A={(z0)eC" xC":2€09,( =s(2)},
and let F': 0Q — A,z — (z,5(z)). Then we get the pullback

v) = Z sjdzj = s(z)

so that B
F*(w A (dv)"') = s A (ds)" ™t = s A (9s)" 71,
where the last equality follows since s A (0s)" ! is a full form in z. Therefore
h(z)s(z) A / h(z)v A (dv)"™
o

But on A we have z - ( = 1 so that

D Gdz ==Y zdd.

If we consider the mapping ¢ — (s*({),() from s(02) to A, we therefore
find in the same way that the form v A (dv)"~! pulls back to (—1)"s*(¢) A
(0s*(¢))"! on s(69) and

/ W(z)v A (A"t = (~1)" / B(s*(0)$(C) A (Bs*(Q)™ L.
A s(002)
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That the form o(s(w))s(w) A (0s(w))™ ! is closed (O-closed by bidegree
reasons) in C" \ K now follows from the previous proof since we see that it
is the pullback of the form ¢(¢)s*(¢) A (8s*(¢))™ ! in K* \ {0}, where ¢ is
analytic and the form s* A (0s*)"~! is O-closed. The last fact is what the
Cauchy-Fantappié representation formula is built on, but we may repeat the

proof here. In fact, if we let s*(¢) = _ s3(()d(; we have that

d(s* A (85" = §(s* A (Bs)"Y) = (Bs7)"
= ca(051(C) AdCL) A=+ A (D53, (C) NdSn),  (3.8)

and since
(s*(0),¢) =D s5(Q)¢G =1
we get that
D ¢ 0s3(¢) =0.

For ¢ # 0 this implies that the set {9s%(¢), ..., ds%(¢)} is linearly dependent,
which implies that (3.8) is 0.

By the above we see that any ¢ € O(K*), by varying  in (3.5), defines
an element in O'(K). We claim that this functional has ¢ as its Fantappie
transform (if we divide by a suitable constant). To show this, let x4 be the
analytic functional defined by ¢ and let ¢ € K*. By Lemma 3.4, for a
suitable 2 D K, we have

Fue) = [ G elsw) stw) A (Gs(uw))

B /s(an) =0 -(? ) <!<) B PO O A @O
(

B /s(am % 0(0) 8™ () A @s* ()
(n—1)! ) o
- /s(an) (s*(0), ¢ — &)™ p(¢) s(€) A (957(C))
= cp(§) 39)

where the last equality follows from the Cauchy-Fantappié representation
formula (2.6) above.
We will use this pairing and equation (3.9) later on.

3.2 The Borel transform

A function f in C" is said to be of exponential type if

f(z)] < Cetll, 2z e
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Definition 3.5. The Borel transform of an entire function of exponential
type is the function

BﬂO:iAwf@Qﬁ'%%t (3.10)

If E C C" is open and p € O'(E) we have seen that y is carried by some
compact set M C E. Then /i(z) is an entire function (this can be seen from
the representation (3.3)) such that

(2)| = ()| < Cysup €| = Ce™?) | vw > M. (3.11)
(Ew

If f is an entire function satisfying (3.11), then the Borel transform of
f converges and is holomorphic in the set {¢ : Hy(¢) < 1} = M°. We will
now show that it has an analytic continuation to the set M™. Let

Byf(¢) = /Ooof(teieg)(tew)nlete""eiedt’

and notice that this is a holomorphic function in {¢ : Hpr(€/¢) < Re (e#)}.
If { € M*, then the image of

M>3z—1—2z-C

is a convex set (since the mapping is affine) in the plane, which avoids the
origin (since ¢ € M™). If we rotate it by a suitable angle 6, this set will thus
be contained in the right half plane, i.e.

Re(e?(1—2-¢)) >0, zeM,
which implies that

Hyr(e9¢) = sup Re (i6¢ - z) < Re (%),
zEM

and the set of all possible e* is an interval on the unit circle. Hence, for every
¢ € M*, Bpf(C) is defined for some 6, and is independent of § by Cauchy’s
theorem. If By f(() is defined, then it is analytic in a neighbourhood of ¢, and
in this way the Borel transform Bf has an analytically continuation along
any curve from the origin to ( € M* (which by the Monodromy Theorem is
unique).

3.3 Relations between the transforms

The reason why we are interested in the Fantappie transform and the Borel
transform in this context, is certain relations which exist between the two
transforms and the Laplace transform.
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Let E be our compact set K. If y € O'(K) then we have seen in
section 3.2 that /i(z) is an entire function of exponential type, whose Borel
transform B/i(¢) has an analytic continuation to K*. If we again use that u
can be represented by a measure, we see that we in fact have

Bi(¢) = /0 A et

_ /0 - ( / etC-Zdu(z)> =Tt dt

= / dp(2) /0 Tl t-Cagy
= -0t [ T2 = Fuc)

—_ C . z)n
Apparently we have the relation
BoL=F (3.12)

between the Borel-, Laplace- and Fantappié transform respectively.

What we want to do now is to, as in the introduction, restrict ourselves to
analytic functionals in O'(K) given by functions in E?(K). Every g € E?(K)
defines an analytic functional y € O'(K) by

u(h) = /6 hwigw) dSi(w), e OK).

Its Fantappié transform is an element of O(K™*), but we want to prove that
actually Fu € E?(K*), and that the Fantappié transform is an isomorphism
between the normed spaces E2(K) and E?(K*).

We will also show that if f is an entire function which satisfies the
assumptions (1.11) in the main theorem, then we can define its Borel trans-
form. We will prove that the Borel transform of such a function will belong
to E?(K*), and that the Borel transform is an isomorphism between the
normed spaces P2(K) and E%(K*), with the norms as in (1.12).
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Chapter 4
L*-inequalities

In this chapter we will demonstrate that the Borel transform gives an iso-
morphism between the space of certain entire functions of exponential type,
and the space E?(K*). We will do this by reducing to functions of one
variable on complex lines through the origin. We will also prove that the
Fantappi¢ transform is an isomorphism between the Hilbert spaces E?(K)
and E?(K*). As an introduction we will prove an analogue of Parseval’s
identity for the Laplace transform when the domain is a ball in C”.

4.1 An explicit identity for the ball

In [9] Katsnel’son proved, among other things, an analogue of Parseval’s
identity when the domain is a disc in C. By generalizing his proof, we get
the following result in C”.

For the proof we need two well known identities, which are calculated

for instance in [17, chapter 1]. Here w, = 27"/(n — 1)! is the area of
the unit sphere 0B, and a = (a1,...,0,) and § are multi-indices, with
ol =a1 + -+ + apand ol =ay!---apl.
/ 2°7%do(z) = 0,when o #f (4.1)
9B,
(n—1)la!
2%2do(z) = wp——t—— 4.2

Theorem 4.1. Let f be an entire function and R > 0. Then fis the Laplace
transform of a (unique) v € H?(By g) if and only if

/ 1£(2) 2r(R|2])e 2R dm (2) < oo (4.3)

e’} e—2t’r
=92/ = _a 4.4
=2 e (4:4)

21

where



Furthermore, in that case

R _
415, = Zrr ey | P (RIEDe 2 dm(a).
Proof. Let R =1 and % be a function in H?(B,) with the Taylor expansion

= Z caC”

a>0
If we let mq,, be the right hand side in (4.2) we have
Hw“%P(Bn) = Zma,n|ca|2- (4.5)
a>0

Let f(z) be the Laplace transform of ¢. Since we have

(2 C)k = (211G + -+ ann Z ZﬁCﬂ
1Bl= k

we get

fz2) = (e,%(0) 2B,

and using the expression for mq g,

240 _ az m2_r2elm,
/aBnIf(TZ)I @ = Xl e,

a>0

_ ok n—1)!

-3, (wn o ) S Maleal?.(47)
k>0 la|=k

It is a nice exercise in calculus to prove that
o
/ T(r)r?* e 2 dr = (K!)? (4.8)
0

which together with (4.5) and (4.7) gives us

/ F()Pr(e)e 2 dm(z) = /0°°<> /aB \f(r2)2do(2)
= w%(n_l)!sza,nka‘Q

a>0

= W2 - DP9l 5,
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For the sufficiency of condition (4.3) assume that f satisfies (4.3) with
R =1. Let

flz)= Z do2®

a>0

and define, as suggested by (4.6),

1

Man

$(¢) =) dacd ——(*,

a>0

Then o € H%(B,,), and its Laplace transform is f.
This concludes the proof of the theorem when R = 1. The general case
follows by a change of variables. O

4.2 The Borel transform for circled domains

As we said in section 3.3, we want to prove L2-inequalities for the Borel
transform. It turns out that the discussion is simpler when our domain K
is a so called circled domain, in which case we can also obtain an isometry
and not only norm equivalences, so will discuss this case first. There are two
different ways of defining circled domains in the literature. Some authors
do not distinguish between circled domains and Reinhardt domains, but we
will mean the following:

Deﬁnition 4.2. A set S C C" is called a circled set if z € S implies that
ez € Sforall § € [0,2x]

Let us modify the function 7 from (4.4) and define

() = 207 / T ), (4.9)
0 V2t +t2

We can now state the main theorem of this section.

Theorem 4.3. Let K be a bounded, strongly convexr domain which is smooth
and circled. Then the Borel transform is an isomorphism between the space
of entire functions f which satisfies

[ £GPtk (@)e O 00" < o (4.10)
with 7, as in (4.9), and E*(K*). Furthermore,

||Bf||2E2(K*) = Cp / |f(z)|2Tn(HK(z))e*2HK(z) (zBéHK)n
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Notice the similarities with Theorem 4.1. The reason why we had to
modify 7 is that since Hx is homogeneous of degree 1, the form (100H )" is
homogeneous of degree —n. The other differences with Theorem 4.1 depends
on the fact that in this theorem 1 € E?(K*), and the norm in this space is
not defined with respect to surface measure.

There are several equivalent characterizations of circled domains. The
statements in the next proposition are part of the reason why the problem
at hand is simpler when the domain is circled.

Proposition 4.4. For a convex set K C C*, defined by a 1-homogeneous
function p as in (2.1), the following statements are equivalent:

(1) K is circled

1) K° is circled
(131) (20p(z),2z) € R for every z
(=) KNl is a disk, for every complex line | through the origin
(v) K°=K*.

Proof. If K is circled then

Hg (e®w) = sup Re (z - e??w) = sup Re ((e ?2) - (e"w)) = Hx(w).
zEK 2€EK
This proves that K° is circled, and since K°° = K we get in the same way
that K is circled whenever K° is. Thus (i) and (ii) are equivalent. That (i)
and (iv) are equivalent follows straight from the definitions.

We consider condition (iii) in C first. Let z € K. That (20p(z),z) € R
is equivalent to Re (0p(z),7z) = 0. But this is the same as saying that the
vector ¢z is parallel to the tangent space at z, which means that the ray
through z and the origin is orthogonal to the tangent space at z. It is clear
that 0K is a circle if and only if this is valid for every boundary point. For
K in C", let | be the complex line {Az : A € C} for some fixed z # 0. By
considering the function 7(\) = p(Az) we find that K N [ is a disk if and
only if (Op(Az), Az) € R for every A. Therefore (iii) and (iv) are equivalent.

We know that

s(z) = 20p(2)/(20p(2), 2)
maps C" \ K surjectively onto K* \ {0} and similarly

2+ 20p(2)/p(2)

maps C" \ K surjectively onto K°\ {0}. Since we know that Re (20p(z),z) =
p(z), these two mappings coincide if (20p(z), z) € R. Hence (iii) implies (v).

Assume that (iii) is not true for K C C, and take z € 0K so that
(20p(2), z) is not real. As above, this means that the tangent line to K at
z is not orthogonal to the ray through the origin and z. The support line
{w:Rew -z = Hg(z)} is, on the other hand, orthogonal to this ray, and
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hence is not tangent to 0K at z. Since all of K is on one side of the support
line, this implies that
2> =Rez-z < Hg(Z)

() (t)

Therefore 1/z is in the complement of K°, but since z € 0K we have that
1/z € OK*. We get that K* # K°. If (iii) is not true for K C C" then
there is a z such that K, = {A € C: Az € K} is not a disk. This implies
that (K,)* # (K,)°, and (in a similar way as in the proof of Lemma 2.6)
this implies that K* # K°. Consequently (v) implies (iii). O

or

We will have need for two different formulas for change of variables. The
first is an analogue of integration by polar coordinates, where the integral
over the unit sphere is replaced by the integral over 0K.

Lemma 4.5. The map
(ryw) =z =120p(w), r€eRy weIK
is one-to-one onto C" \ {0}, with inverse
w=20Hg, r=Hg(z).

This gives us the formula

/ ()00 HK)" = () (n—1)! /(9 ) /0 ~ o (r20p(w))r"dr dpA (90p)"".

Proof. We have already discussed the injectivity and surjectivity of the map-
ping s in chapter 2. That the mappings considered here are bijective follows
in the same way. The calculations to validate the pullback of the integrals
can be found in the proof of the Polya-Martineau theorem in [4]. O

We know that Re (20p(w),w) = p(w), and if we have a look at Propo-
sition 4.4 we see that (20p(w),w) in fact is real if the domain is circled. If
we use (3.4) we can therefore write

s(w) A (@s(w))" ™" = 2"p™"(w)Ip(w) A (9p(w))" (4.11)

in this case. If our domain is circled, Proposition 4.4 says that K° is circled,
and K* = K°, and we saw in the proof that then s(z) = 20p(z) for z € 0K.
In view of formula (4.11), which then is valid also for p*, Lemma 3.4 therefore
takes a particularly simple form when the domain is circled.

Lemma 4.6. If our set K is circled, then

h(20p(2))9p A (90p)" ™" = (-1)" h(¢)dp* A (90p")" .
0K OK*
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If we think back to Theorem 4.1 we may notice that for the unit ball
B,, = B, = By, which simplifies things. But, of course, it also helps to have
an explicit orthogonal basis for the holomorphic functions! In the case of
B,, we also have that the area measure is rotation invariant. We have an
analogue for circled domains.

Lemma 4.7. Ifr is the defining function for a circled domain D, then the
form Or A (00r)™ ! is rotation invariant in the sense that if F : 8D — 6D
is the mapping z — €z, then

F*(9r A (00r)"™1) = r A (00r)" 1 (4.12)
for every 6 € [0,2m].

Proof. That D is circled means that r(e?’z) = r(z) for every §. This implies
that . . .
or = d(r(e¥.)) = eor(e.) = F*or

and

d0r = 80(r(e".)) = 9or(e?.) = F*dor.
Formula (4.12) follows. O

As an immediate corollary we get the following lemma (which is also
valid for K* and p* if K is circled).

Lemma 4.8. If K is circled we have that

P4
/ ©o(w) dp A (00p)™~ / / w) d Bp A (00p)"™~
oK oK 2T

We now proceed to the proof of Theorem 4.3.

Proof of Theorem 4.3. Assume that f satisfies (4.10) and let us rewrite that
condition. Using Lemma 4.5 we get

[ 1£G)PraHic2)e ) 00 )" ~
/ / f(r20p(w))|*(r)r*™ e 2"dr dp A (00p)™
oK

We now use Lemma 4.6 to turn this into an integral over 0K*, and get
that the last line is equal to

/ / ,rC |2 2n—le—2rdr ap* A (éap*)n—l
OK*

If we let

fe(z) = f(20)2"""
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for z € C, we can, again as K and K° = K™ are circled, use the rotation
invariance in Lemma 4.8 to rewrite the last integral as

27 o8] . _
cn/ / / |f<(reze)|2'r(r)re_2’"dr do dp* A (00p*)" 1. (4.13)
ar+*Jo Jo

This implies that (for a.e. ¢ at least)

2 [ee] )
/ / |fg(Teze)|2T(7‘)re_27ﬂdT df < oco. (4.14)
0 0

We now want to show that f is of exponential type, so that the Borel
transform of f is defined. We will prove that for every € > 0 there is a C,
such that

17 (2)| < C. eP1FHK () (4.15)

It is obviously sufficient to prove this for z away from the origin. Fix
€ > 0 small. First of all, since f is holomorphic we have

/ £ (w)dm(w)
Bn(z,¢)

1/2
_ w) > dm(w
< o (i)

Since Hg(z) is convex, it is Lipschitz continuous on the close unit ball
in C*. This implies that when w € B,,(z,€) we have

Hic(e) = Hictw)] = [l (752 = ol ()|

< et = ol i () bl [ (112 = A ()|

1
< C|z—w|+|w|C" w‘ < Ce.

L
N

Therefore we get that e 2#x(2) ~ ¢72Hx(®) wwhen w € By (z,¢€) so that

1/2
- € z 1 - € z
F@Ie I < a7 </B< e )dm(w)>

1/2
< Ce ( / |f(UJ)|262(1+€)HK(w)dm(w)) -
B (2,€)

1/2

1

If2) = Bale ol

It is easy to show that 7(r) ~ r7'/“ as r — oo, and this implies that

1/2
|f(2)|e”1FIHRE) < € (/ \f(w)|27(HK(W))6_2HK(w)dm(w)) -
B (z,€)
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Since our domain is smooth and bounded we have that
To(Hg (2))(i00H k)" (2) ~ T(H (2))dm. (4.16)

(In fact we have that (i00¢)" = 2" n!det(¢;;)dm for smooth functions ¢.)
If we use (4.16) and expand the area of integration to the whole of C* we
therefore get

1/2
11 < € ([ () Pra(Hc(w)e " 00" )

This implies that the Borel transform Bf({) converges for ( such that
Hk(¢) <1,1ie. ¢ € K°, and as the domain K is circled, K° = K*. In short
we have that

$(¢) :== Bf(C)

is holomorphic in K*.
We get that

:/oof(ég) (§>n1 p dt / fct _tdt (4.17)

which converges for A such that (1/A)¢ € K° = K*. But since K° is circled,
this means by Proposition 4.4 that (1/X) belongs to some disk, and the unit
disk when ( € O0K™.

Let @¢(A) be the left hand side in (4.17). For a fixed ( € K™ this is,
as we have said, holomorphic when A € C\ By, and so (by (1.4)) defines an
analytic functional carried by the unit disk. The right hand side of (4.17)
is the Borel transform in C of the function f¢ (the way it is usually defined
in C, which differs slightly from our definition (3.10) above). In C is it well
known that this Borel transform is the inverse of the Laplace transform (see
for instance the proof of the Polya-Martineau theorem in [1, Theorem 5.1]),
so that ¢ = f¢ (where @¢ is the Laplace transform of the analytic functional
defined by ¢¢).

We want to use Theorem 4.1 to relate the norms of ¢¢(A) and f¢, but
©¢(A) is now holomorphic in the complement of the unit disk. Katsnel’son’s
original theorem in [9] is formulated in this way and so gives us what we
want. (If we want to use Theorem 4.1 we can take the Cauchy transform of
the function ¢¢()) to get a function in the unit disk, which represents the
same analytic functional by integration on the boundary of the unit disk.)

Anyway, neglecting these technical details which really only involves the
definitions we choose, we get that the integral in (4.14) equals the norm of

¢ ie.

27 o0
. B 1
c / / [fe(re®)Priryre™drdo = llocN32(m,) = lec(20m,)

27 .
- /0 hp(e0)2de
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where the second equality simply follows since the radius of the circle is 1.
Thus the integral in (4.13) equals

27 . _
o [ [ e as g n (@057
OK* JO

and using Lemma 4.8 again to remove the integral of 6, we have proved what
we wanted.

We will now show that the Borel transform is surjective from the func-
tions satisfying (4.10) to E?(K*), so let 9 € E?(K*). Put

K. =K + ¢B,,.

As in (3.5) we define an analytic functional in O'(K) by

p(h) = - h(w)(s(w))s(w) A (Bs(w)" ™", h € O(K),

where the integral is independent of the choice of shell to integrate over,
since the form is 0-closed. We get that [ is an entire function of exponential
type, and in section 3.2 we saw that Bj has an analytic continuation to K*.
In section 3.3 we showed that
B = Fu.
But we showed in (3.9) that actually Fu = c,1. Hence
B =1

and that the entire function j really satisfies condition (4.10) follows from
¢ € E?(K*) by the same calculations as above. Hence the Borel transform
is surjective. U

4.3 The Borel transform for non circled domains

If K is not circled, we of course lose a lot of the symmetry we used in the
previous section. For instance, the form s(w) A (0s(w))"~! will be as in (3.4)
where (20p(w), w) now is not real. The imaginary part of this will, in some
sense, measure how far K is from being circled. The rotation invariance in
Lemma, 4.8 fails to hold, but if we use the notation K*; = {A € C: A\ € K*}
from Lemma 2.6, we can at least get the following for K* (and similarly for
K):

Lemma 4.9. If K* is strongly C-convex and smoothly bounded then

f e @rase©~ [ [ o) o) asie()
for ¢ € C(OK™).
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Proof. The condition that K* should be strongly C-convex, is simply to
guarantee that the measure dSk~ is equivalent to ordinary surface measure,
which it is in any strictly pseudoconvex domain. Let F' : 0B, — 0K* be
the map z — z/p*(z) with inverse ¢ — (/|¢|. We get

[ oe0ase@ = [ (o) Fasi
- o ()0
N /63 gﬂ/w ( Z,(,z )dada(z).

If we let 1(z) be the inner integral in the last line, we get in the same way
that the last line equals

Lo s - o
= fen ) (5 .w/g'ﬂd)C) W S-(0
TG

N / / P(AC) do(X) dSk- (C).
oK Jo(K~¢)

The measure dSk~ is, as we said, equivalent to the surface measure, but the
constants (as well as the constants in the pullback then) will depend on the
eigenvalues of the Hessian of p*, i.e. “how convex” K is. O

We will now state the main theorem of this section.

Theorem 4.10. Let K be a bounded, smooth and strongly convex domain.
Then the Borel transform is an isomorphism between the space of entire
functions f which satisfies

/ 1£(2) 2e 25 @) 2 (108 H )™ < oo, (4.18)
and E*(K*). Furthermore,
B ey ~ [ 11PN 20080 (@4.19)

We will again need to pull back integration from 9K to K™, as in
Lemma 4.6. When the domain was circled, we saw from (4.11) that

: ) = Tt "00(w) A (80p(w))
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is a real form. This will not be the case when K is not circled, and we will
instead be interested in the modulus of these measures.

Lemma 4.11. Let h be a smooth function on 0K. Then

| 12ls@) A @) = (1" [ Ol (0) A @5
oK OK*
Proof. This follows mutatis mutandis as in the proof of Lemma 3.4. O

We can now prove Theorem 4.10. The proof follows the proof of Theo-
rem 4.3 very closely, except that we will have to settle for norm equivalences
instead of identities. These can be derived in a similar fashion to what we
have done above, but we will not indulge ourselves in technical details.

Proof of Theorem 4.10. We will rewrite condition (4.18). Instead of the
change of variables in Lemma 4.5 we will use

(rmw)—z=rs(w), reRy weoiK

with inverse
w = p*(2)s*(z), 1=p"(2)

That this mapping is one-to-one onto C" \ {0} follows exactly as the bijec-
tiveness of the mapping s in section 2.2.
We get that

[15@Pe O 00k ~
/ / |2 2n—3/2 72HK(rs(w)d,r|s( )/\ (5s(w))"71|
0K
and using Lemma 4.11 this equals
| [ 1 Opr e dr s 0) A 057
0K
/ / ,rC |2 2n— 3/2 —2Hk (r¢) d‘l"dSK*(C)
OK*

Let, as in the proof of Theorem 4.3,

fe(z) = f(z)2""

If we use Lemma 4.9, we see that the last integral is similar to
o
/ / / [N Prif2e 2 4o (N) dr dSk-(C).  (4.20)
ok*Jo Joa(k=.)

31



From Lemma 2.6 we remember that M = (K*¢)* is some planar domain
with supporting function Hps(w) = Hg (w(),w € C. Hence we get that

/ Fe(rn) 22K d(3) / (D) P2 der ()
B(K*c) 3(K*C)* w

— T\ 2e—2HM(E)
= [ e do(w)

(where the constants will depend on the diameter of K*¢) so that
L[ P e i ar
0 Jo(K~*¢)

[T P 2 D o (w)dr
0 oM

In C, the change of variables we used in the beginning of the proof is simply
(r,w) — r/w. If we use this in the last line, we get that this is similar to

/(C [Felw) Pleo]M2e 23 ) A Hy (1) dim ().

We want to show that the Borel transform of f is defined. Exactly as in
the proof of Theorem 4.3 we get that

|f(2)] < CeelttOHx() (4.21)

for every € > 0. This implies that the Borel transform of f converges for
such that Hx(¢) < 1, i.e. ( € K°, and in section 3.2 we proved that it has
an analytic continuation to K*. Hence we see that

$(¢) == Bf(¢)

is holomorphic in K*.
We get

| o (t\"'_,dt [® .t  _, dt
A 1/)(;02/0 59 (X) e tX:/O fe()e ty (4.22)

which converges at least for A such that (1/A){ € K°, i.e. Hg((1/A\)¢) =
Hpr(1/X) < 1. The expression in (4.22) is therefore analytic for 1/A € M°,
and as above it can be seen to have an analytic continuation to {A : 1/A €
M* = (K”) }, i.e. to M° Let ¢¢(A) be the left hand side in (4.22). It
is thus analytic in M¢ and defines an analytic functional carried by M.
As in the proof of Theorem 4.3, the right hand side of (4.22) is the Borel
transform of f; (the way it is usually defined in C — see [1]), and as we have
mentioned, it is well known that this Borel transform is the inverse of the
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Laplace transform in C. Therefore ¢ = f¢ (where ¢ is really the Laplace
transform of the analytic functional defined by ¢).

Lutsenko and Yulmukhametov prove Theorem 1.3 above in two steps,
where the second step consists in showing that the Borel transform is an
isomorphism between the entire functions which satisfies (1.8), and functions
which are analytic in the complement of the domain, and square integrable
on the boundary (the Hardy space in the complement).

Thus using Theorem 2 in [13] we get that

/lec(w)IQ\wll/QeQHM(“’)AHM(w)dm(w) ~ NecMZ20m)

lloc (/M) 132 on)
= NP ok,
~ OO E2 o0y,

where the change of variables A — 1/X in the second line will give rise to
constants which depends on the diameter of the set M, and the constants
in the last line will depend on an upper and lower bound for the radius of
K* in different directions.

Using all this, the integral in (4.20) is similar to

2

[ [ woordasie©~ [ QP dse©
oK Jo(K*), K+
where we used Lemma, 4.9.

Thus, if f satisfies (4.18) we have proved that its Borel transform Bf
satisfies (4.19). That the Borel transform is surjective follows exactly as in
the proof of Theorem 4.3. O

4.4 Inequalities for the Fantappié transform

We have seen in section 3.3 that every g € E%(K) defines an element of
O'(K), so that its Fantappi¢ transform is holomorphic in the interior of
K*. We shall prove that it is actually a function in E?(K*), and that the
Fantappi¢ transform is an isomorphism between the Hilbert spaces E?(K)
and E?(K*). The proof of this will be modelled on the proof of Theorem 2.5
in [5].

Theorem 4.12. The Fantappié transform is an isomorphism between E*(K)
and E?(K*). For every g € E*(K) we have

cn||g||E2(K) < ||~7:9||E2(K*) n Cn,K||9||E2(K) (4.23)

(the constant on the left side depends only on the dimension), with equality
on both sides if K is the unit ball.
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Proof. Analogously to what we did in section 3.1 we will construct a pairing
between E?(K) and E?(K*). Consider the submanifold

A={(z) eC" xC":2z€ I0K,( =s(z)}

of the incidence manifold (which was defined in (3.6)). We define
(i) = [ W@ A @) he BK), e BY(K"),
A

where the form v A (dv)"~! was defined in (3.7). In (the proof of) Lemma 3.4
we saw that we have the two parametrizations

z— (z,8(2)), z€ 0K,

and
¢ (s(€),¢), (¢ €0KT,

of A, and that the form v A (dv)" ! pulls back to s A (0s)™ ! and +s* A
(0s*)"~1, respectively. If we use Cauchy-Schwarz inequality we therefore get
that

bl < [ PRI A @@ [ QP (€) A 05O,
Now look at the expression for s A (0s5)"~! in (3.4). We have that

Re (20p(z2),2) = p(2) =1
on 0K, so |(20p(z),z)| > 1 on OK (and the same for p* on 0K*). Therefore

we have
[(hs o)Al < enllbllg2xy - 191l B2 (k)

Thus every fixed 1 € E?(K*) defines a bounded linear functional on
the Hilbert space E?(K), with norm not exceeding cnll¥llg2(x+). By the
Riesz representation theorem, this functional is represented by a unique

B(y) € E*(K) with
1B m2(x) < enll®llp2(re)- (4.24)
Using the inner product in E2(K) we can write
(h B()) 2y = (B ¥)n, b € B*(K).
If we let Y
M) = G

for £ in (the interior of) K* we have in particular that

FBW))E) = (he, BW)) p2(x) = (he, h)a = entp(§), (4.25)
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where we demonstrated the last equality in (3.9) (if we just write the pairing
in the first line of (3.9) using our manifold A instead).

If we accept for the moment that the Fantappié transform really maps
E?(K) into E?(K*) we have now in (4.25) proved that it is surjective onto
E?(K*). Then the left inequality in (4.23) follows from (4.24), since it is
known (see [8] or [3]) that the Fantappié transform is injective even as a
mapping from O'(K).

What we have yet to prove is the right inequality in (4.23), which also
demonstrates that the Fantappi¢ transform maps E?(K) into E(K*). Let
us define

a1(z) = (9p(2),2)",  a2(C) = (9p™(€), )"

If we use Lemma 3.4 and the expression for s A (9s)” ! in (3.4), we can write

Fa©) = [ ) dsklo)

If we let

o QD(C) * AP n—1
7@ = [ =BGyt

we can rewrite the above as

F(g) = cnH((g - 01) 0 5").

The operator H is a Henkin-Ramirez type of projection operator on holo-
morphic functions. The boundedness of such type of operators, in the more
general case of strictly pseudoconvex domains, is considered in Kerzman and
Stein’s paper [10]. Since the domain K* is strongly C-convex, it is a forteri-
ori strictly pseudoconvex, but in a domain which is only pseudoconvex the
denominator in (4.27) can be zero, and the somewhat naive projection oper-
ator H (it correlates to the Cauchy-Fantappié representation formula valid
in convex or C-convex domains) has no meaning. The operators considered
in [10] are consequently (and also because the authors actually prove more
than the boundedness property and need more symmetry) defined with a
different kernel than our operator H. A different proof of the boundedness
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of those operators can, among other things, also be found in the first part
of [7]. For strongly convex or strongly C-convex domains the operator H
does have meaning though, and in this case the kernel actually satisfies the
assumptions in [10] or [7], and the boundedness of the operator H follows.

The operator H is bounded on L? with respect to surface measure do,
which in our case is equivalent to the measure dSk+. This implies that

cenl[H((g - on) © )| m2(xcv)
enk[|1H((G - 1) o s¥) || 22 oK+ do)
en,ik||(G - 1) o || 20K+ do)

1/2
G- ) 0 5" ()P dsK*(O)

1F (D)l z2 (k)

INIA

IA
[e)
3
~
Q‘\
3

1/2

[ 1@ anes @l A <5s*>"1\)
OK*

< enr ([ lat)Pask) 1/2

= cnkllglle k), (4.28)

where we used Lemma 3.4 to change the integration to K. We have now
proved the right hand side of (4.23),

If K is the unit ball By, then K = K*. We get that p*(z) = p(z) = |2/,
SO

. 1 _
9p*(2) = 9p(z) = 0 Y #dz,

and a1(z) and ay(z) are constant on 0B,,. In this case will have G(¢)(z) =
1(Z) (if we divide by a suitable constant). That the Fantappié transform of
this function is ¢ can actually be seen from (4.26), since then on 0B, we
will have s(z) = s*(z) = z. The last line of (4.26) will in this case just be

¢(C) * 39 % n—1
o | e (A @0 (Q)

and by the Cauchy-Fantappi¢ formula, this equals ¢,1(£). Therefore we
have equality in (4.24). In the same way we have that F(g)(z) = g(z), so
that we have equalities all the way in (4.28). Hence we have equality on

both sides of (4.23). O
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4.5 Proof of the main theorems

We now have everything we need for Theorem 1.4 and Theorem 1.5. From
section 3.3 we know that we have the relation

Bol=F

if we consider the Fantappi¢ transform F as a mapping from O'(K) to
O(K*), the Laplace transform as a mapping from O'(K) to the space of
entire functions of exponential type, and the Borel transform B as acting on
entire functions of exponential type.

Now, if K is circled we get, by Theorem 4.12 for the Fantappié transform
and Theorem 4.3 for the Borel transform, that the Laplace transform is an
isomorphism between the Hilbert spaces E?(K) and P?(K) (with the norms
as in (1.12)). If f satisfies the conditions in Theorem 1.5 then Bf € E%(K*)
with ||Bf||g2(x+) = cullfllp2(x). Theorem 4.12 implies that there is a unique
¢ € E?(K) such that Fy = Bf, and

cnllll ogry < IBSfllp2 ey < en&ll¥ll g2 (i)
with equality on both sides for the unit ball. Hence
Cn||1/)||E2(K) < I fllp2rey < Cn,K||7/)||E2(K)a

with equalities for the unit ball, and Theorem 1.5 is proved.
If K is not circled we can instead use Theorem 4.10 for the Borel trans-
form. For ¢ € E?(K) we get that

1Ll p2ry ~ 1BLY [ g2y = FYllp2(507) ~ 1]l 22 (K0

which proves (1.12) in Theorem 1.4.
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Appendix A

Smoothness of K° and K*

Proof of Lemma 2.4. If K is defined as in (2.1), then as we have seen above

op op
h =2 ((921"”’8%) =:20p
maps 0K to 0K°, and ¢(z) = 0p(z)/(0p(z),z) maps 0K to OK*. The
strong convexity of K implies that these mappings are injective from 0K
to C™ (see the discussion in section 2.2). If we can prove that they are also
immersions, i.e. that their ranks as mappings from 0K are maximal, then a
well known theorem says that their images are smooth manifolds, just like
0K, and that the mappings are actually diffeomorphisms.
We start with the mapping v and let

0 (Retpr, Imapy,. .., Imapy,)

0 (T1,Y15---+Yn)
be the Jacobian matrix of ¥ at p € K. We have to show that if v €
T,(0K) is a nonzero tangent vector, v = (a1,b1,...,by), then Dip(v) # 0.

Extending the Jacobian to a mapping from the complexification CT,(0K)
o) 0 [e)

Dy =

of the tangent space and making the change of basis { 77—, By By [
n
8 & 9 . . .. .
{6—21, ERRRRE ﬁ} (or by using the chain rule), we see that this is equivalent
to (all derivatives at p € 0K)
o1 oY1 O |,
021 071 0zo U1
M 01 O 7]
021 0741 Oza ! 7é 0
That is
9%p 9%p p ..
021021 021021 022021 V1
d%p d%p d%p "
021041 071041 020071 e 1 ;A O (Al)
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where v; = a; + ib;. We shall call this matrix Dip.
On the other hand, the strong convexity of K means that for every
nonzero v € Tp(0K)

2

82p
2 2
0 < 2Re jkzl 9z, aZkv]'Uk + Z 97 szvjvk

or equivalently

9%p 9%p ?p .
021021 071021 020021 1
. p p p T
v o1 ]| ondn 2505 Gmém 11 >0. (A.2)

Comparing (A.1) and (A.2) we see that since the matrix D1 is positive
definite when restricted to 7,(0K), no nonzero tangent vector can be a
nullvector, which is what we wanted to show.

We now turn our attention to the mapping ¢. When n = 1 this mapping
is simply z — 1/z, so we let n > 1. For simplicity we choose coordinates so
that dp = (1,0,...,0) at p. (Observe that then Re (p;) = Re(9p(p),p) =
p(p)/2 #0.) We then have

n n
0?p
d = — " dz | -
ox(p p1 Z Bz sz %+ Z szazk &
2 1 n 82p
) d dzj | —0ik— ——dZ;
lkp2 “ +j;1pl8 0z lkpf ;_:lpl 0z;0z “

(1% being the Kronecker delta) so that in the matrix D, except for the fac-
tor 1/p1, only the first two rows differ from D1). In our coordinates we have
Tp(l’o) (OK) = {v : dp.v = 0} = {v : v1 = 0}, so if we look at equation (A.2)
again we easily convince ourselves that no nonzero v € T 151’0) (0K) can be a
nullvector of De.

Now let v ¢ T,Sl’o) (0K) so that v; # 0. We have

[ (dp1) v ]
_ | (de1) v
D U1 =
v : (deps) v
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w1\ P\ 2p . x\m opLn %p
P Do p2 2<j=1 82;07 VI D=2 p2 2<j=1 3z;07 VI

- 1 (g9e
o (dan) .

ol

_vi_ N op(g0p i
» P P (dazl)""

- 1 (q9e
o (d8z2> v

Thus if all the entries 3,...,2n are zero, at least the first two are nonzero,
and v can not be a nullvector. O

Remark A.1. You may notice that for ¢ in the preceding proof, we only
proved that the Jacobian is non singular when restricted to T,(0K), but
that we found that the Jacobian for ¢ is non singular as a mapping from
C™. This is natural. Since the function p is 1-homogeneous, the mapping 1) is
0-homogeneous, and the matrix in (A.1) has a nullspace of (real) dimension
at least one. The mapping ¢ on the other hand is homogeneous of degree
—1 and it is injective from C" \ {0} to C" \ {0}. O
Remark A.2. When we showed in the above proof that the mapping ¢ was
an immersion, we really only used that the matrix in (A.2) was positive
definite restricted to the complex tangent space, i.e. that the Hessian of
p was positive definite on the complex tangent space. This is exactly the
condition that the domain is strongly C-convex, so what we really have
proved is that if the smooth domain K is strongly C-convex, then K* is
smooth. O

Proof of Proposition 2.5. Let K be smooth and strongly convex. We know
from the previous lemma that K° = {z : Hx(z) < 1} is smooth, and we
want to show that the Hessian of H is positive definite restricted to the real
tangent space at every point of dK°. Since the polar of a convex domain is
always convex, we know that the Hessian is positive semidefinite, so we only
need to prove that it is nonsingular. In the proof of the previous lemma we
showed that the mapping

P(z) = 20p(z) : 0K — OK°

is a diffeomorphism, so that the Jacobian matrix D(1~!) is nonsingular.
But geometrically the mapping 1! is given by

Y (w) = 20H g (w).

Thus the Jacobian matrix of 0Hg is nonsingular, which exactly as in the
previous proof is equivalent to that the Hessian of Hx is nonsingular.
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In the C-convex case we want to show that the Hessian of p* is positive
definite when restricted to the complex tangent space at any boundary point.
This follows in the same way (in view of Remark A.2) if we just replace
convex by C-convex and the real tangent space by the complex tangent
space. If ¢ is the mapping from 0K to K* we get that the matrix D(p 1)
is nonsingular. But the inverse is given by

o7 ) = 0 ()
(0p* (w), w)
Just notice now that, as in the previous proof, the matrix D(¢ ') is nonsin-
gular (on the whole of C") precisely when the Hessian of p* is nonsingular
restricted to the complex tangent space. U

Proof of Lemma 2.6. Let M be the set on the right hand side of (2.5). The
orthogonal projection is by the Hermitian inner product (z,w) = z - w on
C", and every z € C" can be written

.
ISI?

for some v € C and some z; € C" with (21,({) = 21 - { = 0. Using this we
have that for A\ # 0

z E+Z1

1

ANe(KT) & T EK
1

P %eKapxgz%:1

A

I¢[2

& dzeK:z= C+ 21, (21,() =0

& ANE M.

We also have that

Hpy(w) = sup Re(A-w)= sup Re (%fw{)
AeM reM q

= sup Re ((%E—i—m) -wC)
AEM, (zlyz):() |C|

= supRe (z-w()
zEK
= Hg(w(),

and the proof is complete. O
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